
MATH 571 — Mathematical Models of Financial Derivatives

Topic 4 – Black-Scholes-Merton framework and Martingale

Pricing Theory

4.1 Review of stochastic processes and Ito calculus

4.2 Change of measure – Girsanov’s Theorem

4.3 Riskless hedging principle and dynamic replication strategy

4.4 Martingale pricing theory

4.5 European option pricing formulas and their greeks

4.6 Implied volatility and volatility smiles
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4.1 Review of stochastic processes and Ito calculus

• A Markovian process is a stochastic process that, given the value

of Xs, the value of Xt, t > s, depends only on Xs but not on the

values taken by Xu, u < s.

• If the asset prices follow a Markovian process, then only the

present asset prices are relevant for predicting their future values.

• This Markovian property of asset prices is consistent with the

weak form of market efficiency , which assumes that the present

value of an asset price already impounds all information in past

prices and the particular path taken by the asset price to reach

the present value is irrelevant.
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Market efficiency

Fama’s definition (1970)

A market in which prices always “fully reflect” available information

is called “efficient”.

Malkiel’s definition (1992)

A capital market is said to be efficient if it fully and correctly reflects

all relevant information in determining security prices. (Repeating

Fama’s sentence).

Formally, the market is said to be efficient with respect to some in-

formation set . . . if security prices would be unaffected by revealing

that information to all participants. Moreover, efficiency with re-

spect to an information set . . . implies that it is impossible to make

economic profits by trading on the basis of [that information set].
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Weak-form Efficiency: The information set includes only the history

of prices or returns themselves.

Semistrong-Form Efficiency: The information set includes all infor-

mation known to all market participants (publicly available informa-

tion).

Strong-Form Efficiency: The information set includes all informa-

tion known to any market participant (private information).
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1. Market efficiency can be tested by revealing information to mar-

ket participants and measuring the reaction of security prices.

If prices do not move when information is revealed, then the

market is efficient with respect to that information. Although

this is clear conceptually, it is hard to carry out such a test in

practice (except perhaps in a laboratory).

2. One can judge the efficiency of a market, by measuring the

profits that can be made by trading on information. This idea

is the foundation of almost all the empirical work on the market

efficiency.

Many researchers have tried to measure the profits earned by

market professionals such as mutual fund managers. If these

managers achieve superior returns (after adjustment for risk)

then the market is not efficient with respect to the information

possessed by the managers.
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Brownian process

The Brownian process with drift is a stochastic process {X(t); t ≥ 0}
with the following properties:

(i) Every increment X(t + s) − X(s) is normally distributed with

mean µt and variance σ2t;µ and σ are fixed parameters.

(ii) For every t1 < t2 < · · · < tn, the increments X(t2)−X(t1), · · · , X(tn)−
X(tn−1) are independent random variables with distributions

given in (i).

(iii) X(0) = 0 and the sample paths of X(t) are continuous.

• Note that X(t + s)−X(s) is independent of the past history of

the random path, that is, the knowledge of X(τ) for τ < s has

no effect on the probability distribution for X(t+s)−X(s). This

is precisely the Markovian character of the Brownian motion.
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Standard Brownian process

For the particular case µ = 0 and σ2 = 1, the Brownian motion

is called the standard Brownian motion (or standard Wiener pro-

cess). The probability distribution for the standard Wiener process

{Z(t); t ≥ 0} is given by

P [Z(t) ≤ z|Z(t0) = z0] = P [Z(t)− Z(t0) ≤ z − z0]

=
1√

2π(t− t0)

∫ z−z0

−∞
exp

(
− x2

2(t− t0)

)
dx

= N

(
z − z0√
t− t0

)
.
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(a) E[Z(t)2] = var(Z(t)) + E[Z(t)]2 = t.

(b) E[Z(t)Z(s)] = min(t, s).

To show the result in (b), we assume t > s (without loss of gener-

ality) and consider

E[Z(t)Z(s)] = E[{Z(t)− Z(s)}Z(s) + Z(s)2]

= E[{Z(t)− Z(s)}Z(s)] + E[Z(s)2].

Since Z(t) − Z(s) and Z(s) are independent and both Z(t) − Z(s)

and Z(s) have zero mean, so

E[Z(t)Z(s)] = E[Z(s)2] = s = min(t, s).
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Overlapping Brownian increments

When t > s, the correlation coefficient ρ between the two overlap-

ping Brownian increments Z(t) and Z(s) is given by

ρ =
E[Z(t)Z(s)]√

var(Z(t))
√

var(Z(s))
=

s√
st

=
√

s

t
.

Joint distribution of Z(s) and Z(t)

Since both Z(t) and Z(s) are normally distributed with zero mean

and variance t and s, respectively, the probability distribution of the

overlapping Brownian increments is given by the bivariate normal

distribution function.
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If we define X1 = Z(t)/
√

t and X2 = Z(s)/
√

s, then X1 and X2

become standard normal random variables. We then have

P [Z(t) ≤ zt, Z(s) ≤ zs] = P [X1 ≤ zt/
√

t, X2 ≤ zs/
√

s]

= N2(zt/
√

t, zs/
√

s;
√

s/t)

where the bivariate normal distribution function is given by

N2(x1, x2; ρ) =
∫ x2

−∞

∫ x1

−∞
1

2π
√

1− ρ2

exp

(
−ξ21 − 2ρξ1ξ2 + ξ22

2(1− ρ2)

)
dξ1dξ2.
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Geometric Brownian process

Let X(t) denote the Brownian process with drift parameter µ and

variance parameter σ2. The stochastic process defined by

Y (t) = eX(t), t ≥ 0,

is called the Geometric Brownian process. The value taken by Y (t)

is non-negative.

Since X(t) = lnY (t) is a Brownian process, by properties (i) and

(ii), we deduce that lnY (t) − lnY (0) is normally distributed with

mean µt and variance σ2t. For common usage,
Y (t)

Y (0)
is said to be

lognormally distributed.
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The density function of
Y (t)

Y (0)
is deduced to be

fY (y, t) =
1

y
√

2πσ2t
exp

(
−(ln y − µt)2

2σ2t

)
.

The mean of Y (t) conditional on Y (0) = y0 is found to be

E[Y (t)|Y (0) = y0]

= y0

∫ ∞
0

yfY (y, t) dy

= y0

∫ ∞
−∞

ex
√

2πσ2t
exp

(
−(x− µt)2

2σ2t

)
dx, x = ln y,

= y0

∫ ∞
−∞

1√
2πσ2t

exp

(
−[x− (µt + σ2t)]2 − 2µtσ2t− σ4t2

2σ2t

)
dx

= y0 exp

(
µt +

σ2t

2

)
.
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The variance of Y (t) conditional on Y (0) = y0 is found to be

var(Y (t)|Y (0) = y0)

= y2
0

∫ ∞
0

y2fY (y, t) dy −
[
y0 exp

(
µt +

σ2t

2

)]2

= y2
0

{∫ ∞
−∞

1√
2πσ2t

exp

(
−[x− (µt + 2σ2t)]2 − 4µtσ2t− 4σ4t2

2σ2t

)
dx

−
[
exp

(
µt +

σ2t

2

)]2




= y2
0 exp(2µt + σ2t)[exp(σ2t)− 1].
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Brownian paths are seen to be non-differentiable. The non-differentiability

property can be shown easily by proving the finiteness of the quadratic

variation of a Brownian motion.

Quadratic variation of Brownian motions

Suppose we form a partition π of the time interval [0, T ] by the

discrete points

0 = t0 < t1 < · · · < tn = T,

and let δtmax = max
k

(tk − tk−1). We write ∆tk = tk − tk−1, and de-

fine the corresponding quadratic variation of the standard Brownian

motion Z(t) by

Qπ =
n∑

k=1

[Z(tk)− Z(tk−1)]
2.

