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5.1 Continuous dividend yield models

Let q denote the constant continuous dividend yield, that is, the

holder receives dividend of amount equal to qS dt within the interval

dt. The asset price dynamics is assumed to follow the Geometric

Brownian Motion
dS

S
= ρ dt + σ dZ.

We form a riskless hedging portfolio by short selling one unit of the

European call and long holding 4 units of the underlying asset. The

differential of the portfolio value Π is given by

dΠ = −dc +4 dS + q4S dt

=

(
−∂c

∂t
− σ2

2
S2 ∂2c

∂S2
+ q4S

)
dt +

(
4− ∂c

∂S

)
dS.
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The last term q4S dt is the wealth added to the portfolio due to

the dividend payment received. By choosing 4 =
∂c

∂S
, we obtain a

riskless hedge for the portfolio. The hedged portfolio should earn

the riskless interest rate.

We then have

dΠ =

(
−∂c

∂t
− σ2

2
S2 ∂2c

∂S2
+ qS

∂c

∂S

)
dt = r

(
−c + S

∂c

∂S

)
dt,

which leads to

∂c

∂τ
=

σ2

2
S2 ∂2c

∂S2
+ (r− q)S

∂c

∂S
− rc, τ = T − t, 0 < S < ∞, τ > 0.

3



Martingale pricing approach

Suppose all the dividend yields received are used to purchase addi-

tional units of asset, then the wealth process of holding one unit of

asset initially is given by

Ŝt = eqtSt,

where eqt represents the growth factor in the number of units. The

wealth process Ŝt follows

dŜt

Ŝt
= (ρ + q) dt + σ dZ.

We would like to find the equivalent risk neutral measure Q under

which the discounted wealth process Ŝ∗t is Q-martingale. We choose

γ(t) in the Radon-Nikodym derivative to be

γ(t) =
ρ + q − r

σ
.
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Now Z̃ is a Brownian process under Q and

dZ̃ = dZ +
ρ + q − r

σ
dt.

Also, Ŝ∗t becomes Q-martingale since

dŜ∗t
Ŝ∗t

= σ dZ̃.

The asset price St under the equivalent risk neutral measure Q be-

comes
dSt

St
= (r − q) dt + σ dZ̃.

Hence, the risk neutral drift rate of St is r − q.

Analogy with foreign currency options

The continuous yield model is also applicable to options on foreign

currencies where the continuous dividend yield can be considered as

the yield due to the interest earned by the foreign currency at the

foreign interest rate rf .
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Call and put price formulas

The price of a European call option on a continuous dividend paying

asset can be obtained by changing S to Se−qτ in the price formula.

This rule of transformation is justified since the drift rate of the

dividend yield paying asset under the risk neutral measure is r − q.

Now, the European call price formula with continuous dividend yield

q is found to be

c = Se−qτN(d̂1)−Xe−rτN(d̂2),

where

d̂1 =
ln S

X + (r − q + σ2

2 )τ

σ
√

τ
, d̂2 = d̂1 − σ

√
τ.
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Similarly, the European put formula with continuous dividend yield

q can be deduced from the Black-Scholes put price formula to be

p = Xe−rτN(−d̂2)− Se−qτN(−d̂1).

The new put and call prices satisfy the put-call parity relation

p = c− Se−qτ + Xe−rτ .

Furthermore, the following put-call symmetry relation can also be

deduced from the above call and put price formulas

c(S, τ ;X, r, q) = p(X, τ ;S, q, r),
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• The put price formula can be obtained from the corresponding

call price formula by interchanging S with X and r with q in the

formula. Recall that a call option entitles its holder the right to

exchange the riskless asset for the risky asset, and vice versa for

a put option. The dividend yield earned from the risky asset is

q while that from the riskless asset is r.

• If we interchange the roles of the riskless asset and risky asset

in a call option, the call becomes a put option, thus giving the

justification for the put-call symmetry relation.
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5.2 Time dependent parameters

Suppose the model parameters become deterministic functions of

time, the Black-Scholes equation has to be modified as follows

∂V

∂τ
=

σ2(τ)

2
S2 ∂2V

∂S2
+[r(τ)−q(τ)] S

∂V

∂S
−r(τ)V, 0 < S < ∞, τ > 0,

where V is the price of the derivative security.

When we apply the following transformations: y = lnS and w =

e
∫ τ
0 r(u) duV , then

∂w

∂τ
=

σ2(τ)

2

∂2w

∂y2
+

[
r(τ)− q(τ)− σ2(τ)

2

]
∂w

∂y
.

Consider the following form of the fundamental solution

f(y, τ) =
1√

2πs(τ)
exp

(
−[y + e(τ)]2

2s(τ)

)
,
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it can be shown that f(y, τ) satisfies the parabolic equation

∂f

∂τ
=

1

2
s′(τ)∂2f

∂y2
+ e′(τ)∂f

∂y
.

Suppose we let

s(τ) =
∫ τ

0
σ2(u) du

e(τ) =
∫ τ

0
[r(u)− q(u)] du− s(τ)

2
,

one can deduce that the fundamental solution is given by

φ(y, τ) =
1√

2π
∫ τ
0 σ2(u) du

exp


−{y +

∫ τ
0 [r(u)− q(u)− σ2(u)

2 ] du}2
2

∫ τ
0 σ2(u) du


 .

Given the initial condition w(y,0), the solution can be expressed as

w(y, τ) =
∫ ∞
−∞

w(ξ,0) φ(y − ξ, τ) dξ.
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Note that the time dependency of the coefficients r(τ), q(τ) and

σ2(τ) will not affect the spatial integration with respect to ξ. We

make the following substitutions in the option price formulas

r is replaced by
1

τ

∫ τ

0
r(u) du

q is replaced by
1

τ

∫ τ

0
q(u) du

σ2 is replaced by
1

τ

∫ τ

0
σ2(u) du.

For example, the European call price formula is modified as follows:

c = Se−
∫ τ
0 q(u) du N(d̃1)−Xe−

∫ τ
0 r(u) duN(d̃2)

where

d̃1 =
ln S

X +
∫ τ
0 [r(u)− q(u) + σ2(u)

2 ] du√∫ τ
0 σ2(u) du

, d̃2 = d̃1 −
√∫ τ

0
σ2(u) du.
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Time dependent volatility

The Black-Scholes formulas remain valid for time dependent volatil-

ity except that

√
1

T − t

∫ T

t
σ(τ)2 dτ is used to replace σ.

How to obtain σ(t) given the implied volatility measured at time t∗
of a European option expiring at time t? Now

σimp(t
∗, t) =

√
1

t− t∗
∫ t

t∗
σ(u)2 du

so that ∫ t

t∗
σ(u)2 du = σ2

imp(t
∗, t)(t− t∗).

