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Reset and withdrawal rights in dynamic fund protection
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Abstract

We analyze the nature of the dynamic fund protection which provides an investment fund with a floor level of protection
against a reference stock index (or stock price). The dynamic protection feature entitles the investor the right to reset the value
of his investment fund to that of the reference stock index. The reset may occur automatically whenever the investment fund
value falls below that of the reference stock index, or only allowed at pre-determined time instants. The protected funds may
allow a finite number of resets throughout the life of the fund, where the reset times are chosen optimally by the investor. We
examine the relation between the finite-reset funds and automatic-reset funds. We also analyze the premium and the associated
exercise policy of the embedded withdrawal right in protected funds, where the investor has the right to withdraw the fund
prematurely. The impact of proportional fees on the optimal withdrawal policies is also analyzed. The holder should optimally
withdraw at a lower critical fund value when the rate of proportional fees increases. Under the assumption that the fund value
and index value follow the Geometric Brownian processes, we compute the grant-date and mid-contract valuation of these
protected funds. Pricing properties of the protected fund value and the cost to the sponsor are also discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Equity-indexed annuities have generated much interest since their first launch by Keyport Life Insurance Co. in
1995.Tiong (2000)provided a comprehensive summary of the design of different types of equity-indexed annuities
and their pricing properties. In a number of research articles(Gerber and Pafumi, 2000; Imai and Boyle, 2001;
Gerber and Shiu, 2003), the concept of dynamic protection (applied to equity-indexed annuities) has been proposed.
The dynamic protection feature entitles the investor the right to reset the fund value to that of the reference stock
index. In this paper, we consider finite-lived investment funds with the dynamic guarantee feature where the value of
the investment (protected) fund is upgraded to the value of the reference stock index whenever the investor exercises
his reset right. We also analyze the withdrawal right embedded in the protected funds and the impact of payment of
proportional fees on the optimal withdrawal policy.
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Let F(t) andI(t) denote the value of the primary (without the dynamic protection) fund and the reference stock
index, respectively, and let̃F(t) denote the value of the protected (modified) fund. When the investor makes his
reset decision (he does so only when the protected fund value falls below the reference index value), the sponsor of
the fund has to purchase additional units of the primary fund so that the protected fund value is upgraded to that of
the reference index. At the reset instantξi, i = 1,2, . . . , we have

F̃ (ξi) = I(ξi) = n(ξi)F(ξi), (1.1)

wheren(ξi) = I(ξi)/F(ξi) > 1 is the new number of units of the primary fund in the investment fund. It is obvious
thatn(ξ1) < n(ξ2) < · · · since each reset should lead to acquisition of more units of the primary fund. The investor
chooses to exercise the reset right each time whenever the primary fund value falls to some historical low value.
The obvious challenge in the pricing of the protected fund is how to determine such threshold fund value following
the optimal policy of reset.

With the embedded withdrawal right in the investment fund, the holder may withdraw the fund prematurely at his
optimal choice. Upon withdrawal, the investor holds the primary fund directly but forfeits the dynamic protection
offered in the remaining life of the investment fund. However, he is compensated by receiving the dividends paid
by the primary fund. Also, the investor may be required to pay proportional fees throughout the life of the fund.
Intuitively, the investor exercises the withdrawal right only when the primary fund value has reached sufficiently
high threshold value. Such withdrawal-threshold value should decrease when the calendar time is approaching the
maturity date of the investment fund or the proportional fees increase or both.

Gerber and Pafumi (2000)considered an investment fund that is guaranteed not to fall below a predetermined
constant levelK at all times. In their model, the investment fund valueF̃ (t) and the primary fund valueF(t) are
related by

F̃ (t) = F(t)max

(
1, max

0≤u≤t
K

F(u)

)
. (1.2)

Assuming thatF(t) follows the Geometric Brownian process, they claimed that the stochastic process of the modified
fund F̃ (t) can be obtained from the stochastic process of the primary fundF(t) by placing a reflecting barrier at
K. They obtained the price function of the investment fund at the grant-date, where the number of units of the
primary fund equals one. By relating the protected fund value to the payoff of a lookback option,Imai and Boyle
(2001)derived the mid-contract valuation of the protected fund. They also considered the withdrawal right in funds
with dynamic protection and argued that it is never optimal to withdraw if the fund does not pay dividends.Gerber
and Shiu (2003)consideredperpetual equity-indexed annuities with dynamic protection and withdrawal right, where
the guarantee level is another stock index.Fung and Li (2003)proposed an efficient numerical scheme to compute
the value of protected funds under discrete monitoring. In their algorithm, they allow the underlying fund value
process to be a lognormal process or a constant elasticity of variance process. To fund the guarantee, the sponsor
may charge the holder proportional fees over the life of the fund.Windcliff et al. (2002)examined the impact of the
proportional fees on the hedging strategies adopted by the sponsor in Canadian segregated funds.