The quadratic variation of Z(t) over [0, T ] is given by

Q[0,T ] = lim
δtmax→0

Qπ = T.
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First, we consider

E[Qπ]

=
n∑

k=1

E[{Z(tk)− Z(tk−1)}2]

=
n∑

k=1

var(Z(tk)− Z(tk−1))

since Z(tk)− Z(tk−1) has zero mean

= var(Z(tn)− Z(t0))

since Z(tk)− Z(tk−1), k = 1, · · · , n are independent

= tn − t0 = T

so that

lim
δtmax→0

E[Qπ] = T.
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Consider

var(Qπ − T ) = E




n∑

k=1

n∑

`=1

{
[Z(tk)− Z(tk−1)]

2 −∆tk
}

{[Z(t`)− Z(t`−1)]
2 −∆t`}


 .

Since the increments [Z(tk)−Z(tk−1)], k = 1, · · · , n are independent,

only those terms corresponding to k = ` in the above series survive,

so we have

var(Qπ − T ) = E




n∑

k=1

{
[Z(tk)− Z(tk−1)]

2 −∆tk
}2




=
n∑

k=1

E


{Z(tk)− Z(tk−1)}4




− 2∆tk

n∑

k=1

E
[
{Z(tk)− Z(tk−1)}2

]
+ ∆t2k.
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Since Z(tk) − Z(tk−1) is normally distributed with zero mean and

variance ∆tk, its fourth order moment is known to be

E[{Z(tk)− Z(tk−1)}4] = 3∆t2k,

so

var(Qπ − T ) =
n∑

k=1

[3∆t2k − 2∆t2k + ∆t2k] = 2
n∑

k=1

∆t2k.

In taking the limit δtmax → 0, we observe that var(Qπ − T ) → 0.

By virtue of lim
n→∞var(Qπ−T ) = 0, we say that T is the mean square

limit of Qπ.
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Remarks

1. In general, the quadratic variation of the Brownian motion with

variance rate σ2 over the time interval [t1, t2] is given by

Q[t1,t2]
= σ2(t2 − t1).

2. If we write dZ(t) = Z(t)− Z(t− dt), where dt → 0, then we can

deduce from the above calculations that

E[dZ(t)2] = dt and var(dZ(t)2) = 2 dt2.

Since dt2 is a higher order infinitesimally small quantity, we may

claim that the random quantity dZ(t)2 converges in the mean

square sense to the deterministic quantity dt.
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Definition of stochastic integration

Let f(t) be an arbitrary function of t and Z(t) be the standard

Brownian motion. First, we consider the definition of the stochastic

integral
∫ T

0
f(t) dZ(t) as a limit of the following partial sums (defined

in the usual Riemann-Stieltjes sense):

∫ T

0
f(t) dZ(t) = lim

n→∞
n∑

k=1

f(ξk)[Z(tk)− Z(tk−1)]

where the discrete points 0 < t0 < t1 < · · · < tn = T form a partition

of the interval [0, T ] and ξk is some immediate point between tk−1

and tk. The limit is taken in the mean square sense.
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Unfortunately, the limit depends on how the immediate points are

chosen. For example, suppose we take f(t) = Z(t) and choose

ξk = αtk + (1− α)tk−1,0 ≤ α ≤ 1, for all k. We consider

E




n∑

k=1

Z(ξk)[Z(tk)− Z(tk−1)




=
n∑

k=1

E
[
Z(ξk)Z(tk)− Z(ξk)Z(tk−1)

]

=
n∑

k=1

[min(ξk, tk)−min(ξk, tk−1)]

=
n∑

k=1

(ξk − tk−1) = α
n∑

k=1

(tk − tk−1) = αT,

so that the expected value of the stochastic integral depends on the

choice of the immediate points.
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• A function is said to be non-anticipative ( ) with respect to

the Brownian motion Z(t) if the value of the function at time t

is determined by the path history of Z(t) up to time t.

Examples

1. f1(t) =





0 if max
0≤s≤t

Z(s) < 5

1 if max
0≤s≤t

Z(s) ≥ 5
is non-anticipative.

2. f2(t) =





0 if max
0≤s≤1

Z(s) < 5

1 if max
0≤s≤1

Z(s) ≥ 5
is not non-anticipative.

For t < 1, the value of f2(t) is determined by the realization

of the path of Z over [0,1].
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• In finance, the investor’s action is non-anticipative in nature

since he makes the investment decision before the asset prices

move.

• Define the stochastic integration by taking ξk = tk−1 (left-hand

point in each sub-interval) so that integration is taken to be non-

anticipatory. The Ito definition of stochastic integral is given by

∫ T

0
f(t) dZ(t) = lim

n→∞
n∑

k=1

f(tk−1)[Z(tk)− Z(tk−1)],

where the limit is taken in the mean square sense and f(t) is

non-anticipative with respect to Z(t).

A path is “sliced” into consecutive Gaussian increments, each

increment is multiplied by a random variable, and these numbers

are added together to give the stochastic integral.
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Consider the kth term: f(tk−1)∆Zk = f(tk−1)[Z(tk)−Z(tk−1)], once

the history of the path up to time tk−1 is revealed, the value of

f(tk−1) is known. The increment of the stochastic integral over

(tk−1, tk) conditional on the path history up to tk−1 is Gaussian with

mean zero and variance f(tk−1)
2(tk − tk−1).

Example

Consider the evaluation of the Ito stochastic integral
∫ T

0
Z(t) dZ(t).

A naive evaluation according to the usual integration rule gives

∫ T

0
Z(t) dZ(t) =

1

2

∫ T

0

d

dt
[Z(t)]2 dt =

Z(T )2 − Z(0)2

2
,

which gives a wrong result.
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Consider
∫ T

0
Z(t) dZ(t) = lim

n→∞
n∑

k=1

Z(tk−1)[Z(tk)− Z(tk−1)]

= lim
n→∞

1

2

n∑

k=1

({Z(tk−1) + [Z(tk)− Z(tk−1)]}2

− Z(tk−1)
2 − [Z(tk)− Z(tk−1)]

2)

=
1

2
lim

n→∞[Z(tn)
2 − Z(t0)

2]

− 1

2
lim

n→∞
n∑

k=1

[Z(tk)− Z(tk−1)]
2

=
Z(T )2 − Z(0)2

2
− T

2
.
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Rearranging the terms,

2
∫ T

0
Z(t) dZ(t) +

∫ T

0
dt =

∫ T

0

d

dt
[Z(t)]2 dt,

or in differential form,

2Z(t) dZ(t) + dt = d[Z(t)]2.

Unlike the usual differential rule, we have the extra term dt.

This comes from the finiteness of the quadratic variation of the

Brownian motion, since |Z(tk)− Z(tk−1)|2 is of order ∆tk and

lim
n→∞

n∑

k=1

[Z(tk)− Z(tk−1)]
2 remains finite on taking the limit.
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Stochastic differentials

Let Ft be the natural filtration generated by the standard Brown-

ian motion Z(t) through the observation of the trajectory of Z(t).

Let µ(t) and σ(t) be adapted to Ft with
∫ T

0
|µ(t)| dt < ∞ and

∫ T

0
σ2(t) dt < ∞ (almost surely) for all T , then the process X(t)

defined by

X(t) = X(0) +
∫ t

0
µ(s) ds +

∫ t

0
σ(s) dZ(s),

is called an Ito process. The differential form of the above equation

is given as

dX(t) = µ(t) dt + σ(t) dZ(t).
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Ito’s Lemma

Suppose f(x, t) is a twice continuously differentiable function and

the stochastic process Y is defined by Y = f(X, t). Since dZ(t)2

converges in the mean square sense to dt, the second order term

dX2 also contributes to the differential dY . The Ito formula of

computing the differential of the stochastic function f(X, t) is given

by

dY =

[
∂f

∂t
(X, t) + µ(t)

∂f

∂x
(X, t) +

σ2(t)

2

∂2f

∂x2
(X, t)

]
dt

+ σ(t)
∂f

∂x
(X, t) dZ.
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Expand ∆Y by the Taylor series up to the second order terms:

∆Y =
∂f

∂t
∆t +

∂f

∂x
∆X

+
1

2

(
∂2f

∂t2
∆t2 + 2

∂2f

∂x∂t
∆X∆t +

∂2f

∂x2
∆X2

)
+ O(∆X3,∆t3).