Differentiate with respect to t, we obtain

σ(t) =

√
σimp(t

∗, t)2 + 2(t− t∗)σimp(t
∗, t)

∂σimp(t
∗, t)

∂t
.
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Practically, we do not have a continuous differentiable implied volatil-

ity function σimp(t
∗, t), but rather implied volatilities are available at

discrete instants ti. Suppose we assume σ(t) to be piecewise con-

stant over (ti−1, ti), then
∫ ti

t∗
σ2(τ) dτ −

∫ ti−1

t∗
σ2(τ) dτ

= (ti − t∗)σ2
imp(t

∗, ti)− (ti−1 − t∗)σ2
imp(t

∗, ti−1)

=
∫ ti

ti−1

σ2(τ) dτ = σ2(t)(ti − ti−1), ti−1 < t < ti,

σ(t) =

√√√√(ti − t∗)σ2
imp(t

∗, ti)− (ti−1 − t∗)σ2
imp(t

∗, ti−1)

ti − ti−1
, ti−1 < t < ti.
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5.3 Exchange options

• An exchange option is an option which gives the holder the right

but not the obligation to exchange one risky asset for another.

• Let Xt and Yt be the price processes of the two assets.

• The terminal payoff of a European exchange option at maturity

T of exchanging YT for XT is given by max(XT − YT ,0).

Under the risk neutral measure Q, let Xt and Yt be governed by

dXt

Xt
= r dt + σX dZX

t and
dYt

Yt
= r dt + σY dZY

t ,

where r is the constant riskless interest rate, σX and σY are the

constant volatility of Xt and Yt, respectively. Also, dZX
t dZY

t = ρ dt,

where ρ is correlation coefficient.
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Suppose Xt is used as the numeraire, we define the equivalent prob-

ability measure QX on FT by

dQX

dQ
= e−rT XT

X0
.

The price function V (X, Y, τ) of the exchange option conditional on

Xt = X and Yt = Y is given by

V (X, Y, τ) = e−rτEQ [max(XT − YT ,0)|Ft]

= e−rτEQ

[
XT

(
1− YT

XT

)
1{YT /XT <1}

∣∣∣∣∣Ft

]
, τ = T − t.

Writing Wt = Yt/Xt and taking Xt as the numeraire, we obtain

V (X, Y, τ) = XEQX

[
(1−WT )1{WT <1}

∣∣∣∣∣FT

]
.
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The above expectation representation resembles that of a put option

on the underlying asset Wt = Yt/Xt and with unit strike. Note that

dWt

Wt
=

d(Yt/Xt)

Yt/Xt
= (−ρσXσY + σ2

X) dt + σY dZY
t − σX dZX

t .

By the Girsanov Theorem, Z̃X
t and Z̃Y

t as defined by

dZ̃X
t = dZX

t − σX dt and dZ̃Y
t = dZY

t − ρσX dt

are Brownian process under QX. Combining the above relations, we

obtain
dWt

Wt
= σY dZ̃Y

t − σX dZ̃X
t .
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Under QX , Wt is seen to be a Geometric Brownian motion with zero

drift rate and whose volatility σY/X is given by

σ2
Y/X = σ2

X − 2ρσXσY + σ2
Y .

Using the put price formula, the price of the exchange option is then

given by

V (X, Y, τ) = XN(dX)− Y N(dY ),

where

dX =
ln X

Y +
σ2

Y/X
τ

2

σY/X
√

τ
, dY = dX − σY/X

√
τ, τ = T − t.
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5.4 Quanto option – equity options with exchange rate risk

exposure

• A quanto option is an option on a foreign currency donominated

asset but the payoff is in domestic currency.

• The holder of a quanto option is exposed to both exchange rate

risk and equity risk.

Some examples of quanto call options are listed below:

1. Foreign equity call struck in foreign currency

c1(ST , FT , T ) = FT max(ST −Xf ,0).

Here, FT is the terminal exchange rate, ST is the terminal price

of the underlying foreign currency denominated asset and Xf is

the strike price in foreign currency.
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2. Foreign equity call struck in domestic currency

c2(ST , T ) = max(FTST −Xd,0)

Here, Xd is the strike price in domestic currency.

3. Fixed exchange rate foreign equity call

c3(ST , T ) = F0 max(ST −Xf ,0)

Here, F0 is some predetermined fixed exchange rate.

4. Equity-linked foreign exchange call

c4(ST , T ) = ST max(FT −XF ,0).

Here, XF is the strike price on the exchange rate. The holder

plans to purchase the foreign asset any way but wishes to place

a floor value XF on the exchange rate.
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Quanto prewashing techniques

• Let St and Ft denote the price process of the foreign asset and

the exchange rate, respectively.

• Define S∗t = FtSt, which is the foreign asset price in domestic

currency.

• Let rd and rf denote the constant domestic and foreign interest

rate, respectively, and let q denote the dividend yield of the

foreign asset.

• We assume that both St and Ft are Geometric Brownian pro-

cesses.
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• Under the domestic risk neutral measure Qd, the drift rate of S∗
and F are

δd
S∗ = rd − q and δd

F = rd − rf .

• The reciprocal of F can be considered as the foreign currency

price of one unit of domestic currency.

• The drift rate of S and 1/F under the foreign risk neutral mea-

sure Qf are given by

δ
f
S = rf − q and δ

f
1/F

= rf − rd,

respectively. Note that the dividend yield is the same for the

foreign asset in the two-currency world. Why?

• “Quanto prewashing” means finding δd
S, that is, the drift rate

of the price of the foreign currency denominated asset S under

the domestic risk neutral measure Qd.
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Let the dynamics of St and Ft under Qd be governed by

dSt

St
= δd

S dt + σS dZd
S

dFt

Ft
= δd

F dt + σF dZd
F ,

where dZd
S dZd

F = ρ dt, σS and σF are the volatility of St and Ft,

respectively. Since S∗t = FtSt, we then have

δd
S∗ = δd

FS = δd
F + δd

S + ρσFσS.

We then obtain

δd
S = δd

S∗ − δd
F − ρσFσS = rf − q − ρσFσS.

Comparing with δ
f
S = rf − q, we need to add the quanto prewashing

term −ρσFσS when we move from valuation in Qf to Qd.
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Siegel’s paradox – δd
1/F = rf − rd + σ2

F

Given that the price dynamics of Ft under Qd is

dFt

Ft
= (rd − rf) dt + σF dZd,

then the process for 1/Ft is

d(1/Ft)

1/Ft
= (rf − rd + σ2

F ) dt− σF dZd.

This is seen as a puzzle to many people since the risk neutral drift

rate for 1/F is expected to be rf − rd instead of rf − rd + σ2
F .

