
MATH 571 — Mathematical Models of Financial Derivatives

Topic 3 – Filtrations, martingales and multi-period models

3.1 Information structures and filtrations

3.2 Notion of martingales

3.3 Discounted gain process and self-financing strategy under mul-

tiperiod securities models

3.4 No-arbitrage principle and martingale pricing measure

3.5 Multiperiod binomial models
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Setup of multiperiod securities model

• Securities models are of multiperiod, where there are T +1 trad-

ing dates: t = 0,1, · · · , T, T > 1.

• A finite sample space Ω of K elements, Ω = {ω1, ω2, · · · , ωK},
which represents the possible states of the world.

• A probability measure P defined on the sample space with P (ω) >

0 for all ω ∈ Ω.

• M risky securities whose price processes are non-negative stochas-

tic processes, as denoted by Sm = {Sm(t); t = 0,1, · · · , T}, m =

1, · · · , M .

2



• Riskfree security whose price process S0(t) is deterministic, with

S0(t) strictly positive and possibly non-decreasing.

• We may consider S0(t) as the money market account, and the

quantity rt =
S0(t)− S0(t− 1)

S0(t− 1)
, t = 1, · · · , T , is visualized as the

interest rate over the time interval (t− 1, t).

• Specify how the investors learn about the true state of the world

on intermediate trading dates in a multi-period model.

• Construct some information structure that models how infor-

mation is revealed to investors in terms of the partitions of the

sample space Ω.

• We form a partition P of Ω, which is a collection of disjoint

subsets (events) of Ω. The information P is revealed to us if we

have learned to which the atoms of P the true outcome of the

experiment belongs. In the dice tossing experiment, Pcoarse =

{{1,4}, {2,3,5,6}} and Pfine = {{1}, {2}, {3}, {4}, {5}, {6}}.
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Outline

• How can an information structure be described by a filtration

(nested sequence of algebras)? Understand how the security

price processes can be adapted to a given filtration {Ft}t=0,1,··· ,T
[Sm(t) is measurable with respect to the algebra Ft].

• We introduce martingales, which are defined with reference to

conditional expectations. In the multi-period setting, the risk

neutral probability measures are defined in terms of martingales.

All discounted price processes of risky securities are martingales

under a risk neutral measure.

• Derivation of the Fundamental Theorem of Asset Pricing.

• Multiperiod binomial models.
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3.1 Information structures and filtrations

Consider the sample space Ω = {ω1, ω2, · · · , ω10} with 10 elements.

We can construct various partitions of the set Ω.

A partition of Ω is a collection P = {B1, B2, · · · , Bn} such that

Bj, j = 1, · · · , n, are subsets of Ω and Bi∩Bj = φ, i 6= j, and
n⋃

j=1

Bj =

Ω.

Each of the sets B1, · · · , Bn is called an atom of the partition. For

example, we may form the partitions as

P0 = {Ω}
P1 = {{ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8, ω9, ω10}}
P2 = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8, ω9}, {ω10}}
P3 = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}, {ω6}, {ω7}, {ω8}, {ω9}, {ω10}}.
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Information tree of a three-period securities model with 10 possible

states. The partitions form a sequence of successively finer parti-

tions. The information structure describes the arrival of information

as time lapses.
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• Consider a three-period securities model that consists of a se-

quence of successively finer partitions: {Pk : k = 0,1,2,3}. The

pair (Ω,Pk) is called a filtered space, which consists of a sample

space Ω and a sequence of partitions of Ω. The filtered space

is used to model the unfolding of information through time.

• At time t = 0, the investors know only the set of all possible

outcomes, so P0 = {Ω}.

• At time t = 1, the investors get a bit more information: the ac-

tual state ω is in either {ω1, ω2, ω3, ω4} or {ω5, ω5, ω7, ω8, ω9, ω10}.
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Algebra

Let Ω be a finite set and F be a collection of subsets of Ω. The

collection F is an algebra on Ω if

(i) Ω ∈ F

(ii) B ∈ F ⇒ Bc ∈ F

(iii) B1 and B2 ∈ F ⇒ B1 ∪B2 ∈ F.

An algebra on Ω is a family of subsets of Ω closed under finitely

many set operations.
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• Given an algebra F on Ω, one can always find a unique collection

of disjoint subsets Bn such that each Bn ∈ F and the union of

the subsets equals Ω.