In the limit ∆X → 0 and ∆t → 0, we apply the multiplication rules

where dZ2 = dt, dZdt = 0 and dt2 = 0 so that

dY =
∂f

∂t
dt +

∂f

∂x
dX +

σ2(t)

2

∂2f

∂x2
dt.

Writing out in full in terms of dZ and dt, we obtain the Ito formula.
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Example

Consider the exponential Brownian

S(t) = S0e

(
r−σ2

2

)
t+σZ(t)

.

Suppose we write

X(t) =

(
r − σ2

2

)
t + σZ(t)

so that

dX(t) =

(
r − σ2

2

)
dt + σ dZ(t)

S(t) = S0eX(t).

The respective partial derivatives of S are

∂S

∂t
= 0,

∂S

∂X
= S and

∂2S

∂X2
= S.
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By the Ito lemma, we obtain

dS =

(
r − σ2

2
+

σ2

2

)
S dt + σS dZ

or
dS

S
= r dt + σ dZ.

Since E[X(t)] =

(
r − σ2

2

)
t and var(X(t)) = σ2t, the mean and

variance of ln
S(t)

S0
are found to be

(
r − σ2

2

)
t and σ2t, respectively.
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Multi-dimensional version of Ito’s lemma

Suppose f(x1, · · · , xn, t) is a multi-dimensional twice continuously

differentiable function and the stochastic process Yn is defined by

Yn = f(X1, · · · , Xn, t),

where the process Xj(t) follows the Ito process

dXj(t) = µj(t) dt + σj(t) dZj(t), j = 1,2, · · · , n.

The Brownian motions Zj(t) and Zk(t) are assumed to be correlated

with correlation coefficient ρjk so that dZj dZk = ρjk dt.
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In a similar manner, we expand ∆Yn up to the second order term in

∆Xj:

∆Yn =
∂f

∂t
(X1, · · · , Xn, t) ∆t +

n∑

j=1

∂f

∂xj
(X1, · · · , Xn, t) ∆Xj

+
1

2

n∑

j=1

n∑

k=1

∂2f

∂xj∂xk
(X1, · · · , Xn, t) ∆Xj ∆Xk

+ O(∆t∆Xj) + O(∆t2).

32



In the limits ∆Xj → 0, j = 1,2, · · · , n, and ∆t → 0, we neglect the

higher order terms in O(∆t∆Xj) and O(∆t2) and observe dXj dXk =

σj(t)σk(t)ρjk dt. We then obtain the following multi-dimensional

version of the Ito lemma:

dYn =


∂f

∂t
(X1, · · · , Xn, t) +

n∑

j=1

µj(t)
∂f

∂xj
(X1, · · · , Xn, t)

+
1

2

n∑

j=1

n∑

k=1

σj(t)σk(t)ρjk
∂2f

∂xj∂xk
(X1, · · · , Xn, t)


 dt

+
n∑

j=1

σj(t)
∂f

∂xj
(X1, · · · , Xn, t) dZj.
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4.2 Change of measure – Girsanov’s Theorem

Consider an Ito process defined in integral form

X(t) = X(0) +
∫ t

0
µ(s) ds +

∫ t

0
σ(s) dZ(s)

with non-zero drift term µ(t). We write M(t) =
∫ t

0
σ(s) dZ(s).

Note that

M(T ) = M(t) +
∫ T

t
σ(s) dZ(s), T > t.

Suppose we take the conditional expectation of M(T ) given the

history of the Brownian path up to the time t (denoted by the

operator Et), we obtain

Et[M(T )] = M(t)

since the stochastic integral has zero conditional expectation. Hence,

M(t) is a martingale. However, X(t) is not a martingale if µ(t) is

non-zero.
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Change of measure

Under the actual probability measure P , the asset price process

follows
dSt

St
= ρ dt + σ dZP

t

where ZP
t is P -Brownian. Let S∗t = St/Mt be the discounted asset

price process, where Mt = ert [Mt is the solution to dMt = rMt dt,

with M(0) = 1] and r is the riskfree interest rate.

Under a risk neutral measure Q, S∗t is Q-martingale and its dynamics

is governed by

dS∗t
S∗t

= σ dZ
Q
t or

dSt

St
= r dt + σ dZ

Q
t ,

where Z
Q
t is Q-Brownian. How do we relate ZP

t and Z
Q
t ?

Answer: dZ
Q
t = dZP

t +
ρ− r

σ
dt
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Transition density function

Let Xt be the unrestricted zero-drift Brownian process with variance

rate σ2. Write u(x, t) as the density function such that Xt falls within

the interval
(
x− dx

2
, x +

dx

2

)
with probability u(x, t) dx.

Assume that X0 = ξ, that is, the Brownian path starts at the posi-

tion ξ at t = 0. The governing equation for u(x, t) is given by

∂u

∂t
=

σ2

2

∂2u

∂x2
, −∞ < x < ∞, t > 0,

with the initial condition: u(x,0) = δ(x− ξ).
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The solution to u(x, t) is known to be

u(x, t) =
1

σ
√

2πt
exp

(
−(x− ξ)2

2σ2t

)
.

This is the same as the density function of a normal random variable

with mean ξ and variance σ2t.

For a Brownian process with variance rate σ2 and drift rate µ, the

density function is

u(x, t) =
1

σ
√

2πt
exp

(
−(x− µt− ξ)2

2σ2t

)

so that the mean position at time t is ξ+µt. If we let x = y+µt, then

y gives the spatial position when the frame of reference is moving

at the rate µ. Say, a position at η in the x-frame becomes η− µt in

the y-frame.
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In terms of y, the density function becomes

u(y, t) =
1

σ
√

2πt
exp

(
−(y − ξ)2

2σ2t

)
,

which gives the density function of a zero-drift Brownian process

with variance rate σ2 and starting position ξ under the y-frame.

Apparently, a Brownian process with drift can be transformed into

the zero-drift Brownian process by adjusting the frame of reference

appropriately. We would like to find the relation between the corre-

sponding density functions.

In subsequent discussion, we consider unit variance Brownian pro-

cesses so that σ2 = 1. Also, the starting position ξ is taken to be

zero.
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The density function

u0(y, t) =
1√
2πt

exp

(
−y2

2t

)

is transformed into the density function

uµ(y, t) =
1√
2πt

exp

(
−(y + µt)2

2t

)

through multiplication by the factor exp

(
−µy − µ2t

2

)
. That is,

uµ(y, t) = u0(y, t) exp

(
−µy − µ2t

2

)
.

If we set x = y + µt, then

uµ(y, t) =
1√
2πt

exp

(
−x2

2t

)
= u0(x, t).
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Radon-Nikodym derivatives

Consider the standard P -Brownian process ZP (t), for some time

horizon T , ZP (T ) is known to have zero mean and variance T under

the measure P . Adding the drift µt to ZP (t) (here µ is taken to be

constant) and writing

Z
P̃
(t) = ZP (t) + µt,

then Z
P̃
(t) is a Brownian process with drift under the measure P .

Can we modify the probability density through multiplication of dP

by a factor such that Z
P̃
(t) becomes a Brownian process (zero drift)

under the modified measure P̃?
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The factor is called the Radon-Nikodym derivative
dP̃

dP
. This proce-

dure is called the change of measure from the original measure P

to the new measure P̃ .

In this case, the corresponding Radon-Nikodym derivative can be

found to be

dP̃

dP
= exp

(
−µZP (T )− µ2

2
T

)
.

To verify the claim, it suffices to show that Z
P̃
(T ) is normal with

zero mean and variance T under the measure P̃ by looking at the

corresponding moment generating function.
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Recall the following well known result in probability theory:

A random variable X is normal with mean m and variance σ2 under

a measure P if and only if

EP [exp(αX)] = exp

(
αm +

α2

2
σ2

)
, for any real α.

