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1 Introduction

A credit default swap (CDS) is a financial contract between the buyer of
default protection on a reference risky entity and the seller of that protection.
The protection seller receives fixed periodic payments (CDS premium) from
the protection buyer, typically expressed in basis points per annum on a
notional amount, in return for making a single payment covering losses on
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the reference entity following a credit event. The CDS terminates prior to
maturity upon the default of the reference entity.

In this paper, we would like to consider the impact of default risk of
the protection seller (counterparty risk) on the CDS premium of a CDS. We
examine how the correlated default risks between the protection seller and
reference entity may affect the CDS premium. We propose a Markov chain
model of portfolio credit risk of multiple obligors with interacting default
intensity processes. To generate the default correlation, the model assumes
that the default intensity processes of the protection seller and reference
entity are subject to an increment in intensity upon the arrival of an external
shock event. The shock event is modeled as a Cox process whose intensity
follows an affine diffusion process with jumps. For example, let us consider
a CDS on a risky Korean bond whose protection seller is a Korean financial
institution. Compared to a non-Korean financial institution, the Korean
financial institution serving as the protection seller may exhibit a higher
level of correlated risk with the Korean reference entity upon the arrival of
a country wide shock, like the 1997 economic melt down in Korea. With
higher correlated default risks, we expect that the CDS premium paid to
the Korean protection seller should be lower than that paid to a non-Korean
protection seller.

We model the arrival of a default event using the reduced form approach,
where default occurs unpredictably at an exogenous intensity rate. The
framework of interacting intensities (so called contagion effects of default
events) is adopted so as to create the default correlation among the risky
obligors in a credit portfolio. Under the interacting intensities model (Jar-
row and Yu, 2001), the default contagion effect is introduced via a positive
jump in the default intensity of an obligor when there is an occurrence of
default of another obligor in the credit portfolio. A general Markovian for-
mulation of a portfolio credit risk model with interacting intensities can be
found in Leung and Kwok (2007) and Frey and Backhaus (2008). Using the
total hazard construction approach,Yu (2007) presents the numerical simu-
lation technique for calculating the joint distribution of the default times of
risky obligors in a credit portfolio. Zheng and Jiang (2008) manage to derive
closed form analytic expressions for the joint distribution of default times of
risky obligors with interacting default intensities under stochastic intensity
processes.

There have been several papers that discuss the impact of counterparty
risk on credit default swap valuation. Hull and White (2001) and Kim and
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Kim (2001) examine the counterparty risk for CDS using the default barrier
correlated models, where the default time is modeled by the first passage
time that the credit index hits the default barrier. In Hull and White (2001),
the loss due to default of the protection seller is modeled by the replacement
cost of entering into a new contract that demands a higher credit default pre-
mium. Kim and Kim (2001) model the loss due to counterparty risk via the
loss of the compensation payment. Leung and Kwok (2005) use Jarrow-Yu’s
(2001) interacting intensity model to analyze the impact on the credit de-
fault swap premium due to replacement cost and loss of contingent payment.
The replacement cost incurs when the protection seller defaults earlier than
the reference entity. The loss of contingent compensation payment occurs
when the protection seller defaults during the settlement period after the
occurrence of default of the reference entity. Brigo and Chourdakis (2008)
consider counterparty risk for a CDS in the presence of default correlation
of the protection seller and reference entity. In their model, stochastic inten-
sity models are adopted for the default events, and defaults are connected
through a copula function. Walker (2006) presents a continuous time Markov
approach for the risk neutral pricing of a CDS with counterparty risk. The
dependence between the counterparty and the reference entity is introduced
through the transition rates. Our model is similar to Walker’s Markov chain
model. However, we provide a more structural specification of the hazard
rate change. The contagion effect is modeled by an external shock event,
the arrival of which leads to a positive jump on the default intensities of the
protection seller and reference entity.