We observe directly from the above SDE’s that

σF = σ1/F and ρF,1/F = −1.

This is also consistent with the quanto prewashing technique when

it is applied to 1/F , where the additional term −ρσFσ1/F becomes

−(−1)σ2
F = σ2

F .
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An interesting application of Siegel’s paradox

Suppose the terminal payoff of an exchange rate option is FT1{FT >K}.
Let V d(F, t) denote the value of the option in the domestic currency

world. Define

V f(Ft, t) = V d(Ft, t)/Ft,

so that the terminal payoff of the exchange rate option in foreign

currency world is 1{FT >K}. Now

V f(F, t) = e−rf(T−t)E
Qf
t [1{FT >K}|Ft = F ].
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From δd
1/F = δ

f
1/F

+ σ2
F and observing σF = σ1/F , we deduce that

δ
f
F = δd

F + σ2
F .

This is easily seen if we interchange the foreign and domestic cur-

rency worlds. We obtain

V d(F, t) = FV f(F, t) = e−rf(T−t)FN(d) = e−rdτeδd
F τFN(d)

where

d =
ln F

K +
(
δ
f
F −

σ2
F
2

)
τ

σ
√

τ

=
ln F

K +
(
rd − rf +

σ2
F
2

)
τ

σ
√

τ
.
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Price formulas of various quanto options

1. Foreign equity call struck in foreign currency

Let c
f
1(S, τ) denote the usual vanilla call option on the foreign

currency asset in the foreign currency world. The terminal payoff

is

c
f
1(S,0) = max(S −Xf ,0).

We treat this call as if it is structured in the foreign currency world.

Its value can always be converted into domestic currency using the

prevailing exchange rate.
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c1(S, F, τ) = Fc
f
1(S, τ) = F

[
Se−qτN(d(1)

1 )−Xfe−rfτN(d(1)
2 )

]
,

where

d
(1)
1 =

ln S
Xf

+
(
δ
f
S +

σ2
S
2

)
τ

σS
√

τ
, d

(1)
2 = d

(1)
1 − σS

√
τ.

Correlation risk ρ and exchange rate risk σF do not appear in the

price formula!
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2. Foreign equity call struck in domestic currency

The terminal payoff at τ = 0 in domestic currency is

c2(S, F,0) = max(S∗ −Xd,0),

where S∗ = FS is a domestic currency denominated asset. Note

that

δd
S∗ = rd − q and σ2

S∗ = σ2
S + 2ρσSσF + σ2

F .

The price formula of the foreign equity call is then given by

c2(S, F, τ) = S∗e−qτN(d(2)
1 )−Xde

−rdτN(d(2)
2 ),

where

d
(2)
1 =

ln S∗
Xd

+

(
δd
S∗ +

σ2
S∗
2

)
τ

σS∗
√

τ
, d

(2)
2 = d

(2)
1 − σS∗

√
τ.
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3. Fixed exchange rate foreign equity call

The terminal payoff is denominated in the domestic currency

world, so the drift rate δd
S of the foreign asset in Qd should

be used. The price function of the fixed exchange rate foreign

equity call is given by

c3(S, τ) = F0e−rdτ
[
Seδd

SτN(d(3)
1 )−XfN(d(3)

2 )
]
,

where

d
(3)
1 =

ln S
Xf

+
(
δd
S +

σ2
S
2

)
τ

σS
√

τ
, d

(3)
2 = d

(3)
1 − σS

√
τ.

• The price formula does not depend on the exchange rate F since

the exchange rate has been chosen to be the fixed value F0.

• The currency exposure of the call is embedded in the quanto-

prewashing term −ρσSσF in δd
S. This call has exposure to both

correlation risk and exchange rate risk.
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4. Equity-linked foreign exchange call

Write the terminal payoff in the form of an exchange option

c4(S, F,0) = max(S∗ −XS,0).

Taking the two assets to be exchanged as S∗ and XS, the ratio

of the two assets is
S∗

XS
=

F

X
and the difference of the drift rates

under Qd is δd
S∗ − δd

S = rd − rf + ρσFσS.

c4(S, τ) = e−rdτ
[
S∗eδd

S∗τN(d(4)
1 )−XSeδd

SτN(d(4)
2 )

]

= Se−qτ
[
FN(d(4)

1 )−Xe(rf−rd−ρσF σS)τN(d(4)
2 )

]
,

where

d
(4)
1 =

ln F
X +

(
rd − rf + ρσFσS +

σ2
F
2

)
τ

σF
√

τ
, d

(4)
2 = d

(4)
1 − σF

√
τ.
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Digital quanto option relating 3 currency worlds

FS\U = SGD currency price of one unit of USD currency

FH\S = HKD currency price of one unit of SGD currency

• Digital quanto option payoff: pay one HKD if FS\U is above

some strike level K.

• We may interpret FS\U as the price process of a tradeable asset

in SGD. The dynamics is governed by

dFS\U
FS\U

= (rSGD − rUSD) dt + σFS\U dZS
FS\U .
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• Given δS
FS\U = rSGD − rUSD, how to find δH

FS\U , which is the risk

neutral drift rate of the SGD asset denominated in Hong Kong

dollar?

• By the quanto-prewashing technique

δH
FS\U = δS

FS\U − ρσFS\UσFH\S .

Note that FS\U can be interpreted as a foreign asset (Singa-

porean dollar denominated).

• Digital option value = e−rHKDτEt
QH

[
1{FS\U>K}

]
= e−rHKDτN(d)

where

d =

ln
FS\U

K +


δH

FS\U −
σ2

FS\U
2


 τ

σFS\U
√

τ
.
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Example 1

The quanto option pays FH\S Hong Kong dollars when FS\U > K.

This is equivalent to pay one Singaporean dollar. Value of the

quanto option in Singaporean dollar is

e−rSGDτEt
QS

[
1{FS\U>K}

]
= e−rSGDτN(d̂)

where

d̂ =

ln
FS\U

K +


δS

FS\U −
σ2

FS\U
2


 τ

σFS\U
√

τ
, δS

FS\U = rSGD − rUSD.

This option model is similar to c1(S, F, τ), where the option payoff

in foreign currency is converted into domestic currency using the

prevailing exchange rate at maturity. The most efficient approach

is to perform valuation of the option under the foreign currency

world. The value of the quanto option in Hong Kong dollar is

FH\Se−rSGDτN(d̂).
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Example 2

The quanto option pays FH\U Hong Kong dollars when FS\U > K.

This is equivalent to pay one US dollars.

Method One

Observe that FH\U = FH\SFS\U so that it is like paying FS\U Sin-

gaporean dollars when FS\U > K.