• The algebra F generated by a partition P = {B1, · · · , Bn} is a

set of subsets of Ω. Actually, when Ω is a finite sample space,

there is a one-to-one correspondence between partitions of Ω

and algebras on Ω.

• The information structure defined by a sequence of partitions

can be visualized as a sequence of algebras. We define a fil-

tration F = {Fk; k = 0,1, · · · , T} to be a nested sequence of

algebras satisfying Fk ⊆ Fk+1.
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• Given the algebra F = {φ, {ω1}, {ω2, ω3}, {ω4}, {ω1, ω2, ω3}, {ω2, ω3, ω4},
{ω1, ω4}, {ω1, ω2, ω3, ω4}}, the corresponding partition P is found

to be {{ω1}, {ω2, ω3}, {ω4}}.

• The atoms of P are B1 = {ω1}, B2 = {ω2, ω3} and B3 = {ω4}.
A non-empty event whose occurrence to be revealed through

revelation of P would be an union of atoms in P.

• Take the event A = {ω1, ω2, ω3} in the algebra F, which is the

union of B1 and B2. Given that B2 = {ω2, ω3} of P has occurred,

we can decide whether A or its complement Ac has occurred.

However, for another event Ã = {ω1, ω2}, even though we know

that B2 has occurred, we cannot determine whether Ã or Ãc has

occurred. The event Ã whose occurrence cannot be revealed

through revelation of P.
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Consider a probability measure P defined on an algebra F. The

probability measure P is a function

P : F → [0,1]

such that

1. P (Ω) = 1.

2. If B1, B2, · · · are pairwise disjoint sets belonging to F, then

P (B1 ∪B2 ∪ · · · ) = P (B1) + P (B2) + · · · .

Equipped with a probability measure, the elements of F are called

measurable events. Given the sample space Ω and a probability

measure P defined on Ω, together with the filtration F associated

with F, the triplet (Ω,F , P ) is called a filtered probability space.
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Measurability of random variables

• Consider an algebra F generated by a partition P = {B1, · · · , Bn},
a random variable X is said to be measurable with respect to F
(denoted by X ∈ F) if X(ω) is constant for all ω ∈ Bi, Bi is any

element in P. For example, consider the algebra F1 generated

by P1 = {{ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8, ω9, ω10}}. If X(ω1) = 3

and X(ω4) = 5, then X is not measurable with respect to F1.

• Consider an example where P = {{ω1, ω2}, {ω3, ω4}, {ω5}} and X

is measurable with respect to the algebra F generated by P.

Let X(ω1) = X(ω2) = 3, X(ω3) = X(ω4) = 5 and X(ω5) = 7.

Suppose the random experiment associated with the random

variable X is performed, giving X = 5. This tells the information

that the event {ω3, ω4} has occurred.
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• The information of outcome from the random experiment is

revealed through the random variable X. We may say that F is

being generated by X.

• A stochastic process Sm = {Sm(t); t = 0,1, · · · , T} is said to be

adapted to the filtration F = {Ft; t = 0,1, · · · , T} if the random

variables Sm(t) is Ft-measurable for each t = 0,1, · · · , T .

• For the bank account process S0(t), the interest rate is normally

known at the beginning of the period so that S0(t) is Ft−1-

measurable, t = 1, · · · , T . In this case, we say that the process

S0(t) is predictable.
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Conditional expectations

• Consider the filtered probability space defined by the triplet

(Ω,F , P ). Recall that a random variable is a mapping ω → X(ω)

that assigns a real number X(ω) to each ω ∈ Ω.

• A random variable is said to be simple if X can be decomposed

into the form

X(ω) =
n∑

j=1

aj1Bj
(ω)

where {B1, · · ·Bn} is the finite partition of Ω that generates F.

The indicator of Bj is defined by

1Bj
(ω) =

{
1 if ω ∈ Bj
0 if otherwise

.
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• The expectation of X with respect to the probability measure

P is defined as

E[X] =
n∑

j=1

ajE[1Bj
(ω)] =

n∑

j=1

ajP [Bj],

where P [Bj] is the probability that a state ω contained in Bj

occurs. The expectation E[X] is a weighted average of values

taken by X, weighted according to the various probabilities of

occurrence of events. The set of events run through the whole

sample space Ω.