The paper is organized as follows. In the next section, we present the
model formulation of the Markov chain model with stochastic default inten-
sity. We illustrate how to apply the three-firm interacting intensities model
to analyze the impact of counterparty risk of the protection seller on the CDS
premium. In Section 3, the credit default swap premium is derived with and
without the default risk of the protection seller. We present the numerical
results that illustrate the impact of various parameters in the stochastic in-
tensity model on the CDS premium. We also illustrate how to calibrate the
time dependent parameter function in the default intensity of a risky firm
using the market prices of traded bonds issued by the firm. The paper is
ended with conclusive remarks in the last section.
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2 Markov chain model with stochastic de-

fault intensity

Considering a portfolio of N risky firms, we associate a random default time
τi with firm i in the credit portfolio. The default status of the portfolio is
characterized by the default process

H t =
(
H1
t H2

t · · ·HN
t

)
∈ {0, 1}N = S, (1)

where

Hi
t = 1{τi≤t} =

{
1 if τi ≤ t

0 if τi > t
, i = 1, 2, · · · , N.

Here, H is visualized as a finite state Markov chain and S is the state space
of H . The macroeconomic variables are described by the d-dimensional
stochastic process Ψ = (Ψt)t∈[0,T ] with state space D ⊆ R

d. The informa-
tion available to the investor in the market at time t includes the history
of macroeconomic variables and default status of the portfolio up to time t.
The filtration (Ft)t≥0 is given by

Ft = FΨ
t

∨
F1
t

∨
F2
t

∨
· · ·

∨
FN
t ,

where

FΨ
t = σ (Ψs : 0 ≤ s ≤ t)

F i
t = σ

(
Hi
s : 0 ≤ s ≤ t

)
, i = 1, 2, · · · , N.

The martingale default intensity λi(Ψt,H t) of firm i is defined by the prop-
erty that

Hi
t −

∫ t
V

τi

0

λi (Ψs,Hs) ds is a {Ft}-martingale.

Let τC and τR denote the random default time of the counterparty and ref-
erence entity, respectively, and let τS be the random time of arrival of the
external shock S. It is assumed that τS is independent of τC and τR.

We model the arrival of the shock event as a Cox process with stochas-
tic intensity process {λSt : t ≥ 0}. Prior to the arrival of the shock event
S, the default intensities λCt and λRt of the counterparty and reference en-
tity, respectively, are assumed to be aC(t) and aR(t). Here, both aC(t) and

4



aR(t) are assumed to be deterministic functions of t. Upon the arrival of
S, λCt jumps from aC(t) to αCaC(t), αC > 1, while λRt jumps from aR(t) to
αRaR(t), αR > 1. Here, αC and αR represent the proportional upward jump
of λCt and λRt , respectively, in response to the shock event. In summary, the
default intensities of C and R can be expressed as

λRt = aR(t)
[
(αR − 1)1{τS≤t} + 1

]
(2)

λCt = aC(t)
[
(αC − 1)1{τS≤t} + 1

]
.

The proportional jump factors αC and αR are taken to be exogenously given.
Later, we illustrate how we can calibrate aC(t) and aR(t) from the term struc-
tures of market prices of traded defaultable bonds of C and R, respectively.

The state space S of H t = (HR
t HC

t HS
t ) is defined by

S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

The various Markov states are labelled as follows:

State 1 (0, 0, 0) State 2 (1, 0, 0) State 3 (0, 1, 0) State 4 (0, 0, 1)
State 5 (1, 1, 0) State 6 (1, 0, 1) State 7 (0, 1, 1) State 8 (1, 1, 1)

Let ψS = (λSt )t∈[0,T ], and conditional on the given state ψS, the entries
of the infinitesimal generator

∧
[ψS ](t) = (∧ij(t|ψS))8×8 for the Markov chain

H : {H t : t ≥ 0} are given by

∧11(t|ψS) = −[aR(t) + aC(t) + λSt ], ∧12(t|ψS) = aR(t),

∧13(t|ψS) = aC(t), ∧14(t|ψS) = λSt ,

∧22(t|ψS) = −[aC(t) + λSt ], ∧25(t|ψS) = aC(t), ∧26(t|ψS) = λSt ,

∧33(t|ψS) = −[aR(t) + λSt ], ∧35(t|ψS) = aR(t), ∧37(t|ψS) = λSt ,

∧44(t|ψS) = −[αRaR(t) + αCaC(t)], ∧46(t|ψS) = αRaR(t),

∧47(t|ψS) = αCaC(t), ∧55(t|ψS) = −λSt , ∧58(t|ψS) = λSt ,

∧66(t|ψS) = −αCaC(t), ∧68(t|ψS) = αCaC(t)

∧77(t|ψS) = −αRaR(t), ∧78(t|ψS) = αRaR(t).