Value of the quanto option in Hong Kong dollars is

FH\Se−rSGDτEt
QS

[
FS\U1{FS\U>K}

]
= FH\Se−rSGDτe(rSGDτ−rUSD)τFS\UN(d1)

= FH\Ue−rUSDτN(d1)

where

d1 =

ln
FS\U

K +


rSGD − rUSD +

σ2
FS\U
2


 τ

σFS\U
√

τ
.
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Method Two

The quanto option pays one US dollars when FS\U > K ⇔ 1

K
>

1

FS\U
= FU\S.

Later, we multiply the option value in US currency by the exchange

rate FH\U to convert into Hong Kong dollars.

Value of the quanto option in US dollars is

e−rUSDτEt
QU


1{

FU\S< 1
K

}

 = e−rUDSτN(−d2),

where

d2 =

ln
FU\S
1/K

+


(rUSD − rSGD)−

σ2
FU\S
2


 τ

σFU\S
√

τ
= −d1.

Remark The quanto option value in Hong Kong dollars using the

two approaches agree with each other.
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5.5 Implied volatilities and volatility smiles

• The difficulties of setting volatility value in the price formulas lie

in the fact that the input value should be the forecast volatility

value over the remaining life of the option rather than an esti-

mated volatility value (historical volatility) from the past market

data of the asset price.

• Suppose we treat the option price function V (σ) as a function of

the volatility σ and let Vmarket denote the option price observed

in the market. The implied volatility σimp is defined by

V (σimp) = Vmarket.

• The volatility value implied by an observed market option price

(implied volatility) indicates a consensual view about the volatil-

ity level determined by the market.
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• In particular, several implied volatility values obtained simulta-

neously from different options with varying maturities and strike

prices on the same underlying asset provide an extensive market

view about the volatility at varying strikes and maturities.

• In financial markets, it becomes a common practice for traders

to quote an option’s market price in terms of implied volatility

σimp.

• Since σ cannot be solved explicitly in terms of S, X, r, τ and op-

tion price V from the pricing formulas, the determination of

the implied volatility must be accomplished by an iterative al-

gorithm as commonly performed for the root-finding procedure

for a non-linear equation.
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Numerical calculations of implied volatilities

• When applied to the implied volatility calculations, the Newton-

Raphson iterative scheme is given by

σn+1 = σn − V (σn)− Vmarket

V ′(σn)
,

where σn denotes the nth iterate of σimp. Provided that the

first iterate σ1 is properly chosen, the limit of the sequence {σn}
converges to the unique solution σimp.

• The above iterative scheme may be rewritten in the following

form

σn+1 − σimp

σn − σimp
= 1− V (σn)− V (σimp)

σn − σimp

1

V ′(σn)
= 1− V ′(σ∗n)

V ′(σn)
.

One can show that σ∗n lies between σn and σimp, by virtue of the

Mean Value Theorem in calculus.
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• The first iterate σ1 is chosen such that V ′(σ) is maximized by

σ = σ1.

• Recall that

V ′(σ) =
S
√

τ e−
d21
2√

2π
> 0 for all σ,

and so

V ′′(σ) =
S
√

τd1d2e−
d21
2√

2πσ
=

V ′(σ)d1d2

σ
.

• The critical points of the function V ′(σ) are given by d1 = 0 and

d2 = 0, which lead respectively to

σ2 = −2
ln S

X + rτ

τ
and σ2 = 2

ln S
X + rτ

τ
.
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• The above two values of σ2 both give V ′′′(σ) < 0. We can

choose the first iterate σ1 to be

σ1 =

√√√√√
∣∣∣∣∣∣
2

τ

(
ln

S

X
+ rτ

)∣∣∣∣∣∣
.

• With this choice of σ1, V ′(σ) is maximized at σ = σ1. Setting n =

1 and observing V ′(σ∗1) < V ′(σ1) [note that V ′(σ) is maximized

at σ = σ1], we obtain

0 <
σ2 − σimp

σ1 − σimp
< 1.

In general, suppose we can establish

0 <
σn+1 − σimp

σn − σimp
< 1, n ≥ 1,

then the sequence {σn} is monotonic and bounded, so {σn} con-

verges to the unique solution σimp.

40



Volatility smiles

• The Black-Scholes model assumes a lognormal probability dis-

tribution of the asset price at all future times. Since volatility

is the only unobservable parameter in the Black-Scholes model,

the model gives the option price as a function of volatility.

• If we plot the implied volatility of the exchange-traded options,

like index options, against their strike price for a fixed maturity,

the curve is typically convex in shape, rather than a straight

horizontal line as suggested by the simple Black-Scholes model.

This phenomenon is commonly called the volatility smile by mar-

ket practitioners.

• These smiles exhibit widely differing properties, depending on

whether the market data were taken before or after the October,

1987 market crash.
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• The figures show the shapes of typical pre-crash smile and post-

crash smile of the exchange-traded European index options. The

implied volatility values are obtained by averaging options of

different maturities.

• In real market situation, it is a common occurrence that when

the asset price is high, volatility tends to decrease, making it

less probable for a higher asset price to be realized.

• When the asset price is low, volatility tends to increase, that is,

it is more probable that the asset price plummets further down.

• Suppose we plot the true probability distribution of the asset

price and compare with the lognormal distribution, one observes

that the left-hand tail of the true distribution is thicker than

that of the lognormal one, while the reverse situation occurs at

the right-hand tail.
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Comparison of the true probability density of asset price (solid curve)

implied from market data and the lognormal distribution (dotted

curve). The true probability density is thicker at the left tail and

thinner at the right tail.
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• As reflected from the implied probabilities calculated from the

market data of option prices, this market behavior of higher

probability of large decline in stock index is better known to

market practitioners after the October, 1987 market crash.

• The market price of the out-of-the-money calls (puts) became

cheaper (more expensive) than the Black-Scholes price after

the 1987 crash because of the thickening (thinning) of the left-

(right-) hand tail of the true probability distribution.

• In common market situation, the out-of-the-money stock index

puts are traded at higher implied volatilities than the out-of-the-

money stock index calls.
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A typical pattern of pre-crash smile. The implied volatility curve is

convex with a dip.
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A typical pattern of post-crash smile. The implied volatility drops

against X/S, indicating that out-of-the-money puts (X/S < 1) are

traded at higher implied volatility than out-of-the-money calls (X/S >

1).
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5.6 Local volatility and Dupire’s equation

• Suppose European option prices at all strikes and maturities are

available so that σimp(t, T ;X) can be computed, can we find

a state-time dependent volatility function σ(St, t) that gives the

theoretical Black-Scholes option prices which are consistent with

the market option prices. In the literature, σ(St, t) is called the

local volatility function.

