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Abstract

We analyze the nature of the dynamic fund protection which provides an investment fund with a floor level of protection
against a reference stock index (or stock price). The dynamic protection feature entitles the investor the right to reset the value
of his investment fund to that of the reference stock index. The reset may occur automatically whenever the investment fund
value falls below that of the reference stock index, or only allowed at pre-determined time instants. The protected funds may
allow a finite number of resets throughout the life of the fund, where the reset times are chosen optimally by the investor. We
examine the relation between the finite-reset funds and automatic-reset funds. We also analyze the premium and the associate
exercise policy of the embedded withdrawal right in protected funds, where the investor has the right to withdraw the fund
prematurely. The impact of proportional fees on the optimal withdrawal policies is also analyzed. The holder should optimally
withdraw at a lower critical fund value when the rate of proportional fees increases. Under the assumption that the fund value
and index value follow the Geometric Brownian processes, we compute the grant-date and mid-contract valuation of these
protected funds. Pricing properties of the protected fund value and the cost to the sponsor are also discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Equity-indexed annuities have generated much interest since their first launch by Keyport Life Insurance Co. in
1995.Tiong (2000)provided a comprehensive summary of the design of different types of equity-indexed annuities
and their pricing properties. In a number of research arti@=ber and Pafumi, 2000; Imai and Boyle, 2001;
Gerber and Shiu, 2002he concept of dynamic protection (applied to equity-indexed annuities) has been proposed.
The dynamic protection feature entitles the investor the right to reset the fund value to that of the reference stock
index. In this paper, we consider finite-lived investment funds with the dynamic guarantee feature where the value of
the investment (protected) fund is upgraded to the value of the reference stock index whenever the investor exercises
his reset right. We also analyze the withdrawal right embedded in the protected funds and the impact of payment of
proportional fees on the optimal withdrawal policy.
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Let F(¢) and () denote the value of the primary (without the dynamic protection) fund and the reference stock
index, respectively, and It (r) denote the value of the protected (modified) fund. When the investor makes his
reset decision (he does so only when the protected fund value falls below the reference index value), the sponsor o
the fund has to purchase additional units of the primary fund so that the protected fund value is upgraded to that of
the reference index. Atthe resetinstgnt = 1, 2, ..., we have

F(&) = 1(&) = n(&) F&), (1.1)

wheren(&;) = I1(§;)/ F(&;) > 1is the new number of units of the primary fund in the investment fund. It is obvious
thatn(&1) < n(&2) < - - - since each reset should lead to acquisition of more units of the primary fund. The investor
chooses to exercise the reset right each time whenever the primary fund value falls to some historical low value.
The obvious challenge in the pricing of the protected fund is how to determine such threshold fund value following
the optimal policy of reset.

With the embedded withdrawal right in the investment fund, the holder may withdraw the fund prematurely at his
optimal choice. Upon withdrawal, the investor holds the primary fund directly but forfeits the dynamic protection
offered in the remaining life of the investment fund. However, he is compensated by receiving the dividends paid
by the primary fund. Also, the investor may be required to pay proportional fees throughout the life of the fund.
Intuitively, the investor exercises the withdrawal right only when the primary fund value has reached sufficiently
high threshold value. Such withdrawal-threshold value should decrease when the calendar time is approaching the
maturity date of the investment fund or the proportional fees increase or both.

Gerber and Pafumi (200@pnsidered an investment fund that is guaranteed not to fall below a predetermined
constant levek at all times. In their model, the investment fund valtig) and the primary fund valu&(r) are
related by

F(®) = F(rymax[ 1, max K 1.2
(1) = F(» a(’ogfng(u)>' (1.2)

Assuming thaf(¢) follows the Geometric Brownian process, they claimed that the stochastic process of the modified
fund F(¢) can be obtained from the stochastic process of the primary fignaby placing a reflecting barrier at

K. They obtained the price function of the investment fund at the grant-date, where the number of units of the
primary fund equals one. By relating the protected fund value to the payoff of a lookback dptairand Boyle
(2001)derived the mid-contract valuation of the protected fund. They also considered the withdrawal right in funds
with dynamic protection and argued that it is never optimal to withdraw if the fund does not pay diviGartsr

and Shiu (20033onsideregber petual equity-indexed annuities with dynamic protection and withdrawal right, where
the guarantee level is another stock indexng and Li (2003proposed an efficient numerical scheme to compute
the value of protected funds under discrete monitoring. In their algorithm, they allow the underlying fund value
process to be a lognormal process or a constant elasticity of variance process. To fund the guarantee, the spons
may charge the holder proportional fees over the life of the fwiddcliff et al. (2002)examined the impact of the
proportional fees on the hedging strategies adopted by the sponsor in Canadian segregated funds.

This paper extends the previous results in several aspects. By taking the number of allowable resets to be infinite
we show that the dynamic protection becomes that of automatic reset, whereby the upgrade occurs whenever th
investment fund value falls below the reference index value. We provide a justification why the stochastic process
of the protected fund can be obtained by enforcing a reflecting barrier at the protected level in the stochastic proces:
of the primary fund. We obtain price functions of mid-contract valuation of the investment fund with and without
withdrawal right. We also derive an analytic valuation formula for the cost to the sponsor for funding the guarantee.
Our pricing models include the consideration of the withdrawal right and proportional fees. The characterization of
the optimal withdrawal policies adopted by the investor is discussed.

The paper is organized as follows. The next section presents the pricing formulation of an investment fund under
dynamic protection with respect to another reference stock index. The fund is entitled to have a finite number
of allowable resets but without the right to withdraw the fund before maturity. We illustrate how to obtain the
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automatic-reset model by taking the number of resets to be infinite, and then derive the price function of the
finite-lived protected fund with automatic reset. We also derive an integral representation of the price function
using the concept of rollover hedging strategy. The relations between the price functions at the grant-date and
mid-contract valuation are examined. $ction 3we compute the integral representation of the premium of the
embedded withdrawal right in the protected fund, and also consider the optimal withdrawal policies adopted by the
investor. We also formulate the valuation model for the cost to the sponsor of the protection. Finite difference scheme
and recursive integration method are used to solve for the price function and the critical withdrawal threshold value.
The impact of proportional fees on the optimal withdrawal policies is also examined. Summaries and conclusions
are presented in the last section.

2. Valuation of the dynamic fund protection

First, we presentthe pricing formulation of the investment fund with dynamic protection with respect to areference
stock index, where the holder has at mostsets. Thereafter, we take the limit> oo and obtain the price function
of the protected fund with automatic reset. We perform our valuation of the protected fund using the Black—Scholes
pricing paradigm. Under the risk neutral valuation framework, we assume that the primary fund'¢alaed the
reference index valug(r) follow the Geometric Brownian processes:

dr
- = (r—qp)dt +0,dZ,, (2.1a)
drs
7= (r—qpdt +o0;dZ;, (2.1b)

wherer is the riskless interest raig, andg; are the dividend yield of the primary fund and stock index, respectively,
o, ando; are the volatility of the primary fund value and reference index value, respectively, Al = p dr.
Here,p is the correlation coefficient between the primary fund process and reference index process.