All other entries in the infinitesimal generator are zero.
By using the forward Kolmogorov equation, the conditional transition

probability matrix P (t, u|ψS) = (Pij(t, u|ψS))8×8 is governed by

dP (t, u|ψS)
du

= P (t, u|ψS)
∧

[ψS ]
(u), 0 ≤ t ≤ u, (3)
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with P (t, t|ψS) = I . Since the matrix
∧

[ψS ](u) is upper triangular, the

conditional transition probabilities Pij(t, u|ψS) can be solved successively in
a sequential manner. The solution to some of the conditional transition
probabilities are obtained as follows:

P11(t, T |ψS) = e−
R

T

t
[aR(u)+aC(u)+λS

u ] du;

P12(t, T |ψS) = e−
R

T

t
[aC(u)+λS

u ] du
[
1 − e−

R

T

t
aR(u) du

]
;

P13(t, T |ψS) = e−
R

T

t
[aR(u)+λS

u ] du
[
1 − e−

R

T

t
aC(u) du

]
;

P14(t, T |ψS) = e−
R

T

t
[aR(u)+aC(u)] du

∫ T

t

λSv e
−

R

T

v
[(αR−1)aR(u)+(αC−1)aC(u)]du−

R

v

t
λS

u du dv;

P16(t, T |ψS) = e−
R

T

t
αCaC(v) dv

∫ T

t

λSue
R

u

t
[(αC−1)aC(v)−λS

v ] dv

[
1 − e−

R

u

t
aR(v)dv

]
du

+ αRe
−

R

T

t
αCaC(v) dv

∫ T

t

aR(u)e−
R

u

t
αRaR(v) dv

(∫ u

t

λSv e
R

v

t
[(αR−1)aR(w)+(αC−1)aC(w)−λS

w] dw dv

)
du;

P17(t, T |ψS) = e−
R

T

t
αRaR(v) dv

∫ T

t

λSue
R

u

t
[(αR−1)aR(v)−λS

v ]dv

[
1 − e−

R

u

t
aC(v) dv

]
du

+ αCe
−

R

T

t
αRaR(v) dv

∫ T

t

aC(u)e−
R

u

t
αCaC(v)dv

{∫ u

t

λSv e
R

v

t
[(αR−1)aR(w)+(αC−1)aC(w)−λS

w]dw dv

}
du. (4)

By taking the expectation operation EψS [ · ], which is the expectation taken
over the path of

(
λSt

)
t∈[0,T ]

, we obtain the following unconditional transition
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probabilities:

P11(t, T ) = e−
R

T

t
[aR(u)+aC(u)] duEψS

[
e−

R

T

t
λS

u du
]
;

P12(t, T ) = e−
R

T

t
aC(u) du

[
1 − e−

R

T

t
aR(u) du

]
EψS

[
e−

R

T

t
λS

u du
]

P13(t, T ) = e−
R

T

t
aR(u)du

[
1 − e−

R

T

t
aC(u) du

]
EψS

[
e−

R

T

t
λS

u du
]
;

P14(t, T ) = e−
R

T

t
[aR(u)+aC(u)] du

∫ T

t

e−
R

T

v
[(αR−1)aR(u)+(αC−1)aC(u)] du

EψS

[
λSv e

−
R

v

t
λS

u du
]
dv;

P16(t, T ) = e−
R

T

t
αCaC(v)dv

∫ T

t

e
R

u

t
(αC−1)aC(v) dv

[
1 − e−

R

u

t
aR(v) dv

]
EψS

[
λSue

−
R

u

t
λS

v dv
]
du

+ αRe
−

R

T

t
αCaC(v) dv

∫ T

t

aR(u)e−
R

u

t
αRaR(v)dv

{∫ u

t

e
R

v

t
[(αR−1)aR(w)+(αC−1)aC(w)] dwEψS

[
λSv e

−
R

v

t
λS

w dw
]
dv

}
du

P17(t, T ) = e−
R

T

t
αRaR(v) dv

∫ T

t

e
R

u

t
(αR−1)aR(v) dv

[
1 − e−

R

u

t
αC(v) dv

]