• Given that market European option prices are all available, the

risk neutral probability distribution of the asset price can be

recovered.

Useful calculus formula

d

dx

∫ B

A
f(x, t) dt

=
∫ B

A

∂f

∂x
(x, t) dt + f(x, B)

dB

dx
− f(x, A)

dA

dx
.
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• Let ψ(ST , T ;St, t) denote the transition density function of the

asset price. The price at time t of a European call with maturity

date T and strike price X is given by

c(St, t;X, T ) = e−r(T−t)
∫ ∞
X

(ST −X)ψ(ST , T ;St, t) dST .

• If we differentiate c with respect to X, we obtain

∂c

∂X
= −e−r(T−t)

∫ ∞
X

ψ(ST , T ;St, t) dST ;

and differentiate once more, we have

ψ(X, T ;St, t) = er(T−t) ∂2c

∂X2
.

• The transition density function can be inferred completely from

the market prices of options with the same maturity and different

strikes, without knowing the volatility function.
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Dupire equation

Assuming that the asset price dynamics under the risk neutral mea-

sure is governed by

dSt

St
= (r − q)dt + σ(St, t) dZt,

where the volatility has both state and time dependence. Write

c = c(X, T ), the Dupire equation takes the form

∂c

∂T
= −qc− (r − q)X

∂c

∂X
+

σ2(X, T )

2
X2 ∂2c

∂X2
.
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Consider

∂ψ

∂T
= er(T−t)

(
r

∂2c

∂X2
+

∂2

∂X2

∂c

∂T

)
,

that ψ(X, T ;S, t) satisfies the forward Fokker-Planck equation, where

∂ψ

∂T
=

∂2

∂X2

[
σ2(X, T )

2
X2ψ

]
− ∂

∂X
[(r − q)Xψ].

Combining the above equations and eliminating the common factor

er(T−t), we have

r
∂2c

∂X2
+

∂2

∂X2

∂c

∂T

=
∂2

∂X2

[
σ2(X, T )

2
X2 ∂2c

∂X2

]
− ∂

∂X

[
(r − q)X

∂2c

∂X2

]
.
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Integrating the above equation with respect to X twice, we obtain

∂c

∂T
+ rc + (r − q)

(
X

∂c

∂X
− c

)

=
σ2(X, T )

2
X2 ∂2c

∂X2
+ α(T )X + β(T ),

where α(T ) and β(T ) are arbitrary functions of T .

Since all functions involving c in the above equation vanish as X

tends to infinity, hence α(T ) and β(T ) must be zero.

Grouping the remaining terms in the equation, we obtain the Dupire

equation.
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We may express the local volatility σ(X, T ) explicitly in terms of the

call price function and its derivatives, where

σ2(X, T ) =
2

[
∂c
∂T + qc + (r − q)X ∂c

∂X

]

X2 ∂2c
∂X2

.

• Suppose a sufficiently large number of market option prices are

available at many maturities and strikes, we can estimate the

local volatility from the above equation by approximating the

derivatives of c with respect to X and T using the market data.

• In real market conditions, market prices of options are available

only at limited of number of maturities and strikes.
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5.7 Stochastic volatility models

• The daily fluctuations of the return of stock prices typically

exhibit volatility clustering where large moves follow large moves

and small moves follow small moves. Also, the distribution of

stock price returns is highly peaked and fat-failed, indicating

mixtures of distribution with different variances.

• It is natural to model volatility as a random variable. The volatil-

ity clustering feature reflects the mean reversion characteristic

of volatility.

• The modeling of the stochastic behavior of volatility is more

difficult since volatility is a hidden process. Though volatility is

driving stock prices, it is not directly observable.

53



Differential equation formulation

The asset price St and the variance of asset price vt follow the

stochastic processes

dSt = µSt dt +
√

vtSt dZS

dvt = k(v − vt) dt + η
√

vt dZv

where the Brownian processes are correlated with dZS dZv = ρ dt.

• The variance process is seen to have a mean reversion level v

and reversion speed k, and η is the volatility of variance.

• The asset price has the drift rate µ under the physical measure.

• All model parameters are assumed to be constant.
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Let V (S, v, t;T ) denote the price of an option with maturity date T .

Applying the Ito lemma, the differential dV is given by

dV =
∂V

dt
+

v

2
S2∂2V

∂S2
+ ρηvS

∂2V

∂S∂v
+

η2v

2

∂2V

∂v2

+
∂V

∂S
dS +

∂V

∂v
dv.

• Since variance v is not a traded security, we need to include

options of different maturity dates T1 and T2 and the underlying

asset in order to construct a riskless hedging portfolio.

• Let the portfolio contain ∆1 units of the option with maturity

date T1, ∆2 units of the option with maturity date T2 and ∆S

units of the underlying asset. The value of the portfolio is given

by

Π = ∆1V (S, v, t;T1) + ∆2V (S, v, t;T2) + ∆SS.
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• Suppose we write

dV (Ti)

V (Ti)
= αi dt + σS

i dZS + σv
i dZv, i = 1,2,

then

αi =
1

V (Ti)

[
∂V (Ti)

∂t
+

v

2
S2∂2V (Ti)

∂S2
+ ρηvS

∂2V (Ti)

∂S∂v
+

η2v

2

∂V (Ti)

∂v2

+ µS
∂V (Ti)

∂S
+ k(v − v)

∂V (Ti)

∂v

]
,

σS
i =

1

V (Ti)

√
vS

∂V (Ti)

∂S
, σv

i =
1

V (Ti)
η
√

v
∂V (Ti)

∂v
, i = 1,2.

• Since there are only two risk factors (as modeled by the two

Brownian processes) and three traded securities are available, it

is always possible to form an instantaneously riskless portfolio.
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Assuming the trading strategy to be self-financing so that the change

in portfolio value arises from changes in the prices of the securities.

The differential change in portfolio value is given by

dΠ = ∆1 dV (T1) + ∆2 dV (T2) + ∆ dS

= [∆1α1V (T1) + ∆2α2V (T2) + ∆SµS] dt

+ [∆1σS
1V (T1) + ∆2σS

2V (T2) + ∆S
√

vS] dZS

+ [∆1σv
1V (T1) + ∆2σv

2V (T2)] dZv.

In order to cancel the stochastic terms in dΠ, we must choose

∆1,∆2 and ∆S such that they satisfy the following system of equa-

tions

∆1σS
1V (T1) + ∆2σS

2V (T2) + ∆S
√

vS = 0

∆1σv
1V (T1) + ∆2σv

2V (T2) = 0.
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The instantaneously riskless portfolio must earn the riskless interest

rate r, that is,

dΠ = [∆1α1V (T1) + ∆2α2V (T2) + ∆SµS] dt

= r[∆1V (T1) + ∆2V (T2) + ∆SS] dt

giving the third equation for ∆1,∆2 and ∆S:

∆1(α1 − r)V (T1) + ∆2(α2 − r)V (T2) + ∆S(α− r)S = 0.