2.1. Pricing formulation of the protected fund with n resets

Let V,(F, I, t) denote the value of the investment fund with dynamic protection with respect to a reference stock
index, where the investor hageset rights outstanding. We first consider the simpler case, where there has been no
prior reset. That is, the number of units of the primary fund is equal to one at current time

The dimension of the pricing model can be reduced by ong i§ chosen as the numeraire. We define the
stochastic state variable

= —, 2.2a
x= (2.22)

which also follows the Geometric Brownian process
d
Tx =(qp —qi)dt +0dZ, (2.2b)

whereo? = aﬁ — 2po,0; + 0. Accordingly, we define the normalized fund value function witas the numeraire
by
Vau(F, L ¢
Wn ()C, [) = %

The investor should never reset whigr) stays abovd(r). With only a finite number of reset rights, he also does
not reset immediately wheR(?) just hits the level off(r). When F(r) falls below(z) to certain threshold level, it

(2.2¢)
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may become optimal for the investor to exercise the first reset right. The optimal reset policy is similar to that of
put option with finite number of reset right®ai et al., 2003)

With reference to the variablg the investor resets whameaches some sufficiently high threshold value (denoted
by x%). The value ofx} is not known in advance, but has to be solved as part of the solution to the pricing model.
Uponresetat = x;;, the sponsor has to increase the number of units of the primary fund so that the new value of the
investment fund equals The corresponding number of units should thenhavhich is the ratio of the reference
index value to the primary fund value at the reset moment. After one reset, the number of resets outstanding is
reduced by one, and the valuexobecomes one since the ratio of the reference index value tuetiig upgraded
investment fund value is one. Hence, we obtain the boundary condition:

Wy (xy, ) = x, Wy—1(1, 1). (2.3a)

Since the reset decision is made optimally by the investor, by Bellman'’s principle of optilizikiyand Pindyck,
1994) we should have the smooth pasting condition &t x}, namely,

Wy (i, 1) = Wy_1(L, 1), (2.3b)

This extra smooth pasting condition determines the valug siich that the investment fund value is maximized.
The terminal payoff of the investment fund is simply equaFtdf no reset has occurred throughout the life of the
fund.

In the continuation region, inside which the investor chooses not to exercise the reset right, the value function
V. (F, I, 1) satisfies a Black—Scholes equation with two state variablasd!. In terms ofx, the governing equation
and the associated auxiliary conditions g (x, t) are given by(Gerber and Shiu, 2003; Chu and Kwok, 2003)

2" o2
Wn (-x::7 t) = )CZ Wﬂ—l(l» t) and W;l (.x:, t) = Wn—l(ls t)a Wl’l(-xv T) = 17 (24)

W, 2 92w, W,
- [G 2 1 (g, —qi)xa—x" _Qani| =0, t<T, x<uxi,

wherex (¢) is the time-dependent threshold value at which the investor optimally exercises the reset right. The
pricing model leads to a free boundary value problem with the free boung&yseparating the continuation
region{(x,1 : x < x*(r),t < T} and the stopping regiof(x,r) : x > x*(f),t < T}. The free boundary is not
known in advance but has to be determined as part of the solution of the pricing model.

At times close to expiry, the investor should choose to reset even Whgis only slightly below/(r), so we
deduce that’ (7) = 1. When the time to expiry is infinite, the threshaifi has been determined by the analytic
procedures proposed i3hu and Kwok (2003)It is obvious from intuition thak’ () should be a monotonically
increasing function of time since the holder should reset at a lower threshold fund value as time is approaching
maturity.

The detailed solution oW, (x, ) and x};(r) can be pursued by following the technique developedDay
et al. (2003) In this paper, we would like to deduce the pricing model for the investment fund that allows infi-
nite number of resets by taking— oo in pricing formulation(2.4).

2.2. Limit of infinite resets—automatic reset

If there were no limit on the number of resets, then the investor should reset whenever the value of the investment
fund falls to that of the reference stock index. We call this scenario “automatic reset” since the reset policy becomes
automatic. Mathematically, this corresponds}g(r) = 1 forallz < T. This is seen to be a solution to the equation:
Woo(xh,, 1) = x5, Wao (1, 1) [S€€EQ. (2.4]). Interestingly, in the limit of: — oo, the free boundary value problem
posed inEq. (2.4)becomes a fixed boundary value problem.

We letV (F, 1, ) denote the price function of the finite-lived investment fund at the grant-date that allows infinite
number of resets. When the time to expiry tends to infinity, the price function of the perpetual counterpart has been
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determined byGerber and Shiu (2003When the reference index becomes a constant, the corresponding price
function has been obtained I3erber and Pafumi (2000In this paper, we extend these two previous results by
generalizing the pricing model to stochastic guarantee and finite time horizon.

For convenience, we defifé,, (y, 1) = Vo (F, I, 1)/ F,wherey = In x = In(I/F) andt = T —t. FromEq. (2.4)
the governing equation and auxiliary conditions ¥ax, (v, 7) are deduced to be

We 02 02Ws MWoo

= — g, Woo, 0, 0;
ar 2 g2 THT Tl TR
IWxo

whereu = qp—q,»—(oz/Z). Note that the free boundax§j (1) becomes the fixed boundayy= In x} (1) =In 1 = 0.

The Robin boundary condition at= 0 leads to a slight complication in the solution procedure (the outline of
which is presented idppendix A). The analytic representation of the solutidfi, (y, ) admits different forms,
depending on whether, # ¢; or ¢, = ¢; [seeEgs. (A.2a,b) Leta = 2(g; — q,)/0® andji = u + o2, the price
function Vo (F, 1, 1) is found to be

) ap # ai
a1 In(I/F) + it e “ apt In(I/F) — pt
Vellh=1e (1 a>N< ot >+a<F> ¢ N( o\t )
_ —In(I/F) — ut
qpT
+Fe N( " > F>1 (2.6a)

(i) gp = q; (write the common dividend yield ag

I In(I/F) + (0°1/2) A ot In(1/F) + @2t/2)
VOO(F,I,t)_Ie‘faﬁn< e )+Ie‘1(lnF+l+7)N< - )
_ 2
+ FefﬂN( Int/H + (@ t/2)> P> (2.6b)
ot

Remarks.

1. Whenweset = K,q; =r,q, = 0ands; = 0,Eq. (2.6ayeduces to the price formu(d.10)in Gerber—Pafumi’s
paper (200Q)Their formula corresponds to a constant guarantee liEvaktead of dynamic protection against
a stochastic stock index. Also, we include the modified representation of the price formuBBgséz6b)
corresponding to the special case whgn= g;.