• The conditional expectation of X given that event B has oc-

curred is defined to be

E[X|B] =
∑
x

xP [X = x|B]

=
∑
x

xP [X = x, B]/P [B]

=
1

P [B]

∑

ω∈B

X(ω)P [ω].
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The asset price process of a two-period securities model. The filtra-

tion F is revealed through the asset price process that is adapted to

F. Here, the partitions are: P2 = {{ω1}, {ω2}, {ω3}, {ω4}},P1 = {{ω1,

ω2}, {ω3, ω4}} and P0 = {Ω}.
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• Consider the sample space Ω = {ω1, ω2, ω3, ω4}. The probabili-

ties of occurrence of the states are given by P [ω1] = 0.2, P [ω2] =

0.3, P [ω3] = 0.35 and P [ω4] = 0.15.

Consider the two-period price process S whose values are given

by

S(1;ω1) = 3, S(1;ω2) = 3, S(1;ω3) = 5, S(1;ω4) = 5,

S(2;ω1) = 4, S(2;ω2) = 2, S(2;ω3) = 4, S(2;ω4) = 6.
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The conditional expectations

E[S(2)|S(1) = 3] and E[S(2)|S(1) = 5]

are calculated by

E[S(2)|S(1) = 3] =
S(2;ω1)P [ω1] + S(2;ω2)P [ω2]

P [ω1] + P [ω2]
= (4× 0.2 + 2× 0.3)/0.5 = 2.8;

E[S(2)|S(1) = 5] =
S(2;ω3)P [ω3] + S(2;ω4)P [ω4]

P [ω3] + P [ω4]
= (4× 0.35 + 6× 0.15)/0.5 = 4.6.

Note that “S(1) = 3” is equivalent to the occurrence of either ω1

or ω2.
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E[X|F] as a random variable measurable on F

We consider all conditional expectations of the form E[X|B] where

the event B runs through the algebra F. We define the quantity

E[X|F] by

E[X|F] =
n∑

j=1

E[X|Bj]1Bj
.

We see that E[X|F] is actually a random variable that is measurable

with respect to the algebra F. In the above numerical example, sup-

pose we write F1 = {φ, {ω1, ω2}, {ω3, ω4},Ω}, and the atoms of the

partition associated with F1 are B1 = {ω1, ω2} and B2 = {ω3, ω4}.
Since we have

E[S(2)|S(1) = 3] = 2.8 and E[S(2)|S(1) = 5] = 4.6,

so

E[S(2)|F1] = 2.81B1
+ 4.61B2

.
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• Suppose that the random variable X is F-measurable, we would

like to show E[XY |F] = XE[Y |F] for any random variable Y .

• Recall that X =
∑

Bj∈P
aj1Bj

, where X(ω) = aj when ω ∈ Bj and

P is the partition corresponding to the algebra F. We obtain

E[XY |F] =
∑

Bj∈P
E[XY |Bj]1Bj

=
∑

Bj∈P
E[ajY |Bj]1Bj

=
∑

Bj∈P
ajE[Y |Bj]1Bj

= XE[Y |F].

Note that X is known with regard to the information provided

by F.

For example, in the above two period security model,

E[S(1)S(2)|F1] =

{
3× 2.8 if ω1 or ω2 occurs
5× 4.6 if ω3 or ω4 occurs

.
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Tower property of conditional expectation

Since E[X|F] is a random variable, we may compute its expectation.

Recall E[X|F] =
n∑

j=1

E[X|Bj]1Bj
, and E[1Bj

] = P [Bj], so

E[E[X|F]] =
n∑

j=1

E[X|Bj]P [Bj]

=
n∑

j=1




∑

ω∈Bj

X[ω]P [ω]

P [Bj]


 P [Bj] = E[X].

In general, if F1 ⊂ F2, then

E[E[X|F2]|F1] = E[X|F1].

If we condition first on the information up to F2 and later on the

information F1 at an earlier time, then it is the same as conditioning

originally on F1. This is called the tower property of conditional

expectations.
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3.2 Notions of martingales

Martingales are related to models of fair gambling. For example,

let Xn represent the amount of money a player possesses at stage

n of the game. The martingale property means that the expected

amount of the player would have at stage n+1 given that Xn = αn,

is equal to αn, regardless of his past history of fortune.