This paper extends the previous results in several aspects. By taking the number of allowable resets to be infinite,
we show that the dynamic protection becomes that of automatic reset, whereby the upgrade occurs whenever the
investment fund value falls below the reference index value. We provide a justification why the stochastic process
of the protected fund can be obtained by enforcing a reflecting barrier at the protected level in the stochastic process
of the primary fund. We obtain price functions of mid-contract valuation of the investment fund with and without
withdrawal right. We also derive an analytic valuation formula for the cost to the sponsor for funding the guarantee.
Our pricing models include the consideration of the withdrawal right and proportional fees. The characterization of
the optimal withdrawal policies adopted by the investor is discussed.

The paper is organized as follows. The next section presents the pricing formulation of an investment fund under
dynamic protection with respect to another reference stock index. The fund is entitled to have a finite number
of allowable resets but without the right to withdraw the fund before maturity. We illustrate how to obtain the
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automatic-reset model by taking the number of resets to be infinite, and then derive the price function of the
finite-lived protected fund with automatic reset. We also derive an integral representation of the price function
using the concept of rollover hedging strategy. The relations between the price functions at the grant-date and
mid-contract valuation are examined. InSection 3, we compute the integral representation of the premium of the
embedded withdrawal right in the protected fund, and also consider the optimal withdrawal policies adopted by the
investor. We also formulate the valuation model for the cost to the sponsor of the protection. Finite difference scheme
and recursive integration method are used to solve for the price function and the critical withdrawal threshold value.
The impact of proportional fees on the optimal withdrawal policies is also examined. Summaries and conclusions
are presented in the last section.

2. Valuation of the dynamic fund protection

First, we present the pricing formulation of the investment fund with dynamic protection with respect to a reference
stock index, where the holder has at mostn resets. Thereafter, we take the limitn→ ∞ and obtain the price function
of the protected fund with automatic reset. We perform our valuation of the protected fund using the Black–Scholes
pricing paradigm. Under the risk neutral valuation framework, we assume that the primary fund valueF(t) and the
reference index valueI(t) follow the Geometric Brownian processes:

dF

F
= (r − qp)dt + σp dZp, (2.1a)

dI

I
= (r − qi)dt + σi dZi, (2.1b)

wherer is the riskless interest rate,qp andqi are the dividend yield of the primary fund and stock index, respectively,
σp andσi are the volatility of the primary fund value and reference index value, respectively, and dZp dZi = ρ dt.
Here,ρ is the correlation coefficient between the primary fund process and reference index process.

2.1. Pricing formulation of the protected fund with n resets

LetVn(F, I, t) denote the value of the investment fund with dynamic protection with respect to a reference stock
index, where the investor hasn reset rights outstanding. We first consider the simpler case, where there has been no
prior reset. That is, the number of units of the primary fund is equal to one at current timet.

The dimension of the pricing model can be reduced by one ifF is chosen as the numeraire. We define the
stochastic state variable

x = I

F
, (2.2a)

which also follows the Geometric Brownian process

dx

x
= (qp − qi)dt + σ dZ, (2.2b)

whereσ2 = σ2
p−2ρσpσi+σ2

i . Accordingly, we define the normalized fund value function withF as the numeraire
by

Wn(x, t) = Vn(F, I, t)
F

. (2.2c)

The investor should never reset whenF(t) stays aboveI(t). With only a finite number of reset rights, he also does
not reset immediately whenF(t) just hits the level ofI(t). WhenF(t) falls belowI(t) to certain threshold level, it
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may become optimal for the investor to exercise the first reset right. The optimal reset policy is similar to that of
put option with finite number of reset rights(Dai et al., 2003).

With reference to the variablex, the investor resets whenx reaches some sufficiently high threshold value (denoted
by x∗n). The value ofx∗n is not known in advance, but has to be solved as part of the solution to the pricing model.
Upon reset atx = x∗n, the sponsor has to increase the number of units of the primary fund so that the new value of the
investment fund equalsI. The corresponding number of units should then bex∗n, which is the ratio of the reference
index value to the primary fund value at the reset moment. After one reset, the number of resets outstanding is
reduced by one, and the value ofx becomes one since the ratio of the reference index value to thenewly upgraded
investment fund value is one. Hence, we obtain the boundary condition:

Wn(x
∗
n, t) = x∗nWn−1(1, t). (2.3a)

Since the reset decision is made optimally by the investor, by Bellman’s principle of optimality(Dixit and Pindyck,
1994), we should have the smooth pasting condition atx = x∗n, namely,

W ′
n(x

∗
n, t) = Wn−1(1, t). (2.3b)

This extra smooth pasting condition determines the value ofx∗n such that the investment fund value is maximized.
The terminal payoff of the investment fund is simply equal toF , if no reset has occurred throughout the life of the
fund.