2. The Robin boundary conditiofdW,/3y)(0,7) = W (0, 7) in Eq. (2.5)can be expressed &8V.,/dF)
(I, F, 1)|r=; = 0. If the index value is taken to be the constant vaty¢hen the Neumann conditio(dV, /9 F)
(F, t)|r=x = 0 is equivalent to the reflecting boundary condition placed at the guarante&leVais gives a
stronger version of justification on the claim madegrber and Pafumi (200@hat the protected (modified)
fund process can be obtained by placing a reflecting boundary at the guarante€ mvehe primary fund
process. The value of the protected fund can be visualized to be the same as that of the European barrier call
option with zero strike and a reflecting down-barrieFat K.

3. Wheng, = 0, we observe that

im Vo (F, Lt)=F (2.7a)
F—oo
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Fig. 1. (a) The price functiolV (F, 1, t) is an increasing function of fund valugé and volatility o, but the sensitivity tar decreases a&
increases. (b) The price functidn, (F, I, 1) is a decreasing function of fund’s dividend yiejg, and the sensitivity tg, increases as the

fund valueF increases. (c) The delt?/,,/dF has higher value for the shorter-lived fund. At a lower valué'pthe longer-lived fund is more
expensive since the insurance value provided by the guarantee is higher.
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Fig. 1. Continued).

or equivalently,

im Wy, =1 (2.7b)
y—>—00

When the primary fund value is very high and there are no dividends paid by the primary fund, then the benefit
of the reset protection has zero value and there is no loss on dividends. In this case, holding the protected fund
is equivalent to holding the primary fund.

Pricing behaviors of the protected funds on the grant-date. The plots inFig. la—c reveal the dependence of the
grant-date price function of the protected fund on different parameters of the pricing moéé. lia, we plot
Voo (F, 1, t) againstF for varying value of volatilityo. The other parameter values used in the calculations are:
I'=1,9, =¢q; =0.02,7 = 5. The price functiorV(F, I, 1) is seen to be an increasing function/obindo, but
the sensitivity tar decreases akg increases. At a higher fund value, the chance of taking advantage of the fund
protection is less so the insurance value associated with the protection becomes less sensitive to volatility. The delta
0V~ /0F tends to zero ag approaches$ (I = 1) and tends to one d&stays further away fromi. These behaviors
on dV/0F agree with the prescription of boundary conditions of the pricing mdelgl. 1b shows the plot of
Voo (F, 1, 1) againstF for varying value of fund’s dividend yielg,. The values of other parameters afe= 1,
gi = 0.02,0 = 0.2, 7 = 5. The price functiorV.(F, 1, 1) is a decreasing function gf, and the sensitivity tg,
increases as the fund value increases. This is because higher value of divideng, y&lds to slower expected
rate of growth of the fund, but the holder cannot receive the dividend payouts. At a lower valyehef drop in
expected rate of growth of the fund is likely to be compensated by the fund guarantee clause so the price function
becomes less sensitivedp. The plots ofV (F, 1, 1) againstF in Fig. 1c reveals the sensitivity of the price function
to varying length of time to maturity. The deltadV,/dF has a higher value for the shorter-lived fund. At lower
value of F, the longer-lived fund is more expensive since the insurance value provided by the guarantee clause is
higher.
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2.3. Mid-contract valuation

Let M denote the path-dependent state variable which represents the realized maximum value of the state variabls
x from the grant-date to the mid-contract timehat is,M = maxy<,<,(I(#)/F(u)). At any mid-contract time, the
number of units of primary fund held in the investment fund is given by

o = 1 if M<1, 2.8)
"UE VMot M1 '

If the primary fund value has been staying above or at the reference stock index so far (correspomtiinglio
then upgrade has never occurred, so the number of units of primary fund remains at one. Otherwise, the number o
units is upgraded ta/.
Let Vimig(F, I, M, t) denote the mid-contract investment fund value at tifméth dependence on the state variable
M. Both Viniq(F, I, M, 1) and V. (F, 1, t) satisfy the same two-state Black—Scholes equation, namely,

0 0
(E + EFJ) Vmid(F, I, M,t) =0 and (5 + £E1> Voo (F, I 1) =0, (2.93a)
where
2 2 2 2 2
o 9 IoF 0 d d
Lrp=-LF°— Fl— + 17— — gy F— —g)l— —r. 2.9b
r1 = Frapg FeopoiFlapn 5 g + = ap Fap + r=anlar = (2.96)

The terminal payoff of the investment fund value at matufitis given by F max(M, 1), a payoff structure that
involves bothF and M. The valuation of the mid-contract value may seen to be quite involved, but economic
intuition may help us to express the mid-contract vatug(F, I, M, ) in terms of the grant-date valug, (F, I, t)
[seeEgs. (2.6a,4)

WhenM > 1, the number of units of primary fund is increasedfo that the investment fund is equivalent to
one unit of “new” primary fund having fund valudF. WhenM < 1, Vg is insensitive ta since the terminal
payoff value will not be dependent on the current realized maximum velu€hat is, Vinig remains constant at
different values of\/, for all M < 1. By continuity of the price function with respect to the variable Viniq at
M = 1is equal to the limiting value of,iq (corresponding to the regim@f > 1) asM — 1*. In summary, we
have

Vo F, L)  M=1,

Voo(MF, L1) M > 1. (2.10)

Vimid(F, I, M, 1) = Voo(Max(M, ) F, I, 1) = {
The details of the theoretical justification to the above formula are givAppendix B

2.3.1. Cost to the sponsor
Let Ugran( F; 1, t) and Umia(F, I, M, 1) denote the cost to the sponsor that offers the dynamic protection at the
grant-date and at mid-contract time, respectively. The terminal paiif(F, I, M, T) is given by

Umid(F, I, M, T) = Vmid(F, , M, T) — F =max(M — 1, 0)F. (2.11)

Note that bottUmiq(F, I, M, t) andVinig(F, I, M, 1) satisfy the same Black—Scholes equation and auxiliary condition.
We claim that

Umid(F, I, M. 1) = Vmig(F, I, M, 1) — F e~ =0, (2.12)

since bothVmig(F, I, M, f) and the termF e~4»(T—) satisfy the Black—Scholes equation and the terminal payoff
condition(2.11)is satisfied. In terms of financial interpretation, a factot-&’ — appears in front o since the
holder of the protected fund does not receive the dividends paid by the primary fund.
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At the grant-date, we havE > [ so thatM = I/F < 1. By virtue ofEgs. (2.10) and (2.12jve obtain
Ugran( F, I, 1) = Umia(F, I, M, t) = Vo (F, I, 1) — Fe (=D, (2.13)
Furthermore, by combininggs. (2.10), (2.12) and (2.13he two cost function&miq(F, I, M, 1) andUgrand F, I, 1)
are related by
Unid(F, I, M, 1) = Ugran{max(M, 1)F, I, 1) + max(M — 1, 0)F e~ 470, (2.14)
The last term irEq. (2.14)gives the present value of additional units of primary fund supplied by the sponsor due

to the protection clause. The sponsor has toMdd 1 units of primary fund whe® > 1, but supplements nothing
whenM < 1.