Now, we consider

E
P̃

[
exp(αZ

P̃
(T ))

]

= EP

[
dP̃

dP
exp(αZP (T ) + αµT )

]

= EP

[
exp ((α− µ)ZP (T )) exp

(
αµT − µ2

2
T

)]

= exp

(
(α− µ)2

2
T + αµT − µ2

2
T

)
= exp

(
α2

2
T

)
, for any real α,

hence Z
P̃
(T ) is normal with zero mean and variance T under P̃ .
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Is exp

(
−µZP (t)− µ2t

2

)
a martingale under P?

For s < t, consider

EP

[
exp

(
−µZP (t)− µ2t

2

) ∣∣∣∣∣Fs

]

= EP


exp

(
−µZP (s)− µ2s

2

)
exp


−µ (ZP (t)− ZP (s))︸ ︷︷ ︸

normal with variance t− s

− µ2

2
(t− s)

∣∣∣∣∣Fs







= exp

(
−µZP (s)− µ2s

2

)
exp

(
µ2

2
(t− s)

)
exp

(
−µ2

2
(t− s)

)

= exp

(
−µZP (s)− µ2s

2

)
.

Remark Recall that the solution to the SDE:
dS∗t
S∗t

= σ dZt is given

by

S∗t = S∗0e

(
−σ2

2 t+σZ(t)
)

so S∗t is a martingale.
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Girsanov Theorem

Consider a stochastic process γ(t) which satisfies the Novikov con-

dition:

E[e
∫ t
0

1
2γ(s)2 ds] < ∞,

and consider the Radon-Nikodym derivative:

dP̃

dP
= ρ(t)

where

ρ(t) = exp
(∫ t

0
−γ(s) dZ(s)− 1

2

∫ t

0
γ(s)2 ds

)
.

Here, ZP (t) is a Brownian process under the measure P (called

P -Brownian process). Under the measure P̃ , the stochastic process

Z
P̃
(t) = ZP (t) +

∫ t

0
γ(s) ds

is P̃ -Brownian.
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Feynman-Kac representation formula

• Suppose the Ito process X(t) is governed by the stochastic dif-

ferential equation

dX(s) = µ(X(s), s) ds + σ(X(s), s) dZ(s), t ≤ s ≤ T, (A)

with initial condition: X(t) = x.

• Consider a smooth function F (X(t), t), by virtue of the Ito

lemma, the differential of which is given by

dF =

[
∂F

∂t
+ µ(X, t)

∂F

∂X
+

σ2(X, t)

2

∂2F

∂X2

]
dt + σ

∂F

∂X
dZ.

• The infinitesimal generator A associated with the Ito process

X(t) is defined by

A = µ(X, t)
∂

∂X
+

σ2(X, t)

2

∂2

∂X2
.
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Suppose F satisfies the parabolic partial differential equation

∂F

∂t
+AF = 0 (B)

with terminal condition: F (X(T ), T ) = h(X(T )), then dF becomes

dF = σ
∂F

∂X
dZ.

Supposing that σ
∂F

∂X
is non-anticipative with the Brownian process

Z(t), we can express the above stochastic differential form into the

following integral form

F (X(s), s) = F (X(t), t) +
∫ s

t
σ(X(u), u)

∂F

∂X
(X(u), u) dZ(u).
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• The stochastic integral can be viewed as a sum of inhomoge-

neous consecutive Gaussian increments with mean zero, hence

it has zero conditional expectation.

• By taking the conditional expectation and setting s = T and

F (X(T ), T ) = h(X(T )), we then obtain the following Feynman-

Kac representation formula

F (x, t) = Ex,t[h(X(T ))], t < T,

where F (x, t) satisfies the partial differential equation and Ex,t

refers to expectation taken conditional on X(t) = x.

• The process X(t) is initialized at the fixed point x at time t and

it follows the Ito process defined in Eq. (A).
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4.3 Riskless hedging principle and dynamic replicating strat-

egy

Riskless hedging principle

Writer of a call option – hedges his exposure by holding certain units

of the underlying asset in order to create a riskless portfolio.

In an efficient market with no riskless arbitrage opportunity, a riskless

portfolio must earn its rate of return equals the riskless interest rate.

Let Π(t) be the value of a riskless hedged portfolio. By invoking

no-arbitrage argument, we must have

dΠ(t) = rΠ(t) dt,

where r is the riskfree interest rate.
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Dynamic replication strategy

How to replicate an option dynamically by a portfolio of the riskless

asset in the form of money market account and the risky underlying

asset?

The cost of constructing the replicating portfolio gives the fair price

of an option.

Equality of market price of risk

Hedgeable securities should have the same market price of risk.

Recall

λS =
ρS − r

σS
and λV =

ρV − r

σV

and λS = λV if the stock and option (both tradeable) are hedgeable

with each other.
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Black-Scholes’ assumptions on the financial market

(i) Trading takes place continuously in time.

(ii) The riskless interest rate r is known and constant over time.

(iii) The asset pays no dividend.

(iv) There are no transaction costs in buying or selling the asset or

the option, and no taxes.

(v) The assets are perfectly divisible.

(vi) There are no penalties to short selling and the full use of pro-

ceeds is permitted.

(vii) There are no arbitrage opportunities.

• The ability to construct a perfectly hedged portfolio relies on

the assumption of continuous trading and continuous asset price

process.
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• The stochastic process of the asset price St is assumed to follow

the Geometric Brownian process

dSt

St
= ρ dt + σ dZt.

• Consider a portfolio which involves short selling of one unit of

a European call option and long holding of ∆t units of the

underlying asset. The portfolio value Π(St, t) at time t is given

by

Π = −c + ∆tSt,

where c = c(St, t) denotes the call price.

• Note that ∆t changes with time t, reflecting the dynamic nature

of hedging. Since both c and Π are random variables, we apply

the Ito Lemma to give

dc =
∂c

∂t
dt +

∂c

∂St
dSt +

σ2

2
S2

t
∂2c

∂S2
t

dt.
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Black and Scholes assume that ∆t is held fixed from t to t + dt, so

that the differential change in the portfolio value π is given by

−dc + ∆t dSt

=

(
−∂c

∂t
− σ2

2
S2

t
∂2c

∂S2
t

)
dt +

(
∆t −

∂c

∂St

)
dSt

=

[
−∂c

∂t
− σ2

2
S2

t
∂2c

∂S2
t

+

(
∆t −

∂c

∂St

)
ρSt

]
dt +

(
∆t −

∂c

∂St

)
σSt dZt.

By taking ∆t = ∂c
∂St

, the stochastic term associated with dZt van-

ishes. Also, the term involving ρ also vanishes. The riskless hedged

portfolio should earn the riskless rate of return. We then have

dΠt = rΠt dt

so that

−∂c

∂t
− σ2

2
S2

t
∂2c

∂S2
t

= r

(
−c + St

∂c

∂St

)

⇔ ∂c

∂t
+ rS

∂c

∂S
+

σ2

2
S2 ∂2c

∂S2
− rV = 0, where c = c(S, t).
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Integral formulation

The financial gain on the portfolio from zero time to time t is given

by the following

G(Π(St, t)) =
∫ t

0
−dc +

∫ t

0
∆u dSu

=
∫ t

0

[
−∂c

∂u
− σ2

2
S2

u
∂2c

∂S2
u

+
(
∆u − ∂c

∂Su

)
ρSu

]
du

+
∫ t

0

(
∆u − ∂c

∂Su

)
σSu dZu.

• Recall that ∆u is non-anticipative in the stochastic integral.

This fits well with the financial scenario where ∆u is held fixed

over (u, u + du) and the differential change on the asset position is

attributed to the change in the asset price dSu.

53



• The stochastic component of the portfolio gain stems from the

last term:
∫ t

0

(
∆u − ∂c

∂Su

)
σSu dZu. Suppose we adopt the dy-

namic hedging strategy by choosing ∆u =
∂c

∂Su
, for all times

u < t, then the financial gain becomes deterministic at all times.

• Interestingly, by setting ∆u = ∂c
∂Su, both the stochastic term and

drift term disappear. The dependence of gain on ρ disappears

together with disappearance of randomness.

• By virtue of no arbitrage, the financial gain should be the same

as the gain from investing on the riskfree asset with dynamic

position whose value equals −c + Su
∂c

∂Su
.
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The deterministic gain from this dynamic position of riskless asset

is given by

Mt =
∫ t

0
r

(
−c + Su

∂c

∂Su

)
du.