In the continuation region, inside which the investor chooses not to exercise the reset right, the value function
Vn(F, I, t) satisfies a Black–Scholes equation with two state variables,F andI. In terms ofx, the governing equation
and the associated auxiliary conditions forWn(x, t) are given by(Gerber and Shiu, 2003; Chu and Kwok, 2003)

∂Wn

∂t
+
[
σ2

2
x2∂

2Wn

∂x2
+ (qp − qi)x∂Wn

∂x
− qpWn

]
= 0, t < T, x < x∗n(t),

Wn(x
∗
n, t) = x∗nWn−1(1, t) and W ′

n(x
∗
n, t) = Wn−1(1, t), Wn(x, T) = 1, (2.4)

wherex∗n(t) is the time-dependent threshold value at which the investor optimally exercises the reset right. The
pricing model leads to a free boundary value problem with the free boundaryx∗n(t) separating the continuation
region{(x, t) : x < x∗(t), t < T } and the stopping region{(x, t) : x ≥ x∗(t), t < T }. The free boundary is not
known in advance but has to be determined as part of the solution of the pricing model.

At times close to expiry, the investor should choose to reset even whenF(t) is only slightly belowI(t), so we
deduce thatx∗n(T) = 1. When the time to expiry is infinite, the thresholdx∗n has been determined by the analytic
procedures proposed byChu and Kwok (2003). It is obvious from intuition thatx∗n(t) should be a monotonically
increasing function of timet since the holder should reset at a lower threshold fund value as time is approaching
maturity.

The detailed solution ofWn(x, t) and x∗n(t) can be pursued by following the technique developed byDai
et al. (2003). In this paper, we would like to deduce the pricing model for the investment fund that allows infi-
nite number of resets by takingn→ ∞ in pricing formulation(2.4).

2.2. Limit of infinite resets—automatic reset

If there were no limit on the number of resets, then the investor should reset whenever the value of the investment
fund falls to that of the reference stock index. We call this scenario “automatic reset” since the reset policy becomes
automatic. Mathematically, this corresponds tox∗∞(t) = 1 for all t < T . This is seen to be a solution to the equation:
W∞(x∗∞, t) = x∗∞W∞(1, t) [seeEq. (2.4)]. Interestingly, in the limit ofn→ ∞, the free boundary value problem
posed inEq. (2.4)becomes a fixed boundary value problem.

We letV∞(F, I, t) denote the price function of the finite-lived investment fund at the grant-date that allows infinite
number of resets. When the time to expiry tends to infinity, the price function of the perpetual counterpart has been
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determined byGerber and Shiu (2003). When the reference index becomes a constant, the corresponding price
function has been obtained byGerber and Pafumi (2000). In this paper, we extend these two previous results by
generalizing the pricing model to stochastic guarantee and finite time horizon.

For convenience, we defineW∞(y, τ) = V∞(F, I, t)/F , wherey = ln x = ln(I/F) andτ = T−t. FromEq. (2.4),
the governing equation and auxiliary conditions forW∞(y, τ) are deduced to be

∂W∞
∂τ

= σ
2

2

∂2W∞
∂y2

+ µ∂W∞
∂y

− qpW∞, τ > 0, y < 0;
∂W∞
∂y
(0, τ) = W∞(0, τ), W∞(y,0) = 1, (2.5)

whereµ = qp−qi−(σ2/2). Note that the free boundaryx∗n(t)becomes the fixed boundaryy = ln x∗∞(t) = ln 1 = 0.
The Robin boundary condition aty = 0 leads to a slight complication in the solution procedure (the outline of

which is presented inAppendix A). The analytic representation of the solutionW∞(y, τ) admits different forms,
depending on whetherqp �= qi or qp = qi [seeEqs. (A.2a,b)]. Let α = 2(qi − qp)/σ2 andµ̃ = µ+ σ2, the price
functionV∞(F, I, t) is found to be

(i) qp �= qi

V∞(F, I, t)= I e−qiτ
(

1 − 1

α

)
N

(
ln(I/F)+ µ̃τ
σ
√
τ

)
+ I
α

(
I

F

)α
e−qpτN

(
ln(I/F)− µτ
σ
√
τ

)

+F e−qpτN
(− ln(I/F)− µτ

σ
√
τ

)
, F > I. (2.6a)

(ii) qp = qi (write the common dividend yield asq)

V∞(F, I, t) = I e−qτσ
√
τn

(
ln(I/F)+ (σ2τ/2)

σ
√
τ

)
+ I e−qτ

(
ln
I

F
+ 1 + σ

2τ

2

)
N

(
ln(I/F)+ (σ2τ/2)

σ
√
τ

)

+F e−qτN
(− ln(I/F)+ (σ2τ/2)

σ
√
τ

)
, F > I. (2.6b)

Remarks.

1. When we setI = K,qi = r,qp = 0 andσi = 0,Eq. (2.6a)reduces to the price formula(2.10)in Gerber–Pafumi’s
paper (2000). Their formula corresponds to a constant guarantee levelK instead of dynamic protection against
a stochastic stock index. Also, we include the modified representation of the price formula [seeEq. (2.6b)]
corresponding to the special case whenqp = qi.