2.3.2. Rollover hedging strategy—replenishment premium
We can derive an integral representation of the price funcugr(F, I, M, r) using the concept of rollover
hedging strategy and replenishment premiidong and Kwok, 2003)First, we define the stochastic process

N 1
M} = max( max ) 1 (2.15a)
t<u<t’ F(u)

and at the current timg the following quantity

N 1
M = max( max 1

X 1) = max(M, 1) (2.15hb)

is known. The terminal payoff of the protected fund can be expressed a(si?tgla&ltT)FT, and we writeF as the
current value of the primary fund.

At the current time, we hold a replicating portfolio that containsée ("= M6 units of the primary fund. This
portfolio will grow to M6 units of fund at maturity. Supposl@f < Ma, then this portfolio can fully replicate the
terminal payoff of the protected fund. Howeveer,T > A?I(’), then the terminal payoff is higher thaﬁii{)FT; and
correspondingly, the replicating portfolio becomes sub-replication. By sub-replication, we mean that the terminal
payoff of the replicating portfolio may fall short of the terminal payoff of the derivative instrument being replicated
under certain scenarios.

We adopt the following rollover hedging strategy to achieve full replication. We increase the number of units of
fund to M" e~9»T—) whenever a higher realized maximum valueljf occurs at time:, wherer < u < T. This
rollover strategy would guarantee that the number of units of fund at mafuigtynax /7, M,T). Throughout the
replenishment procedure for achieving full replication, some costs would be incurred to acquire additional units of
fund. The corresponding present value of the cost or replenishment premium is

o0

e rTOFE[max(M] — MY, 0] =e T F / PmI > £)de. (2.16)
My

The last formula is obtained by using the well-known result that the expectation of a positive random variable is

the integral of its tail probabilities. The value of the protected fund is the sum of the value of the sub-replicating

portfolio and the replenishment premium. We then obtain an alternative analytic representation of the mid-contract

price function

o0
Vinid(F, I, M. 1) = max(M, 1) e T F + =270 p / P[M] > €] d&. (2.17)
max(M,1)
Supposd/ F follows the process defined Iiyq. (2.2b) then forg > 1, we have
- I(u) 2 E+put §—purt
P MT — P — ué/o _ — 2.1
M =] [,g;gm)zé} ¢ N( aﬁ>+N( oﬁ>’ (218)

wherep = g, — q; — (02/2) ando? = a§ — 2p0,0; + O’l-2.
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3. Protected fundswith withdrawal right

In this section, we consider the protected funds with the embedded withdrawal right to receive the primary fund
prematurely. The withdrawal right resembles the early exercise feature of an American option where the decision
of early withdrawal is optimally determined by the holder. The pricing model now becomes an optimal stopping
problem. The threshold valug* at which the holder chooses to exercise optimally is not known in advance, but
has to be determined as part of the solution to the optimal stopping model. In gdttedahends on the reference
index fund valugl and timer.

3.1. Pricing formulation and analytic properties of the price functions

Let Vgranl(E I, 1) andVimig(F, I, M, 1) denote the price function of the protected fund with withdrawal right at the
grant-date and during mid-contract time, respectively. At the withdrawal thregtiolthe payoff of the investment
fund is equal to magV, 1) F*. Also, from Bellman’s optimality condition, we impose the smooth pasting condition
at F = F*. The formulation oﬂ7gran1(}7, I, 1) andVimig(F., I, M, 1) are presented as follows:

(i) grant-date price functiorf/gram(E L 1)

0 N
<5+EFJ) Vgrant=0, O<l<oo, O0<I< F< Fgram(l,t), t<T,

with auxiliary conditions:

A a‘,\/grant A * B‘A/grant
Vgrand F, I, T) = F, OF =0, VgranﬂF:Fé‘,am = Fgrant and oF =1
F=I F:Fgrant
(3.1)

The model resembles an American option with a downside reflecting barfiesat. Like the non-withdrawal
counterpart, the factor méi, 1) does not appear in the terminal payoff and exercise payoff once the reflecting
barrier atF = I is imposed.

(i) mid-contract price functionf/mid(F, I, M, )

0 A 1
<§+£F,I>Vmid=0, O< I M< oo, O<M<F<F:1id(I,M,t), t<T,

with auxiliary conditions:

N oV
Vmid(F, I, M, T) = max(M, DF, mid —0,
M=I/F
% « 3 Vimid
VmidlF=rz,, = max(M, 1 Fy,q and oF = max(M, 1). (3.2)
F=Fqig

Remarks.

1. Compared t&,, andVpig, the pricing formulation foﬁA/gramandeid have the additional imposition of the value

matching and smooth paste conditions at the withdrawal thregtiol@ihe pricing model foV/mig resembles an
American lookback option model.
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2. The derivative boundary conditio(ﬁVmid/aA/l)|M:,/F = 0 is typical for option models with lookback payoff.
It arises from the observation that if the current valué/df equals the current realized maximum vaMédhen
Vmid is insensitive taM. This is because the probability thét is smaller than the realized maximum value of
I/ F over the whole contract period is one almost surely.

3.1.1. Relation between the mid—contractAand gran}-date price functions
One can show that the price functioVigijg and Vgrantare related by

N N ‘A/grant(F, L M <1,
Viid(F, I, M, t) = Vgrandmax(M, DF, I, 1) = § . (3.3)
Vgranl(MF, 1, t) M=>1

and the withdrawal thresholdg;,; and Fg,,care related by
Fgrant(lv )
max(M, 1)

The proofs of the above two relatio(&3) and (3.4are presented iAppendix C The protected fund at mid-contract
can be visualized to be identical to the grant-date protected fund contract but haviag maxnits of the original
primary fund as the underlying primary fund.

Frig(IL M, 1) = (3.4

3.1.2. Valuation of the grant-date price function
Similar to Vi (F, 1, 1), the two-state pricing model dfyrantcan be reduced to a one-state model by chooging
as the numeraire. We define

I . Vgrant(F, I, ¢
y=In— and W(y,1) = M, t=T-—1, (3.5
F F
the formulation inEq. (3.1)can be written as
W o? 32W+ oW ¥ o 0 0
- = - - , ))<y<0, >0,
ot 2 3?2 H ay ar Y Y
with auxiliary conditions:
. W . . W
W(y, 0) = 15 E(Oa T) = W(O’ T)v W(y*(f)» T) = 15 a_y(y*(T)v T) = Oa (36)

wherey*(7) is the free boundary. By solving the above optimal stopping problem, we obtain the following decom-
position formula:

Wy, 1) = Woo(y, ) + WE(y, 75 (1), 3.7)
whereWq, (y, 1) is given byEgs. (2.6a,bandWg(y, t; y*(t)) is given by