Consider a filtered probability space with filtration F = {Ft; t =

0,1, · · · , T}. An adapted stochastic process S = {S(t); t = 0,1 · · · , T}
is said to be martingale if it observes

E[S(t + s)|Ft] = S(t) for all t ≥ 0 and s ≥ 0.
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We define an adapted stochastic process S to be a supermartingale

if

E[S(t + s)|Ft] ≤ S(t) for all t ≥ 0 and s ≥ 0;

and a submartingale if

E[S(t + s)|Ft] ≥ S(t) for all t ≥ 0 and s ≥ 0.

1. All martingales are supermartingales, but not vice versa. The

same observation is applied to submartingales.

2. An adapted stochastic process S is a submartingale if and only

if −S is a supermartingale; S is a martingales if and only if it is

both a supermartingale and a submartingale.
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Example

Recall in the earlier two-period security model

E[S(2)|F1] =

{
2.8 if ω1 or ω2 occurs
4.6 if ω3 or ω4 occurs

≤ S(1) =

{
3 if ω1 or ω2 occurs
5 if ω3 or ω4 occurs

.

Also

E[S(1)|F0] = 0.5× 3 + 0.5× 5 = 4 = S(0).

Hence S(t) is a supermartingale.

• If the price process of a security is a supermartingale, after the

arrival of new information, we expect a price decrease. Super-

martingales are thus assocated with “unfavorable” games, that

is, games where wealth is expected to decrease.
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Martingale transforms

Suppose S is a martingale and H is a predictable process with respect

to the filtration F = {Ft; t = 0,1, · · · , T}, we define the process

Gt =
t∑

u=1

Hu∆Su,

where ∆Su = Su−Su−1. One then deduces that ∆Gu = Gu−Gu−1 =

Hu∆Su. If S and H represent the asset price process and trading

strategy, respectively, then G can be visualized as the gain process.

Note that trading strategy is a predictable process, that is, Ht is

Ft−1-measurable. This is because the number of units held for each

security is determined at the beginning of the trading period by

taking into account all the information available up to that time.
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We call G to be the martingale transform of S by H, as G itself is

also a martingale.

To show the claim, it suffices to show that E[Gt+s|Ft] = Gt, t ≥
0, s ≥ 0. We consider

E[Gt+s|Ft] = E[Gt+s −Gt + Gt|Ft]

= E[Ht+1∆St+1 + · · ·+ Ht+s∆St+s|Ft] + E[Gt|Ft]

= E[Ht+1∆St+1|Ft] + · · ·+ E[Ht+s∆St+s|Ft] + Gt.

Consider the typical term E[Ht+u∆St+u|Ft], we can express it as

E[E[Ht+u ∆St+u|Ft+u−1]|Ft].

Further, since Ht+u is Ft+u−1-measurable and S is a martingale, we

have

E[Ht+u∆St+u|Ft+u−1] = Ht+uE[∆St+u|Ft+u−1] = 0.

Collecting all the calculations, we obtain the desired result.
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3.3 Discounted gain process and self-financing strategy un-

der multiperiod securities models

• There is a sample space Ω = {ω1, ω2, · · · , ωK} of K possible

states of the world.

• Let S denote the asset price process {S(t); t = 0,1, · · · , n}, where

S(t) is the row vector S(t) = (S1(t) S2(t) · · ·SM(t)) and whose

components are security prices. Also, there is a bank account

process S0(t), whose value is given by

S0(t) = (1 + r1)(1 + r2) · · · (1 + rt),

where ru is the interest rate applied over one time period starting

at time u, u = 0,1, · · · , t− 1.
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• A trading strategy is the rule taken by an investor that speci-

fies the investor’s position in each security at each time and in

each state of the world based on the available information as

prescribed by a filtration. Hence, one can visualize a trading

strategy as an adapted stochastic process.

• We prescribe a trading strategy by a vector stochastic process

H(t) = (h1(t) h2(t) · · ·hM(t))T , t = 1,2, · · · , T (represented as a

column vector), where hm(t) is the number of units held in the

portfolio for the mth security from time t− 1 to time t.
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The amount of bank account held at time t−1 is given by h0(t)S0(t).

Note that hm(t) should be Ft−1-measurable, m = 0,1, · · · , M .

The value of the portfolio is a stochastic process given by

V (t) = h0(t)S0(t) +
M∑

m=1

hm(t)Sm(t), t = 1,2, · · · , T,

which gives the portfolio value at the moment right after the asset

prices are observed but before changes in portfolio weights are made.