In matrix form:



(α1 − r)V (T1) (α2 − r)V (T2) (µ− r)S
σS
1V (T1) σS

2V (T2)
√

vS
σv
1V (T1) σv

2V (T2) 0







∆1
∆2
∆S


 =




0
0
0


 .
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• Non-trivial solutions for ∆1,∆2 and ∆S exist in the above ho-

mogeneous system of equations when the first row in the above

coefficient matrix can be expressed as a linear combination of

the second and third rows.

• This is equivalent to the existence of multipliers λS(S, v, t) and

λv(S, v, t) such that

αi − r = λSσS
i + λvσv

i , i = 1,2, and µ− r = λS
√

v.

• The multipliers λS and λv are seen to be the market price of risk

of the asset price and variance, respectively. In general, they are

functions of S, v and t.
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We obtain

∂V

∂t
+

v

2
S2∂2V

∂S2
+ ρηvS

∂2V

∂S∂v
+

η2v

2

∂V

∂v2
+ rS

∂V

∂S

+ [k(v − v)− λvη
√

v]
∂V

∂v
− rV = 0.

• Heston makes the assumption that λv(S, v, t) is a constant multi-

ple of
√

v so that the coefficient of
∂V

∂v
becomes a linear function

of v.

• Without loss of generality, we may express the drift term as

k′(v′ − v) for some constants k′ and v′, where k′ and v′ can be

treated as risk adjusted parameters for the drift of v.
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Price function of a European call option

• It may be more convenient to work with the futures call option.

Let ft denote the time-t price of the futures on the underlying

asset with expiration date T and define xt = ln
ft

X
.

• Let c(x, v, τ ;X) denote the futures call price function, τ = T − t,

whose governing equation is given by

∂c

∂τ
=

v

2

∂2c

∂x2
− v

2

∂c

∂x
+

η2v

2

∂2c

∂v2
+ ρηv

∂2c

∂x∂v
+ k′(v′ − v)

∂c

∂v

with initial condition:

c(x, v,0) = max(ex − 1,0).
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• The futures call price function takes the form:

c(x, v, τ) = exG1(x, v, τ)−G0(x, v, τ),

where G0(x, v, τ) is the risk neutral probability that the futures

call option is in-the-money at expiration and G1(x, v, τ) is related

to the risk neutral expectation of the terminal futures price given

that the option expires in-the-money.

• The two functions Gj(x, v, τ), j = 0,1, satisfy the following dif-

ferential equations:

∂Gj

∂τ
=

v

2

∂2Gj

∂x2
−

(
1

2
− j

)
v
∂Gj

∂x
+

η2v

2

∂2Gj

∂v2

+ρηv
∂2Gj

∂x∂v
+ k′(v′ − v)

∂Gj

∂v
, j = 0,1,

with initial condition:

Gj(x, v,0) = 1{x≥0}.
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• The Fourier transform method is used to solve the above dif-

ferential equation.

• Let Ĝj(m, v, τ) denote the Fourier transform of Gj(x, v, τ), where

Ĝj(m, v, τ) =
∫ ∞
−∞

e−imxGj(x, v, τ) dx, j = 0,1.

• The Fourier transform of the initial condition is

Ĝj(m, v,0) =
∫ ∞
−∞

e−imxGj(x, v,0) dx

=
∫ ∞
0

e−imx dx =
1

im
, j = 0,1.
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Taking the Fourier transform of the differential equation, we obtain

∂Ĝj

∂τ
= −m2

2
vĜj − imv

(
1

2
− j

)
Ĝj

+
η2

2
v
∂2Ĝj

∂v2
+ imρηv

∂Ĝj

∂v
+ k′(v′ − v)

∂Ĝj

∂v

= v

(
αĜj + β

∂Ĝj

∂v
+ γ

∂2Ĝj

∂v2

)
+ δ

∂Ĝj

∂v
, j = 0,1,

where

α = −m2

2
− im

(
1

2
− j

)
, β = imρη − k′,

γ =
η2

2
, δ = k′v′.

We seek solution of the affine form for Ĝj such that

Ĝj(m, v, τ) = exp(A(m, τ) + B(m, τ)v)Gj(m, v,0).
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• By substituting the above assumed form into the governing

equation, we obtain

∂B

∂τ
= α + βB + γB2 = γ(B − ρ+)(B − ρ−)

∂A

∂τ
= δB

with B(m,0) = 0 and A(m,0) = 0. Here, ρ± =
−β ±

√
β2 − 4αγ

2γ
.

• Writing

ρ = ρ−/ρ+ and ξ =
√

β2 − 4αγ,

the solution to B(m, τ) and A(m, τ) are found to be
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B(m, τ) = ρ−
1− e−ξτ

1− ρe−ξτ

A(m, τ) = δ

(
ρ−τ − 2

η2
ln

1− ρe−ξτ

1− ρ

)
.

Finally, the solution to Gj(x, v, τ) is obtained by taking the Fourier

inversion of Ĝj(m, v, τ), giving

Gj(x, v, τ)

=
1

2
+

1

π

∫ ∞
0

Re

(
exp(imx + A(m, τ) + B(m, τ)v)

im

)
dm, j = 0,1.

66



5.8 Merton’s model for risky debts

• Default is assumed to occur when the market value of the is-

suer’s assets has fallen to a low level such that the issuer cannot

meet the par payment at maturity.

• The issuer is essentially granted an option to default on its

debt. When the value of firm’s assets is less than the total

debt, the debt holders can only receive the value of the firm.

In the literature, the approach that uses the firm value as the

fundamental state variable determining default is termed the

structural approach or firm value approach.

• To analyze the credit risk structure of a risky debt using the

structural approach, it is necessary to characterize the issuer’s

firm value process together with the information on the capital

structure of the firm.
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Firm value

• The value of a firm is the value of its business as a going con-

cern. The firm’s business constitutes its assets, and the present

assessment of the future returns from the firm’s business con-

stitutes the current value of the firm’s assets.

• The value of the firm’s assets is different from the bottom line

on the firm’s balance sheet. When the firm is bought or sold, the

value traded is the ongoing business. The difference between

the amount paid for that value and the amount of book assets

is usually accounted for as the “good will”.
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• The value of the firm’s assets can be measured by the price at

which the total of the firm’s liabilities can be bought or sold.

The various liabilities of the firm are claims on its assets. The

claimants may include the debt holders, equity holder, etc.