EψS

[
λSue

−
R

u

t
λS

v dv
]
du

+ αCe
−

R

T

t
αRaR(v) dv

∫ T

t

aC(u)e−
R

u

t
αCaC(v) dv

{∫ u

t

e
R

v

t
[(αR−1)aR(w)+(αC−1)aC(w)] dw

EψS

[
λSv e

−
R

v

t
λS

w dw
]
dv

}
du. (5)

Once these transition probabilities are known, one can deduce the joint dis-
tribution of the default times (Leung and Kwok, 2007). The marginal distri-
bution for τR and τC are given by

P [τR > T |Ft] = P11(t, T ) + P13(t, T ) + P14(t, T ) + P17(t, T )

P [τC > T |Ft] = P11(t, T ) + P12(t, T ) + P14(t, T ) + P16(t, T ). (6)

It is necessary to prescribe the dynamic of λSt in order to compute

EψS

[
e−

R

v

t
λS

u du
]

and EψS

[
λSv e

−
R

v

t
λS

u du
]
.
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We adopt the same affine diffusion process with jump for λSt as that proposed
by Duffie and Gârleanu (2001). The governing stochastic differential equation
of λSt takes the form:

dλSt = k(θ − λSt ) dt + σ

√
λSt dZt + ∆Jt, (7)

where ∆Jt denotes any jump that occurs at time t of a pure jump process
Jt. Here, Jt is taken to be independent of Zt, with jump sizes that are
independent and exponentially distributed with mean µ and whose jump
times are those of an independent Poisson processes with jump arrival rate
ℓ. It can be shown that (Duffie and Gârleanu, 2001)

EψS

[
e−

R

t

0
λS

u du
]

= eα(t)+β(t)λS
0 ,

where

α(t) = −kθ(c1 + d1)

b1c1d1
ln
c1 + d1e

b1t

c1 + d1
+
kθ

c1
t

+
ℓ(a2c2 − d2)

b2c2d2
ln
c2 + d2e

b2t

c2 + d2
+

(
ℓ

c2
− ℓ

)
t,

β(t) =
1 − eb1t

c1 + d1eb1t
;

b1 = −
√
k2 + 2σ2, c1 =

k +
√
k2 + 2σ2

−2
,

d1 =
−k +

√
k2 + 2σ2

−2
, a2 =

−k +
√
k2 + 2σ2

k +
√
k2 + 2σ2

,

b2 = b1, d2 =
d1 + µ

c1
, c2 = 1 − µ

c1
.

Also, we obtain

EψS

[
λSv e

−
R

v

0
λS

u du
]

= − ∂

∂v
EψS

[
e−

R

v

0
λS

u du
]

= −[α(v) + β(v)λS0 ]eα(v)+β(v)λS
0 ,

where

α(v) = −kθ(c1 + d1)

c1

eb1v

c1 + d1eb1v
+
kθ

c1

+
ℓ(a2c2 − d2)

c2

eb2v

c2 + d2eb2v
+

(
ℓ

c2
− ℓ

)
,

β(v) =
−(k2 + 2σ2)eb1v

(c1 + d1eb1v)2
.
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3 Calculations of the credit default swap pre-

mium

We would like to compute the fair credit default swap premium with and
without the default risk of the protection seller. For simplicity, we take
the notional of the CDS to be unity and let the valuation date of the CDS
premium to be time zero. Under our continuous model assumption, the swap
premium payments are assumed to be made continuously at a constant CDS
premium rate. Let T denote the maturity date of the CDS. We let C(T )
denote the CDS premium rate that is paid by the protection buyer subject
to potential default risk of the seller. Similarly, we let Ĉ(T ) denote the CDS
premium rate without the default risk of the protection seller. The impact
on the CDS premium rate with the presence of the counterparty risk is then
measured by Ĉ(T ) −C(T ).

There are two possible scenarios during [0, t]: non-occurrence of the shock
event S or occurrence of S. Given that there has been no default of the under-
lying entity during the time interval [0, t] and default of the reference entity
occurs during the next infinitesimal time interval (t, t+ dt], the probability
of such occurrence is given by

[P11(0, t)aR(t) + P14(0, t)αRaR(t)] dt.