2. The Robin boundary condition:(∂W∞/∂y)(0, τ) = W∞(0, τ) in Eq. (2.5)can be expressed as(∂V∞/∂F)
(I, F, t)|F=I = 0. If the index value is taken to be the constant valueK, then the Neumann condition:(∂V∞/∂F)
(F, t)|F=K = 0 is equivalent to the reflecting boundary condition placed at the guarantee levelK. This gives a
stronger version of justification on the claim made byGerber and Pafumi (2000)that the protected (modified)
fund process can be obtained by placing a reflecting boundary at the guarantee levelK on the primary fund
process. The value of the protected fund can be visualized to be the same as that of the European barrier call
option with zero strike and a reflecting down-barrier atF = K.

3. Whenqp = 0, we observe that

lim
F→∞

V∞(F, I, t) = F (2.7a)
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Fig. 1. (a) The price functionV∞(F, I, t) is an increasing function of fund valueF and volatility σ, but the sensitivity toσ decreases asF
increases. (b) The price functionV∞(F, I, t) is a decreasing function of fund’s dividend yieldqp, and the sensitivity toqp increases as the
fund valueF increases. (c) The delta∂V∞/∂F has higher value for the shorter-lived fund. At a lower value ofF , the longer-lived fund is more
expensive since the insurance value provided by the guarantee is higher.
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Fig. 1. (Continued ).

or equivalently,

lim
y→−∞ W∞(y, t) = 1. (2.7b)

When the primary fund value is very high and there are no dividends paid by the primary fund, then the benefit
of the reset protection has zero value and there is no loss on dividends. In this case, holding the protected fund
is equivalent to holding the primary fund.

Pricing behaviors of the protected funds on the grant-date. The plots inFig. 1a–c reveal the dependence of the
grant-date price function of the protected fund on different parameters of the pricing model. InFig. 1a, we plot
V∞(F, I, t) againstF for varying value of volatilityσ. The other parameter values used in the calculations are:
I = 1, qp = qi = 0.02,τ = 5. The price functionV∞(F, I, t) is seen to be an increasing function ofF andσ, but
the sensitivity toσ decreases asF increases. At a higher fund value, the chance of taking advantage of the fund
protection is less so the insurance value associated with the protection becomes less sensitive to volatility. The delta
∂V∞/∂F tends to zero asF approachesI (I = 1) and tends to one asF stays further away fromI. These behaviors
on ∂V∞/∂F agree with the prescription of boundary conditions of the pricing model.Fig. 1b shows the plot of
V∞(F, I, t) againstF for varying value of fund’s dividend yieldqp. The values of other parameters are:I = 1,
qi = 0.02,σ = 0.2, τ = 5. The price functionV∞(F, I, t) is a decreasing function ofqp and the sensitivity toqp
increases as the fund value increases. This is because higher value of dividend yieldqp leads to slower expected
rate of growth of the fund, but the holder cannot receive the dividend payouts. At a lower value ofF , the drop in
expected rate of growth of the fund is likely to be compensated by the fund guarantee clause so the price function
becomes less sensitive toqp. The plots ofV∞(F, I, t) againstF in Fig. 1c reveals the sensitivity of the price function
to varying length of time to maturityτ. The delta∂V∞/∂F has a higher value for the shorter-lived fund. At lower
value ofF , the longer-lived fund is more expensive since the insurance value provided by the guarantee clause is
higher.
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2.3. Mid-contract valuation

LetM denote the path-dependent state variable which represents the realized maximum value of the state variable
x from the grant-date to the mid-contract timet, that is,M = max0≤u≤t(I(u)/F(u)). At any mid-contract time, the
number of units of primary fund held in the investment fund is given by

n(t) =
{

1 if M ≤ 1,

M if M > 1.
(2.8)

If the primary fund value has been staying above or at the reference stock index so far (corresponding toM ≤ 1),
then upgrade has never occurred, so the number of units of primary fund remains at one. Otherwise, the number of
units is upgraded toM.

LetVmid(F, I,M, t) denote the mid-contract investment fund value at timet, with dependence on the state variable
M. BothVmid(F, I,M, t) andV∞(F, I, t) satisfy the same two-state Black–Scholes equation, namely,(

∂

∂t
+ LF,I

)
Vmid(F, I,M, t) = 0 and

(
∂

∂t
+ LF,I

)
V∞(F, I, t) = 0, (2.9a)

where

LF,I = σ
2
p

2
F2 ∂

2

∂F2
+ ρσpσiFI

∂2

∂F∂I
+ σ

2
i

2
I2
∂2

∂I2
+ (r − qp)F ∂

∂F
+ (r − qi)I ∂

∂I
− r. (2.9b)

The terminal payoff of the investment fund value at maturityT is given byF max(M,1), a payoff structure that
involves bothF andM. The valuation of the mid-contract value may seen to be quite involved, but economic
intuition may help us to express the mid-contract valueVmid(F, I,M, t) in terms of the grant-date valueV∞(F, I, t)
[seeEqs. (2.6a,b)].