T
WE(y, : y* (1) = qp/o e "G (y, u; y*(r — u)) du, (3.8)
where the kernel functiotv (y, t; &) satisfies the following equation:

G o2 9%G aG aG

. T A Ao PR Os 01 G 5 O; - 1 < d G 0, 5 = — O, 5 s 0,

br - 22 TH Y0 T (09 =1p<p ad GO, 78 =079, &<
(3.9)

The quantityFWg (In(I/ F), T —1) gives the integral representation of the early withdrawal premium. When O,
the withdrawal premium becomes zero implying that it is never optimal for the holder to exercise the withdrawal
right.
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The solution taG (y, t; &) takes different forms depending gp # g; or g, = g; (seeAppendix Dfor the details
of derivation):

() gqp # ai
. _ RN At =8\ o], Lo2uye? (u)
Gy, ;8 =expy —§+ (gp ql)r)CIp—CIi |:N<Uﬁ> 1i|+ae " N oz
E-y—npt _ o SR [Tz (Bu—§
+N< o7 >+exp(y st %)T)U(Qi—ql)) 0" n<0ﬁ)du
fi ot £+t y+E+ it
e G Gy )| L G R e |
(i) gp =qi

ey £+ (0%1/2) TT@A+0%wE  oSJul  (E+ (0%u/2)
so-mo=efe-on (72 [ S0 -5 ] (UG5

2 2
+ <l+$+y+2)N<—$+y+(a 7/2)>

2 o7
§+y+(0%t/2) §+(0°1/2) §—y+(0%t/2)
e (P (e (L) e

Remark. Suppose we sét= 0in Eq. (3.9) G(y, t; 0) is seen to be%™ W (y, 7). Note thatG (y, r; 0) cannot be
obtained directly by taking the limif — 0~ in G(y, t; &).

3.1.3. Integral equation for the free boundary
By settingW*(y*(7), ) = 1, we obtain the following integral equation for the free boundéiie):

1= We(*(0), 1)+ q,,/ e " G(y* (1), u; y*(r — u)) du. (3.11)
0

There is no known closed form solution fgt(z). One has to resort to numerical calculations to comptite).
By virtue of Eq. (2.7b) the solution toy*(r) wheng,, = 0 is given by

y*(1) = —oco forall t, (3.12)

implying F*(I, 1) = oo for all . This gives another theoretical justification why it is never optimal to withdraw
prematurely when the primary fund does not pay dividend. Indeed, we have seen earlier that the early withdrawal
premium equals zero whep, = 0 (see Imai and Boyle, 2001; Gerber and Shiu, 2003 for alternative arguments to
arrive at the same conclusion)

3.1.4. Cost to the sponsor

We consider the cost to the sponsor, denoted by the funBtigi( F, 1, M, 1), of providing the protection guarantee
and the withdrawal right. Unliké/yiq, the formulation forUmig is not an optimal stopping problem since the
withdrawal threshold is determined by the holder but not by the sponsor. To solVgfpthe withdrawal threshold
Fr.q(1, M, 1) should be obtained as the first step by solving the optimal stopping pr¢dl2jwhich is then imposed
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as a barrier condition in the pricing model Gf,iq. The formulation ofmiq(F, I, M, t) is given by

0 N 1
<5+EE1)Umid=O, O<I, M< oo, O<M<F<F:1id(1»M’t)v t<T;

R 3Umi .
Omia(F, 1. M. 1) = max(M -1, 0)F, = =0 and Umig(Fiig, I M. 1) = max(M —1, 0) Fyq
M=I/F

(3.13)

Note that there is no smooth pasting conditioFa& Fr.., since the threshold},, is exogenously imposed as a
barrier. As there is no explicit formula fary, (1, M, 1), we cannot obtain closed form analytic representation of
Umia(F, I, M, t). To solve forUmiq(F, I, M, f), one has to solve a two-state option pricing model. The inclusion of
the state variabl@/ is necessary since the early withdrawal right is path dependent The soluﬁdetcan be
obtained via numerical calculations alongside the computation that solVégifand F* mig- Note thaiUgram(F L)

is obtained by setting/ = I/F in Um.d(F, I, M, ). . A
Since the holder forfeits the guaranteed protection upon withdrayad,and Vinig do not have relation similar
to that given inEq. (2.12) but rather they are related by

Umid(F, I, M, 1) < Vmia(F, I, M, 1) — F e~ %0, (3.14)

The above relation can be proved by applying the comparison principle in partial differential equation theory, which
involves the comparison of the formulations of the two functidngy andUnmiq + F e~ 4»(T=0_ On the other hand,
Umia(F, I, M, t) should always be greater théiiq(F, I, M, r) due to the withdrawal premium.

3.2. Impact of proportional fees

We consider the scenario where the investor has to pay proportional fees at theadite sponsor throughout
the life of the fund. That is, the investor pays an amaumtax(M, 1) F dt over the time interva{t, ¢ + dr), where
max(M, 1) F is themodified fund value at time. Let V,,(F, I, 1) denote the protected fund value at the grant-date
with withdrawal right and payment of proportional fees at the patéhe formulation forV,(F, I, t) resembles that
of Vgranl(E I, 1) [seeEq. (3.1) except that the governing differential equation has to append on extra depletion term
—pF. Even with the presence of the depletion terms, pricing relation like thiagirn(3.3)still holds between the
grant-date and mid-contract value functions. Suppose we define

V,(F, I.1)

1
W,(y, 1) = P where y = In i andt =T —1, (3.15)

then the formulation fo#V,(y, ) can be expressed as

W, o2 W oW
r_9 217 Nald .
ot 2 oy ay

—qpWp—p, ¥,(0<y<0, >0,
with auxiliary conditions:

W,(y,0) =1, %(0, ) = W,(0, 1), Wp(y;‘,(t), ) =1, %(y;(t), 7) =0. (3.16)
Here, y},(7) is the free boundary and p is the depletion term reflecting the payment of proportional fees. The

withdrawal thresholdrF* (1, ¢; p) and y;(t) are related bw’,‘;(t) = In(I/F*(l, ¢t; p)). Similarly, the solution to
W, (v, ©) admits the following decomposition form:
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T T
Wp(y, D =€ ""G(y, 1;0) + g, f e "Gy, us yp(v —u) du — p / e "[G(y, u; 0)
0 0
=Gy, u; y,(r — u))] du, (3.17)

where the first integral represents the early withdrawal premium while the second integral represents the loss in
value due to payment of proportional fees. The integrand in the second integral contains the difference of two
functions: G (y, u; 0) — G(y, u; yy,(r — u)). This is because proportional fees payment will terminate upon the
early withdrawal. In terms of the price functiodg, (y, ) andWg(y, t; y*(r)) defined earlier [seEgs. (A.2a,b)

and Eq. (3.8) we can expres¥,(y, t; p) in the following succinct form:

Wp(3, 1) = Weo (5. D) + (qp + P WE®, T3 ¥, (D) — p/O Woo (y, u) du. (3.18)