The first term P11(0, t)aR(t) dt corresponds to “no prior arrival” of S while
the second term P14(0, t)αRaR(t) dt corresponds to the case otherwise. Let ρ
be the deterministic recovery rate of the reference entity upon default. The
expected present value of contingent compensation payment made by the
protection seller that is paid within (t, t+ dt] is given by

(1 − ρ)e−rt [P11(0, t)aR(t) + P14(0, t)αRaR(t)] dt,

where r is the constant interest rate. Hence, the expected present value of
the contingent payment paid by the protection seller over the whole period
[0, T ] is given by

∫ T

0

(1 − ρ)e−rt [P11(0, t)aR(t) + P14(0, t)αRaR(t)] dt.

The swap premium payment stream continues when the Markov chain state
is either in State 1 or State 4. The swap premium payment paid by the
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protection buyer over (t, t+ dt] is given by

C(T )e−rt [P11(0, t) + P14(0, t)] dt,

so the expected present value of the premium payment over the whole time
period [0, T ] is found to be

C(T )

∫ T

0

e−rt [P11(0, t) + P14(0, t)] dt.

By equating the expected present value of the payments from the two coun-
terparties, the fair CDS premium with counterparty risk is obtained as

C(T ) =
(1 − ρ)

∫ T

0
e−rt [P11(0, t)aR(t) + P14(0, t)αRaR(t)] dt
∫ T

0
e−rt [P11(0, t) + P14(0, t)] dt

. (8)

Since the corresponding transition probabilities P11(0, t) and P14(0, t) have
been obtained for the three-firm Markov chain interacting intensities model
with stochastic intensity [see Eq. (4)], it then becomes quite straightforward
to compute C(T ). To compute the CDS premium rate C(T ) without the
default risk of the protection seller, we simply set aC(t) to be zero in the
above calculations.

Numerical calculations of the CDS premium rates and default probability

We performed the numerical calculations of the CDS premium rates C(T )
and C(T ), and the default probability of the protection seller P [τC ≤ 5]
of a 5-year CDS contract. The basic set of parameter values used in our
calculations are listed below:

ρ = 0.4, r = 0.04, αR = 1.15, αC = 1.15,

λS0 = 0.05, σ = 0.2, k = 0.3,

θ = 0.02, ℓ = 0.3, µ = 0.15.

We let aR(t) and aC(t) assume the constant value 0.2. In Figure 1(a–e), we
plot the CDS premium rates C(T ) (with counterparty risk of the protection
seller) and C(T ) (without counterparty risk) against varying values of the
different parameters: αC, αR, ℓ, k and θ.

A higher value of αC means a higher proportional jump in the default
intensity of the counterparty upon the arrival of S. The dotted curve in
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Figure 1(a) shows that C(T ) is a decreasing function of αC. This agrees
with the intuition that a higher counterparty risk leads to a lower value of
the fair CDS premium rate. Without counterparty risk, the parameter αC
becomes irrelevant, so C(T ) stays at the same constant value [as shown by
the horizontal solid line in Figure 1(a)].

On the other hand, both C(T ) and C(T ) are increasing functions of αR
since the reference entity becomes riskier with a higher value of αR [see
Figure 1(b)]. When αR = 1, there is no jump in the default intensity of
the reference entity upon the arrival of S. In this case, there is no default
correlation between the entity R and protection seller C , so C(T ) and C(T )
have the same value. With an increasing value of αR, the spread C(T )−C(T )
widens since the default correlation between R and C increases.

We also explore the impact of the different parameters that characterize
the stochastic intensity of the shock event S on the CDS premium rates. As
expected, a higher arrival rate ℓ of the jump process Jt leads to higher CDS
premium rates since the reference entity becomes riskier [see Figure 1(c)].
Since the drift rate of λSt decreases with increasing k, so the CDS premium
rates are decreasing functions of k [see Figure 1(d)]. Lastly, a higher value of
θ means a higher drift rate of λSt , so the CDS premium rates are increasing
functions of θ.

Though C(T ) is a decreasing function of αC , the default probability
P [τC ≤ 5] is an increasing function of αC [see Figure 2(a)]. This is intuitive
since a higher proportional jump in the default intensity upon the arrival
of S leads to a higher default risk of the protection seller C . In a similar
manner, a higher arrival rate of jump in λSt makes C to become riskier, so
P [τC ≤ 5] is an increasing function of ℓ [see Figure 2(b)].