WhenM > 1, the number of units of primary fund is increased toM so that the investment fund is equivalent to
one unit of “new” primary fund having fund valueMF. WhenM ≤ 1, Vmid is insensitive toM since the terminal
payoff value will not be dependent on the current realized maximum valueM. That is,Vmid remains constant at
different values ofM, for allM ≤ 1. By continuity of the price function with respect to the variableM, Vmid at
M = 1 is equal to the limiting value ofVmid (corresponding to the regime:M > 1) asM → 1+. In summary, we
have

Vmid(F, I,M, t) = V∞(max(M,1)F, I, t) =
{
V∞(F, I, t) M ≤ 1,
V∞(MF, I, t) M > 1.

(2.10)

The details of the theoretical justification to the above formula are given inAppendix B.

2.3.1. Cost to the sponsor
Let Ugrant(F, I, t) andUmid(F, I,M, t) denote the cost to the sponsor that offers the dynamic protection at the

grant-date and at mid-contract time, respectively. The terminal payoffUmid(F, I,M, T) is given by

Umid(F, I,M, T) = Vmid(F, I,M, T)− F = max(M − 1,0)F. (2.11)

Note that bothUmid(F, I,M, t)andVmid(F, I,M, t) satisfy the same Black–Scholes equation and auxiliary condition.
We claim that

Umid(F, I,M, t) = Vmid(F, I,M, t)− F e−qp(T−t), (2.12)

since bothVmid(F, I,M, t) and the termF e−qp(T−t) satisfy the Black–Scholes equation and the terminal payoff
condition(2.11)is satisfied. In terms of financial interpretation, a factor e−qp(T−t) appears in front ofF since the
holder of the protected fund does not receive the dividends paid by the primary fund.
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At the grant-date, we haveF ≥ I so thatM = I/F ≤ 1. By virtue ofEqs. (2.10) and (2.12), we obtain

Ugrant(F, I, t) = Umid(F, I,M, t) = V∞(F, I, t)− F e−qp(T−t). (2.13)

Furthermore, by combiningEqs. (2.10), (2.12) and (2.13), the two cost functionsUmid(F, I,M, t) andUgrant(F, I, t)

are related by

Umid(F, I,M, t) = Ugrant(max(M,1)F, I, t)+ max(M − 1,0)F e−qp(T−t). (2.14)

The last term inEq. (2.14)gives the present value of additional units of primary fund supplied by the sponsor due
to the protection clause. The sponsor has to addM−1 units of primary fund whenM > 1, but supplements nothing
whenM ≤ 1.

2.3.2. Rollover hedging strategy—replenishment premium
We can derive an integral representation of the price functionVmid(F, I,M, t) using the concept of rollover

hedging strategy and replenishment premium(Wong and Kwok, 2003). First, we define the stochastic process

M̂t
′
t = max

(
max
t≤u≤t′

I(u)

F(u)
,1

)
(2.15a)

and at the current timet, the following quantity

M̂t0 = max

(
max

0≤u≤t
I(u)

F(u)
,1

)
= max(M,1) (2.15b)

is known. The terminal payoff of the protected fund can be expressed as max(M̂t0, M̂
T
t )FT , and we writeF as the

current value of the primary fund.
At the current timet, we hold a replicating portfolio that contains e−qp(T−t)M̂t0 units of the primary fund. This

portfolio will grow to M̂t0 units of fund at maturity. SupposêMTt ≤ M̂t0, then this portfolio can fully replicate the
terminal payoff of the protected fund. However, ifM̂Tt > M̂

t
0, then the terminal payoff is higher than̂Mt0FT ; and

correspondingly, the replicating portfolio becomes sub-replication. By sub-replication, we mean that the terminal
payoff of the replicating portfolio may fall short of the terminal payoff of the derivative instrument being replicated
under certain scenarios.

We adopt the following rollover hedging strategy to achieve full replication. We increase the number of units of
fund toM̂ut e−qp(T−u) whenever a higher realized maximum value ofM̂ut occurs at timeu, wheret ≤ u ≤ T . This
rollover strategy would guarantee that the number of units of fund at maturityT is max(M̂t0, M̂

T
t ). Throughout the

replenishment procedure for achieving full replication, some costs would be incurred to acquire additional units of
fund. The corresponding present value of the cost or replenishment premium is

e−qp(T−t)FE[max(M̂Tt − M̂t0,0)] = e−qp(T−t)F
∫ ∞

M̂t0

P [M̂Tt ≥ ξ] dξ. (2.16)

The last formula is obtained by using the well-known result that the expectation of a positive random variable is
the integral of its tail probabilities. The value of the protected fund is the sum of the value of the sub-replicating
portfolio and the replenishment premium. We then obtain an alternative analytic representation of the mid-contract
price function

Vmid(F, I,M, t) = max(M,1)e−qp(T−t)F + e−qp(T−t)F
∫ ∞

max(M,1)
P [M̂Tt ≥ ξ] dξ. (2.17)