Similar toEg. (3.11) we can obtain an integral equation fgj(z) by settingy = y;,(v) andW,(y; (1), 7) = 1in
Eq. (3.18)

3.2.1. Properties of the free boundary, y},(7)

1. From financial intuition, we expect that the fund valgg F, I, 1) decreases and the investor optimally withdraws
at a lower threshold™ (7, r) when the rate of proportional fees is higher. The decreasing propeViy(éf /, )
with respect tgp can be established by applying the comparison principle in partial differential equation theory
and taking into account the increasing magnitude of the depletion +gfin the governing equation. The
thresholdF* (1, ¢; p) is obtained by the intersection of the value function cury€r, I, ) with the intrinsic value
line: V = F. At a higher rate of proportional fees, the lowering of the value function curve causes its intersection
with the intrinsic value line at a lower threshaltt (7, 1) (seeFig. 2a). Sincey),(t) = In(1/F*(1, t; p)), the free
boundaryyy,(t) is monotonically increasing with respect o

2. LetFy. (I, M, t; p) denote the withdrawal threshold value for the primary fund during mid-contract time. By
following a similar argument as presenteddppendix G we can establish

3. Similar to a usual American option, a longer-lived protected fund with withdrawal right should be worth more
than its shorter-lived counterpart. Hendg,(F, 1, 1) is monotonically increasing with respect to the time to
expiry, t = T — t. Also, a higher value function curve intersects the intrinsic value line at a higher with-
drawal threshold s@™ (1, 1; p) is increasing with respect to Correspondinglyy?,(z) is a decreasing function
of t.

4. Attime close to expiryy — 0%, the investor should optimally withdraw at any fund value, foral- 0 and
gp = 0 butp andg, not both equal zero. This means that (8gpendix Efor its proof)

y;‘;(0+) =0 for p=>0,q, > 0butpandg, notboth equal zeto (3.20)

5. InAppendix F we explore the asymptotic behaviors of the value funcliity, 7) and the free boundany, (z) at

T — oo. The asymptotic solution#,(y, co) andyy,(co) exhibit a wide range of solution behaviors, depending

on the choices of values for the parametersg, and p. In those cases where the free boundgfyr) has a

finite asymptotic limit ag — oo, the free boundary;,(7) exists for allr > 0. Some of the important properties

of the asymptotic solutions are highlighted below:

(a) Wheng; = p = 0andg, > 0, W,(y, co) becomes infinite in value. The same result has been observed by
Gerber and Shiu (2003)

(b) Wheng, = p = 0, the holder never withdraws prematurely, so that/, #; p) = oo or y,(r) = —oo for
all values ofr. At T — oo, the value functior,,(y, co) is finite wheng; > 0 but becomes infinite in value
wheng; = 0.
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Fig. 2. (a) The value functiol of the protected fund with withdrawal right and payment of proportional fees is plotted against the primary fund
valueF. Wheng,, > 0, p > 0 butg, andp not both equal zero, the value curves touch tangentially the dotted line, which is the intrinsic value
line. Other parameter values used in the calculationgateM = 1,7 = 5,¢; = 0.02 ando = 0.2. (b) The withdrawal threshol8* is plotted
against time to expiry for varying value of rate of proportional fge The holder should withdraw at a lower threshold wheincreases.
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(c) Wheng, = 0 the behaviors of asymptotic solutions depend0a: 0 org; > 0.
() Wheng; > 0, bothW,(y, c0) andyy,(co) exist for p > 0. However, forp = 0, only W), (y, cc) exists

buty’,‘,(oo) = —00.
(i) Wheng; = 0, W, (y, c0) andyj(co) exist for p > 0. Forp = 0, bothW),(y, oo) andy7,(co) do not
exist.

(d) Wheng; > 0 andg,, > 0, bothW,(y, oo) andyy,(co) exist for all p > 0.

3.3. Numerical calculations

With embedded withdrawal right, the price of the protected fund does not admit a closed-form analytic formula
since the free boundary;(r) is not known in advance. We performed numerical calculations to obtain the value
function W, (y, r) and y;‘,(r) via the finite difference scheme and the recursive integration method. The recursive
integration method solves for the free boundgfyr) directly from the integral equation. The numerical procedure
involves the numerical integration of the integral withdrawal premium term, then followed by solving recursively
for y*(1) at successive time steps. In the finite difference calculations, in order to take care of the early withdrawal
right, we incorporate the dynamic programming procedure of comparing the continuation value and value upon
withdrawal at each lattice node. The purpose of adopting two different numerical approaches is to verify the
analytic expressions appearing in the integral representation formulas of the early withdrawal premium and the cost
of payment of proportional fees. The details on the construction of these two numerical algorithms can be found in
Kwok’s text (1998)

3.3.1. Comparison of numerical accuracy

In our numerical experiment to compare the numerical accuracy of the finite difference scheme and recursive
integration method for computinig, (F, 7, 1), we chose the following set of parameter values in our pricing model.
7=5,¢4; =0.02,9, = 0.03, p = 0.01,0 = 0.2. We take the numerical results obtained from the finite difference
calculations using 2560 time steps as the “exact” solution and compare the numerical solUfiaR th r) obtained
using a fewer number of time steps or via recursive integration method at selected lattice points in the computational
domain. The root mean square error (RMSE) of numerical results is computed based on the formula

N
1
RMSE = 5 ;(v,,,i — veach?, (3.21)
=

whereN is the total number of lattice points chosen for comparisonigpdthe numerical solution t&,(F, I, t)
at theith lattice point.

In Table 1 we list the RMSE of the calculated results of the value function obtained from the finite difference
calculations and recursive integration method with varying number of time steps. We observe reasonably good
accuracy of the numerical results using either numerical algorithm. Since the finite difference scheme computes
the numerical solution based on the dynamic programming procedure, which does not require the knowledge of
the analytic integral representation formulas of the withdrawal premium and the cost of the payment of propor-
tional fees, the consistency of numerical results from both methods serves to verify the accuracy of the integral
formulas.