By equating these two deterministic gains G(Π(St, t)) and Mt, we

have

G(Π(St, t)) = Mt

⇔ 0 =
∫ t

0

[
∂c

∂u
+

σ2

2
S2

u
∂2c

∂S2
u

+ r

(
−c + Su

∂c

∂Su

)]
du, 0 < u < t,

which is satisfied for any asset price Su provided that c(S, t) satisfies

the equation

∂c

∂t
+

σ2

2
S2 ∂2c

∂S2
+ rS

∂c

∂S
− rc = 0.
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• The above parabolic partial differential equation is called the

Black-Scholes equation. Note that the parameter ρ, which is

the expected rate of return of the asset, does not appear in the

equation.

• The terminal payoff at time T of the European call with strike

price X is translated into the following terminal condition:

c(S, T ) = max(S −X,0).

• The option pricing model involves five parameters: S, T, X, r and

σ, all except the volatility σ are directly observable parameters.

• The independence of the pricing model on ρ is related to the

concept of risk neutrality .
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Deficiencies in the model

1. Geometric Brownian process assumption of the asset price pro-

cess? Actual asset price dynamics is much more complicated.

Later models allow the asset price process to follow the jump-

diffusion process and exhibit stochastic volatility.

2. Continuous hedging at all times

— trading usually involves transaction costs.

3. Interest rate should be stochastic instead of deterministic.

Black and Scholes use the differential formulation of dΠ and follow

the “pragmatic” approach of keeping the hedge ratio ∆t to be

instantaneously “frozen”. Mathematicians may be puzzled since

the simple product rule in calculus is not observed, where d(∆tSt) =

∆t dSt + St d∆t.
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Merton’s formulation – Dynamic replication strategy

QS(t) = number of units of asset

QV (t) = number of units of option

MS(t) = dollar value of QS(t) units of asset

MV (t) = dollar value of QV (t) units of option

M(t) = value of riskless asset invested in money market account

• Construction of a self-financing and dynamically hedged portfo-

lio containing risky asset, option and riskless asset (in the form

of money market account).
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• Dynamic replication: Composition is allowed to change at all

times in the replication process.

• The self-financing portfolio is set up with zero initial net invest-

ment cost and no additional funds added or withdrawn after-

wards.

The zero net investment condition at time t is

Π(t) = MS(t) + MV (t) + M(t)

= QS(t)S + QV (t)V + M(t) = 0.

Differential of option value V :

dV =
∂V

∂t
dt +

∂V

∂S
dS +

σ2

2
S2∂2V

∂S2
dt

=

(
∂V

∂t
+ ρS

∂V

∂S
+

σ2

2
S2∂2V

∂S2

)
dt + σS

∂V

∂S
dZ.
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Formally, we write the stochastic dynamics of V as

dV

V
= ρV dt + σV dZ

where

ρV =
∂V
∂t + ρS∂V

∂S + σ2

2 S2∂2V
∂S2

V
and σV =

σS∂V
∂S

V
.

dΠ(t) = [QS(t) dS + QV (t) dV + rM(t) dt]

+ [S dQS(t) + V dQV (t) + dM(t)]︸ ︷︷ ︸
zero due to self-financing trading strategy

• The additional term rM(t) dt gives the interest amount earned

from the money market account over dt.

• dM(t) represents the change in the money market account due

to the net dollar gained/lost from the sale of the underlying

asset and option in the portfolio.
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The instantaneous portfolio return dΠ(t) can be expressed in terms

of MS(t) and MV (t) as follows:

dΠ(t) = QS(t) dS + QV (t) dV + rM(t) dt

= MS(t)
dS

S
+ MV (t)

dV

V
+ rM(t) dt

= [(ρ− r)MS(t) + (ρV − r)MV (t)] dt

+ [σMS(t) + σV MV (t)] dZ.

We make the self-financing portfolio to be instantaneously riskless

by choosing MS(t) and MV (t) such that the stochastic term becomes

zero.

From the relation:

σMS(t) + σV MV (t) = σSQS(t) +
σS∂V

∂S

V
V QV (t) = 0,

we obtain the following ratio of the units of asset and derivative to

be held

QS(t)

QV (t)
= −∂V

∂S
.
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Taking QV (t) = −1, and knowing

0 = Π(t) = −V + ∆S + M(t)

we obtain

V = ∆S + M(t), where ∆ =
∂V

∂S
.

• This corresponds to the case of shorting one unit of the option.

The above equation implies that the position of one unit of op-

tion can be replicated by a self-financing trading strategy using

S and M(t), where ∆ =
∂V

∂S
.

Numerical example Suppose the call option value increases by $0.3

when the underlying asset increases $1 in value, then ∂V/∂S ≈ 0.3.

To hedge the sale of one unit of the call, the hedger holds 0.3 units

of the underlying asset so that

$1× 0.3 + $0.3× (−1) = 0.
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The dynamic replicating portfolio is riskless and requires no net

investment, so dΠ(t) = 0.

0 = [(ρ− r)MS(t) + (ρV − r)MV (t)] dt.

Putting
QS(t)

QV (T )
= −∂V

∂S
, we obtain

(ρ− r)S
∂V

∂S
= (ρV − r)V.

Substituting ρV by

[
∂V

∂t
+ ρS

∂V

∂S
+

σ2

2
S2∂2V

∂S2

] /
V , we obtain the

Black-Scholes equation

∂V

∂t
+

σ2

2
S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.
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Alternative perspective on risk neutral valuation

From ρV =
∂V
∂t + ρS∂V

∂S + σ2

2 S2∂2V
∂S2

V
, we obtain

∂V

∂t
+

σ2

2
S2∂2V

∂S2
+ ρS

∂V

∂S
− ρV V = 0.

We need to calibrate the parameters ρ and ρV , or find some other

means to avoid such nuisance.

Combining σV =
σS∂V

∂S

V
and (ρ− r)S

∂V

∂S
= (ρV − r)V , we obtain

ρV − r

σV︸ ︷︷ ︸
λV

=
ρ− r

σ︸ ︷︷ ︸
λS

⇒ Black-Scholes equation.

λV and λS are the market price of risk of V and S, respectively. For

risk aversion (risk neutral) investors, they demand positive (zero)

market price of risk.
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• The market price of risk is the rate of extra return above r per

unit risk. Two hedgeable securities should have the same market

price of risk.

• The two risky instruments, option and asset, are hedgeable.

The riskless hedged portfolio should earn the riskless interest

rate. Apparently, the market prices of risk of the option and

asset become irrelevant. For convenience, we set ρ = ρV =

r (implying zero market price of risk). This gives the Black-

Scholes equation.

• Option valuation can be performed in the risk neutral world

by artificially taking the expected rate of returns of the asset

and option to be r. Apparently, we choose a pricing measure

(called risk neutral measure or martingale measure) such that

the expected rate of return of any risky instrument is r or the

discounted value has zero rate of return.
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Arguments of risk neutrality

• We find the price of a derivative relative to that of the underlying

asset⇒mathematical relationship between the prices is invariant

to the risk preference.

• Be careful that the actual rate of return of the underlying as-

set would affect the asset price and thus indirectly affects the

absolute derivative price.

• We simply use the convenience of risk neutrality to arrive at the

mathematical relationship.

Remark It would be mistaken to interpret risk neutrality as “inde-

pendence of risk in the underlying asset” in the option pricing model.

The volatility parameter σ remains in the pricing model.
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“How we came up with the option formula?” — Black (1989)

• It started with tinkering and ended with delayed

recognition.

• The expected return on a warrant should depend on the risk of

the warrant in the same way that a common stock’s expected

return depends on its risk.

• I spent many, many days trying to find the solution to that (dif-

ferential) equation. I have a PhD in applied mathematics, but

had never spent much time on differential equations, so I didn’t

know the standard methods used to solve problems like that. I

have an A.B. in physics, but I didn’t recognize the equation as

a version of the heat equation, which has well-known solutions.
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Expectation representation of derivative price

Under the actual probability measure P , the governing pde is

∂V

∂t
+ ρS

∂V

∂S
+

σ2

2
S2∂2V

∂S2
− ρV V = 0, V (S, T ) = h(S).