SupposeI/F follows the process defined byEq. (2.2b); then forξ ≥ 1, we have

P [M̂Tt ≥ ξ] = P
[

max
t≤u≤T

I(u)

F(u)
≥ ξ

]
= e2µξ/σ2

N

(
−ξ + µτ
σ
√
τ

)
+N

(
−ξ − µτ
σ
√
τ

)
, (2.18)

whereµ = qp − qi − (σ2/2) andσ2 = σ2
p − 2ρσpσi + σ2

i .
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3. Protected funds with withdrawal right

In this section, we consider the protected funds with the embedded withdrawal right to receive the primary fund
prematurely. The withdrawal right resembles the early exercise feature of an American option where the decision
of early withdrawal is optimally determined by the holder. The pricing model now becomes an optimal stopping
problem. The threshold valueF∗ at which the holder chooses to exercise optimally is not known in advance, but
has to be determined as part of the solution to the optimal stopping model. In general,F∗ depends on the reference
index fund valueI and timet.

3.1. Pricing formulation and analytic properties of the price functions

Let V̂grant(F, I, t) andV̂mid(F, I,M, t) denote the price function of the protected fund with withdrawal right at the
grant-date and during mid-contract time, respectively. At the withdrawal thresholdF∗, the payoff of the investment
fund is equal to max(M,1)F∗. Also, from Bellman’s optimality condition, we impose the smooth pasting condition
atF = F∗. The formulation ofV̂grant(F, I, t) andV̂mid(F, I,M, t) are presented as follows:

(i) grant-date price function:̂Vgrant(F, I, t)(
∂

∂t
+ LF,I

)
V̂grant = 0, 0< I <∞, 0< I < F < F∗

grant(I, t), t < T,

with auxiliary conditions:

V̂grant(F, I, T) = F, ∂V̂grant

∂F

∣∣∣∣∣
F=I

= 0, V̂grant|F=F∗
grant

= F∗
grant and

∂V̂grant

∂F

∣∣∣∣∣
F=F∗

grant

= 1.

(3.1)

The model resembles an American option with a downside reflecting barrier atF = I. Like the non-withdrawal
counterpart, the factor max(M,1) does not appear in the terminal payoff and exercise payoff once the reflecting
barrier atF = I is imposed.

(ii) mid-contract price function:̂Vmid(F, I,M, t)(
∂

∂t
+ LF,I

)
V̂mid = 0, 0< I,M <∞, 0<

I

M
< F < F∗

mid(I,M, t), t < T,

with auxiliary conditions:

V̂mid(F, I,M, T) = max(M,1)F,
∂V̂mid

∂M

∣∣∣∣∣
M=I/F

= 0,

V̂mid|F=F∗
mid

= max(M,1)F∗
mid and

∂V̂mid

∂F

∣∣∣∣∣
F=F∗

mid

= max(M,1). (3.2)

Remarks.

1. Compared toV∞ andVmid, the pricing formulation for̂VgrantandV̂mid have the additional imposition of the value
matching and smooth paste conditions at the withdrawal thresholdF∗. The pricing model for̂Vmid resembles an
American lookback option model.
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2. The derivative boundary condition:(∂V̂mid/∂M)|M=I/F = 0 is typical for option models with lookback payoff.
It arises from the observation that if the current value ofI/F equals the current realized maximum valueM then
V̂mid is insensitive toM. This is because the probability thatM is smaller than the realized maximum value of
I/F over the whole contract period is one almost surely.

3.1.1. Relation between the mid-contract and grant-date price functions
One can show that the price functionsV̂mid andV̂grant are related by

V̂mid(F, I,M, t) = V̂grant(max(M,1)F, I, t) =
{
V̂grant(F, I, t) M ≤ 1,

V̂grant(MF, I, t) M > 1
(3.3)

and the withdrawal thresholdsF∗
mid andF∗

grant are related by

F∗
mid(I,M, t) = F∗

grant(I, t)

max(M,1)
. (3.4)

The proofs of the above two relations(3.3) and (3.4)are presented inAppendix C. The protected fund at mid-contract
can be visualized to be identical to the grant-date protected fund contract but having max(M,1) units of the original
primary fund as the underlying primary fund.

3.1.2. Valuation of the grant-date price function
Similar toV∞(F, I, t), the two-state pricing model of̂Vgrant can be reduced to a one-state model by choosingF

as the numeraire. We define

y = ln
I

F
and Ŵ(y, τ) = V̂grant(F, I, t)

F
, τ = T − t, (3.5)

the formulation inEq. (3.1)can be written as

∂Ŵ

∂τ
= σ

2

2

∂2Ŵ

∂y2
+ µ∂Ŵ

∂y
− qpŴ, y∗(τ) < y < 0, τ > 0,

with auxiliary conditions:

Ŵ(y,0) = 1,
∂Ŵ

∂y
(0, τ) = Ŵ(0, τ), Ŵ(y∗(τ), τ) = 1,

∂Ŵ

∂y
(y∗(τ), τ) = 0, (3.6)

wherey∗(τ) is the free boundary. By solving the above optimal stopping problem, we obtain the following decom-
position formula:

Ŵ(y, τ) = W∞(y, τ)+WE(y, τ; y∗(τ)), (3.7)

whereW∞(y, τ) is given byEqs. (2.6a,b)andWE(y, τ; y∗(τ)) is given by

WE(y, τ; y∗(τ)) = qp
∫ τ

0
e−qpuG(y, u; y∗(τ − u))du, (3.8)

where the kernel functionG(y, τ; ξ) satisfies the following equation:

∂G

∂τ
= σ

2

2

∂2G

∂y2
+ µ∂G

∂y
, y < 0, τ > 0, G(y,0; ξ) = 1{y<ξ} and G(0, τ; ξ) = ∂G

∂y
(0, τ; ξ), ξ < 0.

(3.9)

The quantityFWE( ln(I/F), T − t) gives the integral representation of the early withdrawal premium. Whenqp = 0,
the withdrawal premium becomes zero implying that it is never optimal for the holder to exercise the withdrawal
right.
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The solution toG(y, τ; ξ) takes different forms depending onqp �= qi or qp = qi (seeAppendix Dfor the details
of derivation):

(i) qp �= qi

G(y, τ; ξ)= exp(y − ξ + (qp − qi)τ) µ̃

qp − qi

[
N

(
µ̃τ − ξ
σ
√
τ

)
− 1

]
+ 1

α
e−2µy/σ2

N

(
ξ − µτ
σ
√
τ

)

+N
(
ξ − y − µτ
σ
√
τ

)
+ exp(y − ξ + (qp − qi)τ) ξµ̃

σ(qi − qp)
∫ τ

0
u−3/2n

(
µ̃u− ξ
σ
√
u

)
du

+ µ̃

qi − qp exp

(
y − α

(
ξ + σ

2τ

2

))[
N

(
ξ + µ̃τ
σ
√
τ

)
−N

(
y + ξ + µ̃τ
σ
√
τ

)]
, (3.10a)

(ii) qp = qi

G(y, τ; ξ)= ey
{
(2 − ξ)N

(
ξ + (σ2τ/2)

σ
√
τ

)
+
∫ τ

0

[
(4 + σ2u)ξ

4σu3/2
− σ

3√u
8

]
n

(
ξ + (σ2u/2)

σ
√
u

)
du

+
(

1 + ξ + y + σ
2τ

2

)
N

(
ξ + y + (σ2τ/2)

σ
√
τ

)

+ σ√τ
[
n

(
ξ + y + (σ2τ/2)

σ
√
τ

)
− n

(
ξ + (σ2τ/2)

σ
√
τ

)]}
+N

(
ξ − y + (σ2τ/2)

σ
√
τ

)
. (3.10b)

Remark. Suppose we setξ = 0 in Eq. (3.9),G(y, τ; 0) is seen to be eqpτW∞(y, τ). Note thatG(y, τ; 0) cannot be
obtained directly by taking the limitξ → 0− in G(y, τ; ξ).

3.1.3. Integral equation for the free boundary
By settingŴ∗(y∗(τ), τ) = 1, we obtain the following integral equation for the free boundaryy∗(τ):

1 = W∞(y∗(τ), τ)+ qp
∫ τ

0
e−qpuG(y∗(τ), u; y∗(τ − u))du. (3.11)

There is no known closed form solution fory∗(τ). One has to resort to numerical calculations to computey∗(τ).
By virtue ofEq. (2.7b), the solution toy∗(τ) whenqp = 0 is given by

y∗(τ) = −∞ for all τ, (3.12)

implying F∗(I, t) = ∞ for all τ. This gives another theoretical justification why it is never optimal to withdraw
prematurely when the primary fund does not pay dividend. Indeed, we have seen earlier that the early withdrawal
premium equals zero whenqp = 0 (see Imai and Boyle, 2001; Gerber and Shiu, 2003 for alternative arguments to
arrive at the same conclusion).

3.1.4. Cost to the sponsor
We consider the cost to the sponsor, denoted by the functionÛmid(F, I,M, t), of providing the protection guarantee

and the withdrawal right. UnlikêVmid, the formulation forÛmid is not an optimal stopping problem since the
withdrawal threshold is determined by the holder but not by the sponsor. To solve forÛmid, the withdrawal threshold
F∗

mid(I,M, t) should be obtained as the first step by solving the optimal stopping problem(3.2), which is then imposed
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as a barrier condition in the pricing model ofÛmid. The formulation ofÛmid(F, I,M, t) is given by(
∂

∂t
+ LF,I

)
Ûmid = 0, 0< I, M <∞, 0<

I

M
< F < F∗

mid(I,M, t), t < T ;

Ûmid(F, I,M, T) = max(M−1,0)F,
∂Ûmid

∂M

∣∣∣∣∣
M=I/F

= 0 and Ûmid(F
∗
mid, I,M, t) = max(M−1,0)F∗

mid.