• market value of firm asset

= market value of equity + market value of bonds

= share price times no. of shares + sum of market bond prices
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The debt issuer’s firm At evolves according to the stochastic process

of the form
dAt

At
= µA dt + σ dZt,

where µA is the instantaneous expected rate of return, σ is the

volatility of the firm asset value process. The liabilities of the firm

consist only of a single debt with face value F . The debt has zero

coupon and no embedded option features.

• At debt’s maturity, the payment to the debt holders is the min-

imum of the face value F and the firm value at maturity AT .

• Default can be triggered only at maturity and this occurs when

AT < F , that is, the firm asset value cannot meet its debt claim.

• Upon default, the firm is liquidated at zero cost and all the

proceeds from the liquidation are transferred to the debt holder.
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• The terminal payoff to the debt holders can be expressed as

min(AT , F ) = F −max(F −AT ,0),

where the last term can be visualized as a put payoff. The debt

holders have essentially sold a put option to the issuer since the

issuer has the right to put the firm assets at the price of the par

F .

• Let A denote the firm asset value at current time, τ = T − t

is the time to expiry and we view the value of the risky debt

V (A, τ) as a contingent claim on the firm asset value.

• By invoking the standard assumption of continuous time no-

arbitrage pricing framework (continuous trading and short sell-

ing of the firm assets, perfectly divisible assets, no borrowing-

lending spread, etc.), we obtain the usual Black-Scholes pricing

equation:
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∂V

∂τ
=

σ2

2
A2∂2V

∂A2
+ rA

∂V

∂A
− rA,

The terminal payoff becomes the “initial” condition at τ = 0:

V (A,0) = F −max(F −A,0).

By linearity of the Black-Scholes equation, V (A, τ) can be decom-

posed into

V (A, τ) = Fe−rτ − p(A, τ), τ = T − t,

where p(A, τ) is the price function of a European put option.

p(A, τ) = Fe−rτN(−d2)−AN(−d1),

d1 =
ln A

F +
(
r + σ2

2

)
τ

σ
√

τ
, d2 = d1 − σ

√
τ.
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The value of the risky debt V (A, τ) is seen to be the value of the

default free debt Fe−rτ less the present value of the expected loss

to the debt holders. The expected loss is simply the value of the

put option granted to the issuer.

The equity value E(A, τ) (or shareholders’ stake) is the firm value

less the debt liability.

E(A, τ) = A− V (A, τ)

= A− [Fe−rτ − p(A, τ)] = c(A, τ),

where c(A, τ) is the price function of the European call. This is not

surprising since the shareholders have the call payoff at maturity

equals max(AT − F,0).
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Interpretation of the put option value sold to the issuer

Write the expected loss (put option value) as

N(−d2)

[
Fe−r(T−t) − N(−d1)

N(−d2)
A

]
,

where
N(−d1)

N(−d2)
is considered as the expected discounted recovery

rate.

Risky bond value

= present value of par − default probability × expected discounted

loss given default

and

default probability = N(−d2) = Pr[AT ≤ F ].
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Numerical example

Data

At = 100, σV = 40%, dt = quasi-debt-leverage ratio = 60%,

T − t = 1 year and r = ln(1 + 5%).

Calculations

1. Given dt =
Fe−r(T−t)

V
= 0.6,

then F = 100× 0.6× (1 + 5%) = 63.

75



2. Discounted expected recovery value

=
N(−d1)

N(−d2)
A =

0.069829

0.140726
× 100 = 49.62.

3. Expected discounted shortfall amounts = 63− 49.62 = 10.38.

4. Cost of default = put value

= N(−d2)× expected discounted shortfall

= 14.07%× 10.38 = 1.46;

value of credit risky bond is given by

60− 1.46 = 58.54.
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Term structure of credit spreads

The yield to maturity Y (τ) of the risky debt is defined as the rate

of return of the debt, where

V (A, τ) = Fe−Y (τ)τ .

Rearranging the terms, we have

Y (τ) = −1

τ
ln

V (A, τ)

F
.

The credit spread is the difference between the yields of risky and

default free zero-coupon debts. This represents the risk premium

demanded by the debt holders to compensate for the potential risk

of default.
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Under the assumption of constant riskfree interest rate, the credit

spread is found to be

Y (τ)− r = −1

τ
ln

(
N(d2) +

1

d
N(d1)

)
,

where

d =
Fe−rτ

A
, d1 =

ln d

σ
√

τ
− σ

√
τ

2
and d2 = − ln d

σ
√

τ
− σ

√
τ

2
.

• The quantity d is the ratio of the default free debt Fe−rτ to

the firm value A, thus it is coined the term “quasi” debt-to-

firm ratio. The adjective “quasi” is added since all valuations

are performed under the risk neutral measure instead of the

“physical” measure.
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Y( ) r

d > 1 (high leveraged)

d
1 (medium leveraged)

d << 1 (low leveraged)

• As time approaches maturity, the credit spread always tends to

zero when d ≤ 1 but tends toward infinity when d > 1.

• At times far from maturity, the credit spread has low value for

all values of d since sufficient time has been allowed for the firm

value to have a higher potential to grow beyond F .
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Time dependent behaviors of credit spreads

• Downward-sloping for highly leveraged firms.
• Hump shaped for medium leveraged firms.
• Upward-sloping for low leveraged firms.

Possible explanation

• For high-quality bonds, credit spreads widen as maturity in-

creases since the upside potential is limited and the downside

risk is substantial.

Remark

Most banking regulations do not recognize the term structure of

credit spreads. When allocating capital to cover potential defaults

and credit downgrades, a one-year risky bond is treated the same

as a ten-year counterpart.
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Shortcomings

1. Default can never occur by surprise since the firm value is as-

sumed to follow a diffusion process – may be partially remedied

by introducing jump effect into the firm value process.

2. Actual spreads are larger than those predicted by Merton’s model.

3. Default premiums are shown to be inversely related to firm size

as revealed from empirical studies. In Merton’s model, Y (τ)− r

is a function of d and σ2τ only, with no explicit dependence on

A.

Reference

H.Y. Wong and Y.K. Kwok, “Jump diffusion model for risky debts:

quality spread differentials,” International Journal of Theoretical and

Applied Finance, vol. 6(6) (2003) p.655-662.
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Example – Risky commodity-linked bond

• A silver mining company offered bond issues backed by silver.

Each $1,000 bond is linked to 50 ounces of silver, pays a coupon

rate of 8.5% and has a maturity of 15 years.
• At maturity, the company guarantees to pay the holders either

$1,000 or the market value of 50 ounces of silver.

Rationale The issuer is willing to share the potential price appre-

ciation in exchange for a lower coupon rate or other

favorable bond indentures.