Table 1
Comparison of numerical accuracy of the finite difference scheme and recursive integration method for computing the valu& faRction
The parameter values used in the calculationsmate5, ¢; = 0.02,q, = 0.03, p = 0.01 ando = 0.2

Number of time steps 40 160 640
RMSE in finite difference B546x 1071 2.1871x 1072 6.8376x 1073
Number of time steps 10 20 30

RMSE in recursive integration .Q147x 102 9.1786x 1073 5.5493x 103
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3.3.2. Behaviors of the price function and withdrawal threshold

We performed numerical calculations to compUtgF, 1, r) andF*(I, t; p) of the protected fund with withdrawal
right and payment of proportional fees.Hiy. 2a, we show the plot oV, (F, I, r) againstF for varying values of,
andp. The dotted line is the intrinsic value lin®: = F. The set of parameter values used in the calculations are:
I=1,7=5,¢; =0.02 ando = 0.2. Wheng, = p = 0, the value curve always lies above the intrinsic value line
showing that it is never optimal to withdraw prematurely. Whgre 0, p > 0 butg, and p not both equal zero,
we observe that the value curve cuts the intrinsic value line tangentially (smooth paste property) at sufficiently high
fund valueF (withdrawal threshold fund valuelrig. 2(b) shows the plot of the withdrawal threshditt against
time to expiryt for varying value of rate of proportional fge The threshold value curves clearly reveal the two
monotonicity properties of*, namely,F* is an increasing function af and a decreasing function pf

4. Conclusion

We have constructed and analyzed the pricing models for protected funds with reset and withdrawal rights. When
the number of allowable resets tends to infinity, the protection clause becomes “automatic reset”, that is, the fund
value is upgraded automatically to the reference index value whenever a drop of fund value below the index value
occurs. The pricing model of the protected fund with automatic reset resembles that of a lookback option model. We
provide the justification why the protected (modified) fund process can be obtained by placing a reflecting boundary
at the guarantee level on the primary fund process. We also derive the relation between the price functions of the
grant-date value and mid-contract value of the protected fund. Concerning valuation of the protected fund value
during mid-contract time, though the number of units of primary fund may have been increased by virtue of the
automatic-reset clause, one can use the grant-date price function for valuation by taking the “modified” fund as the
primary fund. We also illustrate how to apply the rollover hedging strategy to derive an analytic representation of
the mid-contract price function.

With embedded withdrawal right, the pricing model of the protected fund with automatic reset becomes a free
boundary value problem. This is because the optimal withdrawal policy adopted by the fund holder is not known in
advance. Rather, the withdrawal threshold has to be determined as part of the solution procedure. We derive the inte-
gral representation of the withdrawal premium in terms of the withdrawal threshold values. We also obtain the integral
equation that determines the withdrawal threshold values at different times. When the primary fund is non-dividend
paying, we provide the mathematical justification why itis never optimal to exercise the withdrawal right prematurely.

We have considered the impact of payment of proportional fees by the fund holder to the sponsor. We examine
the characterization of the early withdrawal policy under the combination of withdrawal right and payment of
proportional fees, in particular, the behaviors of the free exercise boundary at times close to expiration and infinitely
far from expiration. The withdrawal threshold values exhibit two monotonicity properties, namely, the holder should
optimally withdraw at a higher threshold value with increasing value of time to expiry and at a lower threshold value
with increasing rate of proportional fees.

Finite difference scheme and recursive integral method were employed to compute the price functions and
withdrawal threshold values. The comparison of numerical accuracy revealed good agreement between the numerical
results obtained from both numerical methods. The consistency of the numerical results also serve to verify the
accuracy of the analytic representation formulas of the value functions.

Appendix A. Derivation of Wy, (y, 7)

We perform the continuation of the initial condition to the whole domaino, co), where

1 if y<0,

Weoo(y, 0) = ]
W= 0o it y=o.
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The functiony(y) is determined such that the Robin boundary condition is satisfiedglet; &) denote the
fundamental solution to the governing differential equation, where

L et (E—y—pun?
gy, ;8 = Nz exp(—T> )

The solution toW,(y, T) can be formally expressed as

Woo (3, 7) = / Woo (. 0)g(y, 73 £) dE = e 490" [1— N (y +‘”>] + f Y(Eg(y, T &) dE. (A1)
—00 o/T 0

Performing the differentiation with respect f@n both sides oEq. (A.1), we obtain

IMWoo °0 9 *
— ) =—¢( 1,0 —/ w(é)—g(y, 7; §) d& =/ V(©gly, T; &) dé.
ay 0 08 0

Next, we apply the Robin boundary conditionki. (2.5)to obtain

/0 {lv'® — ¥(®]g0,7;8) — g0, 7; —§)}dé =0
so thaty/(¢) has to satisfy the following differential equation

g0, 7; -8 _ e(oH_j_)g’ where o — 2(qi — CIp)'
g0, 7; 6 o?

The auxiliary condition for/(§) is obtained by observing continuity &¥(y, 0) aty = 0, giving ¢¥(0) = 1. The
solution ofy (&) depends o # 0 ora = 0, namely,

(i) whena # 0,

e 1
w@)=e€<7+1——);

o

V(@) -y =

(i) whena =0, y(&) = (1+ &) €.
By substituting the known solution @f(&) into the integral irEq. (A.1), we obtain

(i) whena # 0,
Weo(y, ) = €747 <1_ }) N (y + ﬁr) n 1 oday—a,7 5 (y - /,L‘L'>
ool)s o gﬁ o O'ﬁ
- —y — UT
N ’ . A.2a
" ( ot ) v = (A-22)

(i) whena = 0 (write g as the common dividend yield),
2 2
g (Y F (@PT/2) Lt Y+ (0%7/2)
Weo (v, T) =€ N( G + e 0 /tn —oﬁ

2 2
—qr o°T y+ (o r/Z))
+e (y—l—l—i——z )N<—aﬁ , y<O. (A.2b)
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Appendix B. Theoretical justification of price formula (2.10)

ConsiderVnmiq(F, I, M, 1), due to the lookback payoff structure, we impose the usual auxiliary condition for a
lookback option:

9Vmid

-0 (B.1)
M {y—p/F

Itis obvious thatVmiq(F, I, M, t) given inEq. (2.10)satisfies the governing differentiafjuation (2.8)It suffices to
show thatVmig(F, I, M, t) satisfies the terminal payoff condition and the above auxiliary condition.

First, whenM > 1, itis guaranteed tha at maturity must be greater than one so the terminal payoff becomes
Fmax(1, M) = MF. SinceV(F, I, T) = F so thatV,(MF, I, T) = MF, hence the terminal payoff condition is
satisfied.

To show the satisfaction of the auxiliary conditiB.1) at M = I/F, we write Vo(MF, L, 1) in the form
MFW (In(I/MF), 7). We obtain

Vo W
—MF, Lty =F|W ,T) — —(, ,
8M( ) |: 003, 7 3y (v T)]

wherey = In({/MF). WhenM = I/F, we havey = 0 so that

9Vmid
oM

A%
= —(MF, 1)
M

M=I/F 9

(F, I, M,

W,
=F [WOO(O, ) — —=(0, r)] =0
M=I/F ay

by virtue of the Robin boundary condition stateddq. (2.5)
Second, whe! < 1, we havedVpig/dM = 0; and together with the continuity &g at M = 1, we deduce
that

Appendix C. Proofs of relations (3.3) and (3.4)

First, we consideM > 1, it suffices to verify that the price functidﬁgram(MF, 1, t) and the exercise boundary
Fgrand1, /M satisfy the pricing formulation posed Bq. (3.2) With Fyy = Fgran/ M, We see that the pricing
models ongran(E I,1) and f/mid(F, I, M, 1) share the same continuation region and stopping region. It is quite
obvious thal/gran( MF, 1, 1) satisfies both the differential equation and the terminal payoff condition. We would like
to check whether (i) Neumann boundary conditioat= 1/ F, (ii) value matching and smooth paste conditions at
F = F},q are satisfied. The verification procedures #or> 1 are presented below:

. Vi v, N
(i) mid = p298YN where F = MF
oM oF |-
M=I/F F=1
8‘A/mid —0,
oM
M=I/F
(i) ‘A/mid(Fr;id, LM t)= ‘A/grant(MF?;id, L) = ‘A/grant(Fgranp L) = FgrantZ MF:qid = max(M, 1)F|:1id’
Vi v, N
(iii) ¢7mid — poent . Where F = MF,
oF oF |-
F=Flig F=MFL
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Vmid
oF

0 Vgrant
oF

=M =M =maxM,1).