• h(t) is held constant from (t−1)+ to t−; S(t) is revealed exactly

at time t; portfolio weight is then adjusted to h(t + 1) at t+.
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We write ∆Sm(t) = Sm(t)−Sm(t−1) as the change in value of one

unit of the mth security between times t− 1 and t. The cumulative

gain associated with investing in the mth security from time zero to

time t is given by

t∑

u=1

hm(u)∆Sm(u), m = 0,1, · · · , M.

We define the gain process G(t) to be the total cumulative gain in

holding the portfolio consisting of the M risky securities and the

bank account up to time t. The value of G(t) is found to be

G(t) =
t∑

u=1

h0(u)∆S0(u)+
M∑

m=1

t∑

u=1

hm(u)∆Sm(u), t = 1,2, · · · , T.
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If we define the discounted price process S∗m(t) by

S∗m(t) = Sm(t)/S0(t), t = 0,1, · · · , T, m = 1,2, · · · , M,

and write ∆S∗m(t) = S∗m(t) − S∗m(t − 1), then the discounted value

process V ∗(t) and discounted gain process G∗(t) are given by

V ∗(t) = h0(t) +
M∑

m=1

hm(t)S∗m(t), t = 1,2, · · · , T,

G∗(t) =
M∑

m=1

t∑

u=1

hm(u)∆S∗m(u), t = 1,2, · · · , T.

Once the asset prices, Sm(t), m = 1,2, · · · , M , are revealed to the

investor, he changes the trading strategy from H(t) to H(t + 1) as

a response to the arrival of the new information at time t.
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Self-financing strategy

V (t) = h0(t + 1)S0(t) +
M∑

m=1

hm(t + 1)Sm(t).

The purchase of additional units of one particular security is financed

by the sales of other securities. In this case, the trading strategy is

said to be self-financing.

If there were no addition or withdrawal of funds at all trading times,

then the cumulative change of portfolio value V (t)−V (0) should be

equal to the gain G(t) associated with price changes of the securities

on all trading dates. Hence, we expect that a trading strategy H is

self-financing if and only if

V (t) = V (0) + G(t).
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To show the claim, we consider the portfolio value at time u right

after the asset prices are revealed but adjustment in asset holdings

has not been made so that

V (u) = h0(u)S0(u) +
M∑

m=1

hm(u)Sm(u).

We also consider the portfolio value at time u−1 right after adjust-

ment in asset holdings has been made so that

V (u− 1) = h0(u)S0(u− 1) +
M∑

m=1

hm(u)Sm(u− 1).

We then subtract the two equations to obtain

V (u)− V (u− 1) = h0(u)∆S0(u) +
M∑

m=1

hm(u)∆Sm(u).

Summing the above equation from u = 1 to u = t, we obtain the

result. It can be shown that H is self-financing if and only if

V ∗(t) = V ∗(0) + G∗(t).
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3.4 No arbitrage principle and martingale pricing measure

A trading strategy H represents an arbitrage opportunity if and only

if the value process V (t) and H satisfy the following properties:

(i) V (0) = 0,

(ii) V (T ) ≥ 0 and EV (T ) > 0, and

(iii) H is self-financing.

The self-financing trading strategy H is an arbitrage opportunity if

and only if (i) G∗(T ) ≥ 0 and (ii) EG∗(T ) > 0. Here, the expectation

E is taken with respect to the actual probability measure P , with

P (ω) > 0.

Like that in single period models, we expect that arbitrage opportu-

nity does not exist if and only if there exists a risk neutral probability

measure. In multi-period models, risk neutral probabilities are de-

fined in terms of martingales.
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Martingale measure

The measure Q is called a martingale measure (or called a risk

neutral probability measure) if it has the following properties:

1. Q(ω) > 0 for all ω ∈ Ω.

2. Every discounted price process S∗m in the securities model is a

martingale under Q, m = 1,2, · · · , M , that is,

EQ[S∗m(t + s)|Ft] = S∗m(t) for all t ≥ 0 and s ≥ 0.

Recall that the conditional expectation EQ[S∗m(t + s)|Ft] is a Ft-

measurable random variable, so does S∗m(t). We call the discounted

price process S∗m(t) to be a Q-martingale.
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As a numerical example, we determine the martingale measure Q

associated with the earlier two-period securities model. Let r ≥ 0 be

the constant riskless interest rate over one period, and write Q(ωj)

as the martingale measure associated with the state ωj, j = 1,2,3,4.