By the Feynman-Kac representation, V (S, t) admits the expectation

representation

V (S, t) = e−ρV (T−t)Et
P [h(ST )],

when Et
P denotes the expectation under P conditional on filtration

Ft.
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Suppose the governing pde is the Black-Scholes equation, where

∂V

∂t
+ rS

∂V

∂S
+

σ2

2
S2∂2V

∂S2
− rV = 0,

then the derivative price function admits the expectation represen-

tation

V (S, t) = e−r(T−t)Et
Q[h(ST )].

Under the pricing (risk neutral) measure Q, the dynamics of St is

governed by

dSt

St
= r dt + σ dZ

Q
t , Z

Q
t is Q-Brownian.
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What happens when the underlying is not a tradeable security?

Suppose the derivative price V (Q, t;T ) is dependent on some price

index Q whose dynamics is

dQt = µ(Qt, t) dt + σQ(Qt, t) dZt.

Now, Q is not a traded security. We can only hedge two derivatives

with respective maturity T1 and T2, whose values are dependent on

Q.

The portfolio value Π is given by

Π = V1(Q, t;T1)− V2(Q, t, T2),

where

dVi

Vi
= µV (Q, t;Ti) dt + σV (Q, t;Ti) dZt, i = 1,2.
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By Ito’s lemma:

µV (Q, t;Ti) =
1

Vi


∂Vi

∂t
+ µ

∂V

∂Q
+

σ2
Q

2

∂2V

∂Q2




σV (Q, t;Ti) =
σQ

Vi

∂Vi

∂Q
, i = 1,2.

The change in portfolio value is

dΠ = [V1µV (Q, t;T1)− V2µV (Q, t;T2)] dt

+[V1σV (Q, t;T1)− V2σV (Q, t;T2)] dZt.

Suppose V1 and V2 are chosen such that

V1 =
σV (T2)

σV (T2)− σV (T1)
Π and V2 =

σV (T1)

σV (T2)− σV (T1)
Π,

then the stochastic term vanishes and Π = V1 − V2 is satisfied.
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Now

dΠ

Π
=

µV (T1)σV (T2)− µV (T2)σV (T1)

σV (T2)− σV (T1)
dt ≡ r dt.

Rearranging, we obtain

µV (T1)− r

σV (T1)
=

µV (T2)− r

σV (T2)
.

The relation is valid for arbitrary maturity dates T1 and T2. Hence,

µV (Q, t)− r

σV (Q, t)
= λ(r, t) = market price of risk of Q.

We obtain

∂V

∂t
+ µ

∂V

∂Q
+

σ2
Q

2

∂2V

∂Q2
− rV = λσQ

∂V

∂Q
.
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The governing equation for derivative value becomes

∂V

∂t
+ (µ− λσQ)

∂V

∂Q
+

σ2
Q

2

∂2V

∂Q2
− rV = 0,

where the market price of risk is involved.

When Q is a traded security, then V = Q also satisfies the above

equation. This gives

µ− λσQ = rQ.

Furthermore, we set σQ = σQ, where σ is a constant. We recover

the Black-Scholes equation

∂V

∂t
+ rQ

∂V

∂Q
+

σ2

2
Q2∂2V

∂Q2
− rV = 0.
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4.4 Martingale pricing theory

Continuous time securities model

• Uncertainty in the financial market is modeled by the filtered

probability space (Ω,F , (Ft)0≤t≤T , P ), where Ω is a sample space,

F is a σ-algebra on Ω, P is a probability measure on (Ω,F),Ft

is the filtration and FT = F.

• There are M + 1 securities whose price processes are modeled

by adapted stochastic processes Sm(t), m = 0,1, · · · , M .

• We define hm(t) to be the number of units of the mth security

held in the portfolio at time t.

• The trading strategy H(t) is the vector stochastic process (h0(t)

h1(t) · · ·hM(t))T , where H(t) is a (M+1)-dimensional predictable

process since the portfolio composition is determined by the in-

vestor based on the information available before time t.
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• The value process associated with a trading strategy H(t) is

defined by

V (t) =
M∑

m=0

hm(t)Sm(t), 0 ≤ t ≤ T,

and the gain process G(t) is given by

G(t) =
M∑

m=0

∫ t

0
hm(u) dSm(u), 0 ≤ t ≤ T.

• Similar to that in discrete models, H(t) is self-financing if and

only if

V (t) = V (0) + G(t).
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• We use S0(t) to denote the money market account process that

grows at the riskless interest rate r(t), that is,

dS0(t) = r(t)S0(t) dt.

• The discounted security price process S∗m(t) is defined as

S∗m(t) = Sm(t)/S0(t), m = 1,2, · · · , M.

• The discounted value process V ∗(t) is defined by dividing V (t)

by S0(t). The discounted gain process G∗(t) is defined by

G∗(t) = V ∗(t)− V ∗(0).
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Arbitrage and equivalent martingale measure

• A self-financing trading strategy H represents an arbitrage op-

portunity if and only if (i) G∗(T ) ≥ 0 and (ii) EPG∗(T ) > 0 where

P is the actual probability measure of the states of occurrence

associated with the securities model.

• A probability measure Q on the space (Ω,F) is said to be an

equivalent martingale measure if it satisfies

(i) Q is equivalent to P , that is, both P and Q have the same

null set;
(ii) the discounted security price processes S∗m(t), m = 1,2, · · · , M

are martingales under Q, that is,

EQ[S∗m(u)|Ft] = S∗m(t), for all 0 ≤ t ≤ u ≤ T.

Remark The restriction on trading strategies based on “no arbi-

trage” is not sufficient for the existence of an equivalent martingale

measure.
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existence of an equivalent martingale measure ⇒ absence of

arbitrage

• Assume that an equivalent martingale measure exists and H is a

self-financing strategy under P so it is also self-financing under

Q.

• The time-t discounted value V ∗(t) of the portfolio generated by

H is a Q-martingale so that V ∗(0) = EQ[V ∗(T )].

• We start with V (0) = V ∗(0) = 0, and suppose we claim that

V ∗(T ) ≥ 0 with strict inequality for some states of the world.

Since Q(ω) > 0 and EQ[V ∗(T )] = V ∗(0) = 0 should be observed,

we can only have V ∗(T ) = 0.

In conclusion, starting with V ∗(0) = 0, it is impossible to have

“V ∗(T ) ≥ 0 and V ∗(T ) is strictly positive for some states”. Hence,

there cannot exist any arbitrage opportunities.
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A self-financing trading strategy is said to be Q-admissible if the

discounted gain process G∗(t) is a Q-martingale.

Contingent claims are modeled as FT -measurable random variables.

A contingent claim is said to be attainable if there exists at least

an admissible trading strategy H such that V (T ) = Y .

Theorem

Assume that an equivalent martingale measure Q exists. Let Y be

an attainable contingent claim generated by a Q-admissible self-

financing trading strategy H. Then for each time t,0 ≤ t ≤ T , the

arbitrage price of Y is given by

V (t;H) = S0(t)EQ

[
Y

S0(T )

∣∣∣∣∣Ft

]
.
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The validity of the Theorem is readily seen if we consider the dis-

counted value process V ∗(t;H) to be a martingale under Q. This

leads to

V (t;H) = S0(t)V
∗(t;H) = S0(t)EQ[V ∗(T ;H)|Ft].

Furthermore, by observing that V ∗(T ;H) = Y/S0(T ), so the risk

neutral valuation formula follows.
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Black-Scholes model revisited

The price processes of S(t) and M(t) are governed by

dS(t)

S(t)
= ρ dt + σ dZ

dM(t) = rM(t) dt.

The price process of S∗(t) = S(t)/M(t) becomes

dS∗(t)
S∗(t)

= (ρ− r)dt + σ dZ.