F:Fgram

F=Fig

The payoff takes the form max, 1) F, so Vmid becomes insensitive to the current realized maximum vadue
whenM < 1. As Vmig has no dependence a#, we then have
oM
Furthermore, by the continuity of the price functionMit= 1, we deduce that faf < 1

=0 for M <1

Viid(F, I, M, ) = Vmia(F, I, 1, ) = Vgran(F, I, )
and

Appendix D. Derivation of G(y, t; &)

Suppose we let
G

H(y, ;) =G, 16 — 8—y(y, 7 6), (D.1)
then the boundary condition along= 0 changes from the Robin type for to the Dirichlet type forH. The
differential equation formulation fok(y, t; &) is given by

dH o023°H  9H

gz?vjtu«@, y<0, >0, H@O,7;8) =0, H(y, t;8) = 1{y<g) + 8(y — &).
The solution toH(y, t; &) is given by

a1 y=E+ut\ 02 (YHE+nuT
o= [n (P ) - (S )

v (2 TEE T el (M)
+1N<Uﬁ>e“yN o .

OnceH(y, t; &) is known, we can usgq. (D.1)to solve forG(y, t; £). This leads to

0
G(y, 1;8) = Y(r; &) e”+/ e TH(n, t; &) dn, (D.2)

y
wherey(t; &) is an arbitrary function to be determined. By substituting the above sol(ifid?) into the gov-

erning equation forG [see Eq. (3.9] and settingy = 0, we obtain the following differential equation for
v(z; §)
d 2 29H
YVeo-(Z+u)vmo+Z2ong=0 <0 r>0 (D.3)
dr 2 2 dy
with initial condition: y(0; &) = 0. The solution tay(z; &) is found to be

o2 [T 2 _ . O0H
e =-7 /o /20 20, ), (D.4)
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where
0H = 2(6—o’1) (E—put 2u  (§—pt
oy OO =G ”(oﬁ)+02N<aﬁ>'

The remaining steps amount to tedious integration of the two integrélgsn(D.2) and (D.4)

Appendix E. Asymptotic behavior of y}(7) at T — ot

We assumep > 0, g, > 0 but p andg, not both equal zero. Sincé*(Z,t; p) > I for all ¢, it is obvious
thaty*(0%) < 0. To show thay}(0*) = 0, we prove by contradiction. Suppogg(0*) < 0, then there exists
belonging to the intervady;‘,(O“L), 0) such that the pointy, 0") in the y—t plane lies in the continuation region.
SinceW,(y, 0%) = 1, for y*(0") < y < 0, we have

o2 W, W,
= +u—2L —q,W, —p
=0t

ow,
2 9y? ay

ot

= —q4p — P-
=0*

Sincep > 0, ¢, > 0 butp andg, not both equal zero, we obtain

W,

<0
ot

=01

sothatW,(y, ) < 1forsome pointy, ) in the continuation region. This leads to a contradiction siigey, 7) > 1
for all points(y, t) in the continuation region. We then deduce that

y;;(0+) =0 for p=>0,q, > 0butpandg, notboth equal zeto
Recall that wherp = ¢, = 0, we have shown that [sés. (3.12)

y;(r) =—oco forall t

Appendix F. Asymptotic behavior of W,(y, 7) and y’;,(r) at— o0

With infinite time to expirationW,(y, r) becomes insensitive toso thatdW, /ot = 0. Without dependence on
7, the formulation forW,, = W, (y, oo) reduces to
2 42
ocd°W, dw, ¥
?d—yz“rﬂd_y_‘h)Wp_p:Os yp(00)<y<0,
with auxiliary conditions:

(i) aty =0,dw,/dy = W),
(i) aty = y};(c0), W, = 1and d¥,/dy = 0.
The nature of the solution to the above formulation depends on the properties of the two roots of the following

indicial equation(o?/2)A2 + i — gp = 0. In terms of the parameteys ¢, ando?, these two roots are found to
be

1 qi—qp 1 gi—ap\* 2,
N —— U TR [ . =P
+ 2+ o2 2+ o2 +02
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Depending on different choices of values for the parametgrs;, and p, W), (y, oo) andyj(co) exhibit a wide
range of solution behaviors:

() gi=qp=0
(@ p>0
W _ 2D (o?/2p)+y 1) and v* _ o
p(y.00) = —(€ -y—-1 a y,,(OO)——z.
(b) Solution does not exist when= 0.
(i) ¢;=0,9,>0
@ p=>0

2 (0%/2q,)+1
Wp(yv OO) = ;2 0_ 87(2%7/(72))’ + (1+ Q_p> ey B ﬁ
qp + (o /2) qu » o

and
(o) = -2 |n(1+q”)
yi(o0) = —— — .
P 2q, p

(b) Solution does not exist when= 0.
(i) ¢; >0,9,=0
(@ p=0

2
Wy(y, 00) =1+ 20— e(@ai/o*+Dy  gng ¥p(00) = —o0.

1

(b) p>0

L 2p(F =) 2po? 2g; .
w00 =1 o e (5 2) 0 -0) 1]

wherey* = y7(c0) is the solution to the algebraic equation

2p 1 1\ -
1+ ——|y"———-(1-— ) e*Y +1|(=0.
+02+261i [y Ay ( M) " }
(iv) ¢; > 0,9, >0
(@ p=0

Wy(y,00) = AL €47 + Ay — r
dp
where
An [rp@—a) /a2 2 (1 — )T =h)
A+ = +( ) , A_ — + ( +) ’
Ao =g [A-(1—2y) A —A- A @@=20)
1 A_(1l—Ax
yy(00) = jp 2= =2
Ar—A- Ap(l—2o)
() p>0
1 B N
Wp(y, 00) = M[AJF -0 _ ) Oy )] _ ﬂ’
Ay — A a0



C.C. Chu, Y.K. Kwok/ Insurance: Mathematics and Economics 34 (2004) 273-295 295
wherey* = y7(c0) is the solution to the algebraic equation

(- —Ad)p _
p+ap

Al—a)e Y —a_@—a)e ) 4 0.
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