Terminal payoff of bond value

B(V, S, T ) = min(V, F + max(S − F,0)),

where V is the firm value, r is the interest rate, S is the value of 50

ounces of silver, F is the face value.
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Potential extensions in risky debt models

1. Interest rate uncertainty

Debts are relatively long-term interest rate sensitive instruments.

The assumption of constant rates is embarrassing.

2. Jump-diffusion process of the firm value.

• Allows for a jump process to shock the firm value process.

• Remedy the realistic small short-maturity spreads in pure dif-

fusion model. Default may occur by surprise.
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3. Bankruptcy–triggering mechanism

Black-Cox (1976) assume a cut-off level whereby intertemporal

default can occur. The cut-off may be considered as a safety

covenant which protects bondholder or liability level for the firm

below which the firm bankrupts.

4. Deviation from the strict priority rule

Empirical studies show that the absolute priority rule is enforced

in only 25% of corporate bankruptcy cases. The write-down

of creditor claims is usually the outcome of a bargaining pro-

cess which results in shifts of gains and losses among corporate

claimants relative to their contractual rights.
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Quality spread differentials between fixed rate debt

and floating rate debt

• In fixed rate debts, the par paid at maturity is fixed.

• A floating rate debt is similar to a money market account, where

the par at maturity is the sum of principal and accured interests.

The amount of accrued interests depends on the realization of

the stochastic interest rate over the life of bond.

Whether the default premiums demanded by investors are equal

for both types of debts?
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Related question: Does the swap rate in an interest rate swap

depend on which party is serving as the fixed

rate payer?

Empirical studies reveal that the yield premiums for fixed rate debts

are in general higher than those for floating rate debts. Why? On

the other hand, when the yield curve is upward sloping, floating rate

debt holders should demand a higher floating spread.
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Credit valuation model

1. Credit risk should be measured in terms of probabilities and

mathematical expectations, rather than assessed by qualitative

ratings.

2. Credit risk model should be based on current, rather than histor-

ical measurements. The relevant variables are the actual market

values rather than accounting values. It should reflect the de-

velopment in the borrower’s credit standing through time.
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3. An assessment of the future earning power of the firm, com-

pany’s operations, projection of cash flows, etc., has already

been made by the aggregate of the market participants in the

stock market. The stock price will be the first to reflect the

changing prospects. The challenge is how to interpret the

changing share prices properly.

4. The various liabilities of a firm are claims on the firm’s value,

which often take the form of options, so the credit model should

be consistent with the theory of option pricing.
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Industrial implementation: KMV model

Expected default frequency

• Expected default frequency (EDF) is a forward-looking measure

of actual probability of default. EDF is firm specific.

• KMV model is based on the structural approach to calculate

EDF (credit risk is driven by the firm value process).

– It is best when applied to publicly traded companies, where

the value of equity is determined by the stock market.

– The market information contained in the firm′s stock price

and balance sheet are translated into an implied risk of de-

fault.
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• Accurate and timely information from the equity market pro-

vides a continuous credit monitoring process that is difficult and

expensive to duplicate using traditional credit analysis.

• Annual reviews and other traditional credit processes cannot

maintain the same degree of “on guard” that EDFs calculated

on a monthly or a daily basis can provide.
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Key features in KMV model

1. Distance to default ratio determines the level of default risk.

• This key ratio compares the firm’s net worth E(VT ) − d∗ to

its volatility.
• The net worth is based on values from the equity market, so

it is both timely and superior estimate of the firm value.

2. Ability to adjust to the credit cycle and ability to quickly reflect

any deterioration in credit quality.

3. Work best in highly efficient liquid market conditions.
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Three steps to derive the actual probabilities of default:

1. Estimation of the market value and volatility of the firm asset

value.

2. Calculation of the distance to default, an index measure of de-

fault risk.

3. Scaling of the distance to default to actual probabilities of de-

fault using a default database.
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• Changes in EDF tend to anticipate at least one year earlier than

the downgrading of the issuer by rating agencies like Moodys

and S & Ps
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Distribution of terminal firm value at maturity of debt

• According to KMV′s empirical studies, log-asset returns con-

firm quite well to a normal distribution, and σV stays relatively

constant.

• From the sample of several hundred companies, firms default

when the asset value reaches a level somewhere between the

value of total liabilities and the value of the short-term debt.
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Distance to default

Default point, d∗ = short-term debt +
1

2
× long-term debt. Why

1

2
?

Why not!

From VT = V0 exp

((
µ− σ2

V

2

)
T + σV ZT

)
, the probability of finishing

below d∗ at date T is

N


−

ln V0
d∗ +

(
µ− σ2

2

)
T

σV

√
T


 .

Distance to default is defined by

df =
E(VT )− d∗

σ̂V

√
T

=
ln V0

d∗ +
(
µ− σ̂2

V
2

)
T

σ̂V

√
T

,

where V0 is the current market value of firm, µ is the expected rate

of return on firm value and σ̂V is the annualized firm value volatility.

The probability of default is a function of the firm’s capital structure,

the volatility of the asset returns and the current asset value.
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Estimation of firm value V and volatility of firm value σV

• Usually, only the price of equity for most public firms is directly

observable. In some cases, part of the debt is directly traded.

• Using option pricing approach:

equity value, E = f(V, σV , K, c, r)

volatility of equity, σE = g(V, σV , K, c, r)

where K denotes the leverage ratio in the capital structure, c is

the average coupon paid on the long-term debt, r is the riskfree

rate. Actually, the relation between σE and σV is obtained via

the Ito lemma: EσE =
∂f

∂V
V σV .

• Solve for V and σV from the above 2 equations.
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Probabilities of default from the default distance

Based on historical information on a large sample of firms, for each

time horizon, one can estimate the proportion of firms of a given

default distance (say, df = 4.0) which actually defaulted after one

year.
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Example Federal Express (dollars in billion of US$)

November 1997 February 1998
Market capitalization $7.9 $7.3
(price × shares outstanding)
Book liabilities $4.7 $4.9
Market value of assets $12.6 $12.2
Asset volatility 15% 17%
Default point $3.4 $3.5

Default distance
12.6− 3.4

0.15

12.2− 3.5

0.17
EDF 0.06%(6bp) = AA− 0.11%(11bp) = A−

The causes of change for the EDF are due to variations in the stock

price, debt level (leverage ratio) and asset volatility .
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Weaknesses of the KMV approach

• It requires some subjective estimation of the input parameters.

• It is difficult to construct theoretical EDFs without the assump-

tion of normality of asset returns.

• Private firms EDFs can be calculated only by using some com-

pabability analysis based on accounting data.

• It does not distinguish among different types of long-term bonds

according to their seniority, collateral, covenants or convertibil-

ity.
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