We would like to find the equivalent martingale measure Q such

that the discounted asset price S∗ is Q-martingale. By the Girsanov

Theorem, suppose we choose γ(t) in the Radon-Nikodym derivative

such that

γ(t) =
ρ− r

σ
,

then Z̃ is a Brownian motion under the probability measure Q and

dZ̃ = dZ +
ρ− r

σ
dt.
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Under the Q-measure, the process of S∗(t) now becomes

dS∗(t)
S∗(t)

= σ dZ̃,

hence S∗(t) is Q-martingale. The asset price S(t) under the Q-

measure is governed by

dS(t)

S(t)
= r dt + σ dZ̃.

When the money market account is used as the numeraire, the cor-

responding equivalent martingale measure is called the risk neutral

measure and the drift rate of S under the Q-measure is called the

risk neutral drift rate.
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The arbitrage price of a derivative is given by

V (S, t) = e−r(T−t)E
t,S
Q [h(ST )]

where E
t,S
Q is the expectation under the risk neutral measure Q

conditional on the filtration Ft with St = S. By the Feynman-Kac

representation formula, when V (S, t) satisfies the pde

∂V

∂t
+

σ2

2
S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

V (S, t) admits the above expectation representation.

Consider the European call option whose terminal payoff is max(ST−
X,0). The call price c(S, t) is given by

c(S, t) = e−r(T−t)EQ[max(ST −X,0)]

= e−r(T−t){EQ[ST1{ST≥X}]−XEQ[1{ST≥X}]}.
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Exchange rate process under domestic risk neutral measure

• Consider a foreign currency option whose payoff function de-

pends on the exchange rate F , which is defined to be the do-

mestic currency price of one unit of foreign currency.

• Let Md and Mf denote the money market account process in

the domestic market and foreign market, respectively. The pro-

cesses of Md(t), Mf(t) and F (t) are governed by

dMd(t) = rMd(t) dt, dMf(t) = rfMf(t) dt,
dF (t)

F (t)
= µ dt+σ dZF ,

where r and rf denote the riskless domestic and foreign interest

rates, respectively.
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• We may treat the domestic money market account and the for-

eign money market account in domestic dollars (whose value

is given by FMf) as traded securities in the domestic currency

world.

• With reference to the domestic equivalent martingale measure,

Md is used as the numeraire.

• By Ito’s lemma, the relative price process X(t) = F (t)Mf(t)/Md(t)

is governed by

dX(t)

X(t)
= (rf − r + µ) dt + σ dZF .

85



Summary

Option pricing equation before Black-Scholes-Merton

∂V

∂t
+

σ2

2
S2∂2V

∂S2
+ ρS

∂V

∂S
− ρV V = 0

where

dSt = ρ dt + σ dZt and
dVt

Vt
= ρV dt + σV dZt.

By the Feynman-Kac formula, we obtain

Vt = e−ρV (T−t)EP
t [VT ], P is is the physical measure.

One has to estimate ρ and ρV .
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Application of hedging

1. The underlying is tradeable so that

ρV − r

σV
=

ρ− r

σ
, same market price of risk.

We obtain

∂V

∂t
+

σ2

2
S2∂2v

∂S2
+ rS

∂V

∂S
− rV = 0

Vt = e−r(T−t)E
Q
t [VT ],where Q is the martingale measure.

Under Q, the dynamics of St is governed by

dSt

St
= r dt + σ dZt or

dS∗t
S∗t

= σ dZt.

Apparently, we can set ρ = ρV = r, equivalent to say the investor

is risk neutral since she demands zero excess rate of return above

the risk free rate on risky instruments.
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2. The underlying is non-tradeable so that

∂V

∂t
+

σ2

2
S2∂2V

∂S2
+ (µ− λσ)

∂V

∂S
− rV = 0,

where

λ =
ρV − r

σV
.

Under hedgeability of two derivatives on S, the rate of return

on V can be set to be r. However, the drift rate is modified to

µ − λσ. When S becomes tradeable, we have λ = ρV−r
ρV

= ρ−r
σ

so ρ−λσ becomes r. This recovers the standard Black-Scholes-

Merton equation.
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• With the choice of γ = (rf − r + µ)/σ in the Girsanov Theorem,

we define

dZd = dZF + γ dt,

where Zd is a Brownian process under Qd.

• Under the domestic equivalent martingale measure Qd, the pro-

cess of X now becomes

dX(t)

X(t)
= σ dZd

so that X is Qd-martingale.

• The exchange rate process F under the Qd-measure is given by

dF (t)

F (t)
= (r − rf) dt + σ dZd.

• The risk neutral drift rate of F under Qd is found to be r − rf .
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4.5 European option pricing formulas and their greeks

Recall that the Black-Scholes equation for a European vanilla call

option takes the form

∂c

∂τ
=

σ2

2
S2 ∂2c

∂S2
+ rS

∂c

∂S
− rc, 0 < S < ∞, τ > 0, τ = T − t.

Initial condition (payoff at expiry)

c(S,0) = max(S −X,0), X is the strike price.

Using the transformation: y = lnS and c(y, τ) = e−rτw(y, τ), the

Black-Scholes equation is transformed into

∂w

∂τ
=

σ2

2

∂2w

∂y2
+

(
r − σ2

2

)
∂w

∂y
, −∞ < y < ∞, τ > 0.

The initial condition for the model now becomes

w(y,0) = max(ey −X,0).
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Green function approach

The infinite domain Green function is known to be

φ(y, τ) =
1

σ
√

2πτ
exp


−[y + (r − σ2

2 )τ ]2

2σ2τ


 .

Here, φ(y, τ) satisfies the initial condition:

lim
τ→0+

φ(y, τ) = δ(y),

where δ(y) is the Dirac function representing a unit impulse at the

origin.

The initial condition can be expressed as

w(y,0) =
∫ ∞
−∞

w(ξ,0)δ(y − ξ) dξ,

so that w(y,0) can be considered as the superposition of impulses

with varying magnitude w(ξ,0) ranging from ξ → −∞ to ξ →∞.
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• Since the Black-Scholes equation is linear, the response in po-

sition y and at time to expiry τ due to an impulse of magnitude

w(ξ,0) in position ξ at τ = 0 is given by w(ξ,0)φ(y − ξ, τ).

• From the principle of superposition for a linear differential equa-

tion, the solution is obtained by summing up the responses due

to these impulses.

c(y, τ) = e−rτw(y, τ)

= e−rτ
∫ ∞
−∞

w(ξ,0) φ(y − ξ, τ) dξ

= e−rτ
∫ ∞
lnX

(eξ −X)
1

σ
√

2πτ

exp


−[y + (r − σ2

2 )τ − ξ]2

2σ2τ


 dξ.
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Note that

∫ ∞
lnX

eξ 1

σ
√

2πτ
exp


−[y + (r − σ2

2 )τ − ξ]2

2σ2τ


 dξ

= exp(y + rτ)
∫ ∞
lnX

1

σ
√

2πτ
exp


−

[
y +

(
r + σ2

2

)
τ − ξ

]2

2σ2τ


 dξ

= erτSN


ln S

X + (r + σ2

2 )τ

σ
√

τ


 , y = lnS;

∫ ∞
lnX

1

σ
√

2πτ
exp


−[y + (r − σ2

2 )τ − ξ]2

2σ2τ


 dξ

= N


y + (r − σ2

2 )τ − lnX

σ
√

τ


 = N


ln S

X + (r − σ2

2 )τ

σ
√

τ


 , y = lnS.
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Hence, the price formula of the European call option is found to be

c(S, τ) = SN(d1)−Xe−rτN(d2),

where

d1 =
ln S

X + (r + σ2

2 )τ

σ
√

τ
, d2 = d1 − σ

√
τ.

• The initial condition is seen to be satisfied by observing that

the limits of d1 and d2 tend to 1 or 0, depending on S > X or

S < X.

• The boundary conditions are satisfied by observing

lim
S→∞

N(d1) = lim
S→∞

N(d2) = 1

and

lim
S→0+

N(d1) = lim
S→0+

N(d2) = 0.
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The call value lies within the bounds

max(S −Xe−rτ ,0) ≤ c(S, τ) ≤ S, S ≥ 0, τ ≥ 0.
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c(S, τ) = e−rτEQ[(ST −X)1{ST≥X}]

= e−rτ
∫ ∞
0

max(ST −X,0)ψ(ST , T ;S, t) dST .