(i) t = 0 and s = 1

4 =
3

1 + r
[Q(ω1) + Q(ω2)] +

5

1 + r
[Q(ω3) + Q(ω4)]

(ii) t = 0 and s = 2

4 =
4

(1 + r)2
Q(ω1) +

2

(1 + r)2
Q(ω2)

+
4

(1 + r)2
Q(ω3) +

6

(1 + r)2
Q(ω4)
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(iii) t = 1 and s = 1

3 =
4

1 + r

Q(ω1)

Q(ω1) + Q(ω2)
+

2

1 + r

Q(ω2)

Q(ω1) + Q(ω2)

5 =
4

1 + r

Q(ω3)

Q(ω3) + Q(ω4)
+

6

1 + r

Q(ω4)

Q(ω3) + Q(ω4)
.

recall that Q(ω1)
Q(ω1)+Q(ω2)

is the risk neutral conditional probability of

going upstate when the state {ω1, ω2} is reached at t = 1. The

calculation procedure can be simplified by observing that Q(ωj) is

given by the product of the conditional probabilities along the path

from the node at t = 0 to the node ωj at t = 2.
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We start with the probability p associated with the upper branch

{ω1, ω2}. The corresponding probability p is given by

4 =
3

1 + r
p +

5

1 + r
(1− p)

so that p =
1− 4r

2
.

Similarly, the conditional probability p′ associated with the branch

{ω1} from the node {ω1, ω2} is given by

3 =
4

1 + r
p′ + 2

1 + r
(1− p′)

giving p′ = 1− 3r

2
. In a similar manner, the conditional probability

p′′ associated with {ω3} from {ω3, ω4} is found to be
1− 5r

2
.
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Determine all the risk neutral conditional probabilities along the path

from the node at t = 0 to the terminal node (T, ω).
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The martingale probabilities are then found to be

Q(ω1) = pp′ = 1− 4r

2

1− 3r

2
,

Q(ω2) = p(1− p′) =
1− 4r

2

1 + 3r

2
,

Q(ω3) = (1− p)p′′ = 1 + 4r

2

1− 5r

2
,

Q(ω4) = (1− p)(1− p′′) =
1 + 4r

2

1 + 5r

2
.

In order that the martingale probabilities remain positive, we have

to impose the restriction: r < 0.2.
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Martingale property of value processes

Suppose H is a self-financing trading strategy and Q is a martingale

measure with respect to a filtration F, then the value process V (t)

is a Q-martingale. To show the claim, we use the relation

V ∗(t) = V ∗(0) + G∗(t)

since H is self-financing, and deduce that

V ∗(t + 1)− V ∗(t) = G∗(t + 1)−G∗(t)
= [S∗(t + 1)− S∗(t)]H(t + 1).

As H is a predictable process, V ∗(t) is the martingale transform of

the Q-martingale S∗(t). Hence, V ∗(t) itself is also a Q-martingale.
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existence of Q ⇒ non-existence of arbitrage opportunities

• Assume that Q exists. Consider a self-financing trading strategy

with V ∗(T ) ≥ 0 and E[V ∗(T )] > 0. Here, E is the expectation

under the actual probability measure P , with P (ω) > 0. That is,

V ∗(T ) is strictly positive for some states of the world.

• As Q(ω) > 0, we then have EQ[V ∗(T )] > 0. However, since

V ∗(T ) is a Q-martingale so that V ∗(0) = EQ[V ∗(T )], and by

virtue of EQ[V ∗(T )] > 0, we always have V ∗(0) > 0.

• It is then impossible to have V ∗(T ) ≥ 0 and E[V ∗(T )] > 0 while

V ∗(0) = 0. Hence, the self-financing strategy H cannot be an

arbitrage opportunity.
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non-existence of arbitrage opportunities ⇒ existence of Q

• If there are no arbitrage opportunities in the multi-period model,

then there will be no arbitrage opportunities in any underlying

single period.

• Since each single period does not admit arbitrage opportuni-

ties, one can construct the one-period risk neutral conditional

probabilities.

• The martingale probability measure Q(ω) is then obtained by

multiplying all the risk neutral conditional probabilities along the

path from the node at t = 0 to the terminal node (T, ω).
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Theorem

A multi-period securities model is arbitrage free if and only if there

exists a probability measure Q such that the discounted asset price

processes are Q-martingales.