Remark - Calibration of the time dependent default intensities

In our model, the default intensities of the reference entity and the protection
seller prior to the arrival of the shock event are assumed to be deterministic
functions of time. Provided that the term structure of the prices of default-
able bonds BR(t, T ) issued by the firm of the reference entity is available, one
can calibrate the time dependent default intensity aR(t) in terms of BR(t, T )
and other known parameter values. Under the risk neutral measure Q, the
defaultable bond price BR(t, T ) is given by

BR(t, T ) = e−r(T−t)EQ
[
1{τR>T }|Ft

]

= e−r(T−t)P [τR > T |Ft] . (9)
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Recall that the marginal distribution for τR can be expressed in terms of the
transition probabilities of the Markov chain model [see Eq. (6)]. One can
derive the following integral equation for aR(t):

∂BR

∂T
(t, T ) = −re−r(T−t)BR(t, T )− αRaR(T )BR(t, T )

+ e−r(T−t)(αR − 1)aR(T )e−
R

T

t
aR(u) duEψS

[
e−

R

T

t
λS

u du
]
.(10)

Similar calibration procedure can be performed for the default intensity aC(t)
of the counterparty (protection seller).

4 Conclusion

We apply the three-firm interacting intensities Markov chain model with
stochastic intensity to analyze the counterparty risk of the protection seller
in a credit default swap. The default correlation between the protection
seller and the underlying entity is modeled by an increment of the default
intensity upon the arrival of an external shock event. Our analysis indicates
that the impact of correlated risks between the protection seller and the un-
derlying reference entity on the fair credit default swap premium rates can
be quite substantial under a high arrival rate of the external shock and the
subsequent high proportional jumps in the default intensities of the various
parties. This study provides insight in assessing the importance of correlated
counterparty risk in structuring a credit default swap. Should we seek pro-
tection from a Korean financial institution on a Korean risky bond, though
the Korean institution demands a lower swap premium, or seek protection
from a European institution instead?
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[2] Duffie D. and Gârleanu N., Risk and valuation of collateralized debt
obligations, Financial Analysts Journal , 2001, 41–59.

[3] Frey R. and Backhaus J., Credit derivatives in models with interacting
default intensities: a Markovian approach. Working paper of University
of Leipzig, 2008.

[4] Hull J. and White A., Valuing credit default swap II: Modeling default
correlations, Journal of Derivatives , 2001, 8(3), 12–22.

[5] Jarrow R. and Yu F., Counterparty risk and the pricing of defaultable
securities, Journal of Finance, 2001, 56(5), 1765–1799.

[6] Kim M.A. and Kim T.S., Credit default swap valuation with counter-
party default risk and market risk, Journal of Risk, 2001, 6(2), 49–80.

[7] Leung K.S. and Kwok Y.K., Contagion models with interacting default
intensity processes, Proceedings of the International Congress of Chinese

Mathematicians , vol. III, 748–758.

[8] Leung S.Y. and Kwok Y.K., Credit default swap valuation with coun-
terparty risk, Kyoto Economics Review, 2005, 74(1), 25–45.

[9] Walker M.B., Credit default swaps with counterparty risk: A calibrated
Markov model, Journal of Credit Risk , 2006, 2(1), 31–49.

[10] Yu F., Correlated defaults in intensity-based models, Mathematical Fi-

nance, 2007, 17(2), 155–173.

[11] Zheng H. and Jiang L., Basket CDS pricing with interacting intensities,
Working paper of Imperial College, 2008.

13



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
12.12

12.14

12.16

12.18

12.2

12.22

12.24

12.26

12.28

α
c

C
D

S
 p

re
m

iu
m

 (
%

)

 

 

Figure 1(a) Plot of the CDS premium rates C(T ) (dotted curve) and C(T ) (solid curve) against αC.
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Figure 1(b) Plot of the CDS premium rates C(T ) (dotted curve) and C(T ) (solid curve) against αR.
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Figure 1(c) Plot of the CDS premium rates C(T ) (dotted curve) and C(T ) (solid curve) against ℓ.
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Figure 1(d) Plot of the CDS premium rates C(T ) (dotted curve) and C(T ) (solid curve) against k.
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Figure 1(e) Plot of the CDS premium rates C(T ) (dotted curve) and C(T ) (solid curve) against θ.
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Figure 2(a) Plot of the default probability of the protection seller P (τC ≤ 5) against αC.
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Figure 2(b) Plot of the default probability of the protection seller P (τC ≤ 5) against ℓ.
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