• Under the risk neutral measure Q,

ln
ST

S
=

(
r − σ2

2

)
τ + σZ̃(τ)

so that ln
ST

S
is normally distributed with mean

(
r − σ2

2

)
τ and

variance σ2τ, τ = T − t.

• From the density function of a normal random variable, the

transition density function is given by

ψ(ST , T ;S, t) =
1

STσ
√

2πτ
exp


−

[
ln ST

S −
(
r − σ2

2

)
τ

]2

2σ2τ


 .
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If we compare the price formula with the expectation representation

we deduce that

N(d2) = EQ[1{ST≥X}] = Q[ST ≥ X]

SN(d1) = e−rτEQ[ST1{ST≥X}].

• N(d2) is recognized as the probability under the risk neutral

measure Q that the call expires in-the-money, so Xe−rτN(d2)

represents the present value of the risk neutral expectation of

payment paid by the option holder at expiry.

• SN(d1) is the discounted risk neutral expectation of the terminal

asset price conditional on the call being in-the-money at expiry.
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Delta - derivative with respect to asset price

4c =
∂c

∂S
= N(d1) + S

1√
2π

e−
d21
2

∂d1

∂S
−Xe−rτ 1√

2π
e−

d22
2

∂d2

∂S

= N(d1) +
1

σ
√

2πτ
[e−

d21
2 − e−(rτ+ln S

X)e−
d22
2 ]

= N(d1) > 0.

Knowing that a European call can be replicated by ∆ units of asset

and riskless asset in the form of money market account, the factor

N(d1) in front of S in the call price formula thus gives the hedge

ratio ∆.
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• 4c is an increasing function of S since
∂

∂S
N(d1) is always posi-

tive. Also, the value of 4c is bounded between 0 and 1.

• The curve of 4c against S changes concavity at

Sc = X exp

(
−

(
r +

3σ2

2

)
τ

)

so that the curve is concave upward for 0 ≤ S < Sc and concave

downward for Sc < S < ∞.

lim
τ→∞

∂c

∂S
= 1 for all values of S,

while

lim
τ→0+

∂c

∂S
=





1 if S > X
1
2 if S = X
0 if S < X

.
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Variation of the delta of the European call value with respect to the

asset price S. The curve changes concavity at S = Xe
−

(
r+3σ2

2

)
τ
.
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Variation of the delta of the European call value with respect to

time to expiry τ .

• The delta value always tends to one from below when the time

to expiry tends to infinity.
• The delta value tends to different asymptotic limits as time

comes close to expiry, depending on the moneyness of the op-

tion.
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4.6 Implied volatilities and volatility smiles

• The difficulties of setting volatility value in the price formulas lie

in the fact that the input value should be the forecast volatility

value over the remaining life of the option rather than an esti-

mated volatility value (historical volatility) from the past market

data of the asset price.

• Suppose we treat the option price function V (σ) as a function of

the volatility σ and let Vmarket denote the option price observed

in the market. The implied volatility σimp is defined by

V (σimp) = Vmarket.

• The volatility value implied by an observed market option price

(implied volatility) indicates a consensual view about the volatil-

ity level determined by the market.
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• In particular, several implied volatility values obtained simulta-

neously from different options with varying maturities and strike

prices on the same underlying asset provide an extensive market

view about the volatility at varying strikes and maturities.

• In financial markets, it becomes a common practice for traders

to quote an option’s market price in terms of implied volatility

σimp.

• Since σ cannot be solved explicitly in terms of S, X, r, τ and op-

tion price V from the pricing formulas, the determination of

the implied volatility must be accomplished by an iterative al-

gorithm as commonly performed for the root-finding procedure

for a non-linear equation.
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Numerical calculations of implied volatilities

• When applied to the implied volatility calculations, the Newton-

Raphson iterative scheme is given by

σn+1 = σn − V (σn)− Vmarket

V ′(σn)
,

where σn denotes the nth iterate of σimp. Provided that the

first iterate σ1 is properly chosen, the limit of the sequence {σn}
converges to the unique solution σimp.

• The above iterative scheme may be rewritten in the following

form

σn+1 − σimp

σn − σimp
= 1− V (σn)− V (σimp)

σn − σimp

1

V ′(σn)
= 1− V ′(σ∗n)

V ′(σn)
.

One can show that σ∗n lies between σn and σimp, by virtue of the

Mean Value Theorem in calculus.
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• The first iterate σ1 is chosen such that V ′(σ) is maximized by

σ = σ1.

• Recall that

V ′(σ) =
S
√

τ e−
d21
2√

2π
> 0 for all σ,

and so

V ′′(σ) =
S
√

τd1d2e−
d21
2√

2πσ
=

V ′(σ)d1d2

σ
.

• The critical points of the function V ′(σ) are given by d1 = 0 and

d2 = 0, which lead respectively to

σ2 = −2
ln S

X + rτ

τ
and σ2 = 2

ln S
X + rτ

τ
.
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• The above two values of σ2 both give V ′′′(σ) < 0. We can

choose the first iterate σ1 to be

σ1 =

√√√√√
∣∣∣∣∣∣
2

τ

(
ln

S

X
+ rτ

)∣∣∣∣∣∣
.

• With this choice of σ1, V ′(σ) is maximized at σ = σ1. Setting n =

1 and observing V ′(σ∗1) < V ′(σ1) [note that V ′(σ) is maximized

at σ = σ1], we obtain

0 <
σ2 − σimp

σ1 − σimp
< 1.

In general, suppose we can establish

0 <
σn+1 − σimp

σn − σimp
< 1, n ≥ 1,

then the sequence {σn} is monotonic and bounded, so {σn} con-

verges to the unique solution σimp.
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Volatility smiles

• The Black-Scholes model assumes a lognormal probability dis-

tribution of the asset price at all future times. Since volatility

is the only unobservable parameter in the Black-Scholes model,

the model gives the option price as a function of volatility.

• If we plot the implied volatility of the exchange-traded options,

like index options, against their strike price for a fixed maturity,

the curve is typically convex in shape, rather than a straight

horizontal line as suggested by the simple Black-Scholes model.

This phenomenon is commonly called the volatility smile by mar-

ket practitioners.

• These smiles exhibit widely differing properties, depending on

whether the market data were taken before or after the October,

1987 market crash.
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A typical pattern of pre-crash smile. The implied volatility curve is

convex with a dip.
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A typical pattern of post-crash smile. The implied volatility drops

against X/S, indicating that out-of-the-money puts (X/S < 1) are

traded at higher implied volatility than out-of-the-money calls (X/S >

1).
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• The figures show the shapes of typical pre-crash smile and post-

crash smile of the exchange-traded European index options. The

implied volatility values are obtained by averaging options of

different maturities.

• In real market situation, it is a common occurrence that when

the asset price is high, volatility tends to decrease, making it

less probable for a higher asset price to be realized.

• When the asset price is low, volatility tends to increase, that is,

it is more probable that the asset price plummets further down.

• Suppose we plot the true probability distribution of the asset

price and compare with the lognormal distribution, one observes

that the left-hand tail of the true distribution is thicker than

that of the lognormal one, while the reverse situation occurs at

the right-hand tail.
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Comparison of the true probability density of asset price (solid curve)

implied from market data and the theoretical lognormal distribution

(dotted curve). The true probability density is thicker at the left

tail and thinner at the right tail.
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• As reflected from the implied probabilities calculated from the

market data of option prices, this market behavior of higher

probability of large decline in stock index is better known to

market practitioners after the October, 1987 market crash.

• The market price of the out-of-the-money calls (puts) became

cheaper (more expensive) than the Black-Scholes price after

the 1987 crash because of the thickening (thinning) of the left-

(right-) hand tail of the true probability distribution.

• In common market situation, the out-of-the-money stock index

puts are traded at higher implied volatilities than the out-of-the-

money stock index calls.
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