Additional remarks

1. The martingale measure is unique if and only if the multi-period

securities model is complete. Here, completeness implies that

all contingent claims (FT -measurable random variables) can be

replicated by a self-financing trading strategy.

2. In an arbitrage free complete market, the arbitrage price of a

contingent claim is then given by the discounted expected value

under the martingale measure of the portfolio that replicates the

claim.
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Valuation of an attainable contingent claim

Let Y denote an attainable contingent claim at maturity T and V (t)

denote the arbitrage price of the contingent claim at time t, t < T .

We then have

V (t) =
S0(t)

S0(T )
EQ[Y |Ft],

where S0(t) is the riskless asset and the ratio S0(t)/S0(T ) is the

discount factor over the period from t to T .
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3.5 Multi period binomial models

Let cuu denote the call value at two periods beyond the current time

with two consecutive upward moves of the asset price and similar

notational interpretation for cud and cdd. The call values cu and cd

are related to cuu, cud and cdd as follows:

cu =
pcuu + (1− p)cud

R
and cd =

pcud + (1− p)cdd

R
.

The call value at the current time which is two periods from expiry

is found to be

c =
p2cuu + 2p(1− p)cud + (1− p)2cdd

R2
,

where the corresponding terminal payoff values are given by

cuu = max(u2S−X,0), cud = max(udS−X,0), cdd = max(d2S−X,0).
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Note that the coefficients p2,2p(1 − p) and (1 − p)2 represent the

respective risk neutral probability of having two up jumps, one up

jump and one down jump, and two down jumps in two moves of the

binomial process.

Dynamics of asset price and call price in a two-period binomial

model.
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• With n binomial steps, the risk neutral probability of having j up

jumps and n − j down jumps is given by Cn
j pj(1 − p)n−j, where

Cn
j =

n!

j!(n− j)!
is the binomial coefficient.

• The corresponding terminal payoff when j up jumps and n − j

down jumps occur is seen to be max(ujdn−jS −X,0).

• The call value obtained from the n-period binomial model is

given by

c =

n∑

j=0

Cn
j pj(1− p)n−j max(ujdn−jS −X,0)

Rn
.
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We define k to be the smallest non-negative integer such that

ukdn−kS ≥ X, that is, k ≥ ln X
Sdn

ln u
d

. It is seen that

max(ujdn−jS −X,0) =

{
0 when j < k

ujdn−jS −X when j ≥ k
.

The integer k gives the minimum number of upward moves required

for the asset price in the multiplicative binomial process in order

that the call expires in-the-money.

The call price formula is simplified as

c = S
n∑

j=k

Cn
j pj(1− p)n−jujdn−j

Rn
−XR−n

n∑

j=k

Cn
j pj(1− p)n−j.
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Interpretation of the call price formula

• The last term in above equation can be interpreted as the ex-

pectation value of the payment made by the holder at expiration

discounted by the factor R−n, and
n∑

j=k

Cn
j pj(1− p)n−j is seen to

be the probability (under the risk neutral measure) that the call

will expire in-the-money.

• The above probability is related to the complementary binomial

distribution function defined by

Φ(n, k, p) =
n∑

j=k

Cn
j pj(1− p)n−j.
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Note that Φ(n, k, p) gives the probability for at least k successes in n

trials of a binomial experiment, where p is the probability of success

in each trial.

Further, if we write p′ = up

R
so that 1− p′ = d(1− p)

R
, then the call

price formula for the n-period binomial model can be expressed as

c = SΦ(n, k, p′)−XR−nΦ(n, k, p).

Alternatively, from the risk neutral valuation principle, we have

c =
1

Rn
EQ

[
ST1{ST >X}

]
− X

Rn
EQ

[
1{ST >X}

]
.

• The first term gives the discounted expectation of the asset

price at expiration given that the call expires in-the-money.

• The second term gives the present value of the expected cost

incurred by exercising the call.
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Futures price

Unlike a call option, the holder of a futures has the obligation to

buy the underlying asset at the futures price F at maturity T .

Also, the futures value at initiation is zero. Hence,

time-t futures value = 0 =
1

Rn
EQ[ST ]− F

Rn
,

so that

F = EQ[ST ] (instead of EP [ST ]).

How to compute EQ[ST ]? Since S∗t is a Q-martingale,

St

Mt
= EQ

[
ST

MT

]
so that EQ[ST ] = er(T−t)St.
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