(3.13)

Note that there is no smooth pasting condition atF = F∗
mid since the thresholdF∗

mid is exogenously imposed as a
barrier. As there is no explicit formula forF∗

mid(I,M, t), we cannot obtain closed form analytic representation of
Ûmid(F, I,M, t). To solve forÛmid(F, I,M, t), one has to solve a two-state option pricing model. The inclusion of
the state variableM is necessary since the early withdrawal right is path-dependent. The solution toÛmid can be
obtained via numerical calculations alongside the computation that solves forV̂mid andF∗

mid. Note thatÛgrant(F, I, t)

is obtained by settingM = I/F in Ûmid(F, I,M, t).
Since the holder forfeits the guaranteed protection upon withdrawal,Ûmid andV̂mid do not have relation similar

to that given inEq. (2.12), but rather they are related by

Ûmid(F, I,M, t) < V̂mid(F, I,M, t)− F e−qp(T−t). (3.14)

The above relation can be proved by applying the comparison principle in partial differential equation theory, which
involves the comparison of the formulations of the two functions:V̂mid andÛmid +F e−qp(T−t). On the other hand,
Ûmid(F, I,M, t) should always be greater thanUmid(F, I,M, t) due to the withdrawal premium.

3.2. Impact of proportional fees

We consider the scenario where the investor has to pay proportional fees at the ratep to the sponsor throughout
the life of the fund. That is, the investor pays an amountpmax(M,1)F dt over the time interval(t, t + dt), where
max(M,1)F is themodified fund value at timet. Let Vp(F, I, t) denote the protected fund value at the grant-date
with withdrawal right and payment of proportional fees at the ratep. The formulation forVp(F, I, t) resembles that
of V̂grant(F, I, t) [seeEq. (3.1)] except that the governing differential equation has to append on extra depletion term
−pF. Even with the presence of the depletion terms, pricing relation like that inEq. (3.3)still holds between the
grant-date and mid-contract value functions. Suppose we define

Wp(y, τ) = Vp(F, I, t)
F

, where y = ln
I

F
and τ = T − t, (3.15)

then the formulation forWp(y, τ) can be expressed as

∂Wp

∂τ
= σ

2

2

∂2Wp

∂y2
+ µ∂Wp

∂y
− qpWp − p, y∗p(τ) < y < 0, τ > 0,

with auxiliary conditions:

Wp(y,0) = 1,
∂Wp

∂y
(0, τ) = Wp(0, τ), Wp(y

∗
p(τ), τ) = 1,

∂Wp

∂y
(y∗p(τ), τ) = 0. (3.16)

Here,y∗p(τ) is the free boundary and−p is the depletion term reflecting the payment of proportional fees. The
withdrawal thresholdF∗(I, t;p) and y∗p(τ) are related byy∗p(τ) = ln(I/F∗(I, t;p)). Similarly, the solution to
Wp(y, τ) admits the following decomposition form:
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Wp(y, τ)= e−qpτG(y, τ; 0)+ qp
∫ τ

0
e−qpuG(y, u; y∗p(τ − u))du− p

∫ τ
0

e−qpu[G(y, u; 0)

−G(y, u; y∗p(τ − u))] du, (3.17)

where the first integral represents the early withdrawal premium while the second integral represents the loss in
value due to payment of proportional fees. The integrand in the second integral contains the difference of two
functions:G(y, u; 0) − G(y, u; y∗p(τ − u)). This is because proportional fees payment will terminate upon the
early withdrawal. In terms of the price functionsW∞(y, τ) andWE(y, τ; y∗(τ)) defined earlier [seeEqs. (A.2a,b)
and Eq. (3.8)], we can expressWp(y, τ;p) in the following succinct form:

Wp(y, τ) = W∞(y, τ)+ (qp + p)WE(y, τ; y∗p(τ))− p
∫ τ

0
W∞(y, u)du. (3.18)

Similar toEq. (3.11), we can obtain an integral equation fory∗p(τ) by settingy = y∗p(τ) andWp(y∗p(τ), τ) = 1 in
Eq. (3.18).

3.2.1. Properties of the free boundary, y∗p(τ)

1. From financial intuition, we expect that the fund valueVp(F, I, t) decreases and the investor optimally withdraws
at a lower thresholdF∗(I, t) when the rate of proportional fees is higher. The decreasing property ofVp(F, I, t)

with respect top can be established by applying the comparison principle in partial differential equation theory
and taking into account the increasing magnitude of the depletion term−pF in the governing equation. The
thresholdF∗(I, t;p) is obtained by the intersection of the value function curveVp(F, I, t)with the intrinsic value
line:V = F . At a higher rate of proportional fees, the lowering of the value function curve causes its intersection
with the intrinsic value line at a lower thresholdF∗(I, t) (seeFig. 2a). Sincey∗p(τ) = ln(I/F∗(I, t;p)), the free
boundaryy∗p(τ) is monotonically increasing with respect top.

2. LetF∗
mid(I,M, t;p) denote the withdrawal threshold value for the primary fund during mid-contract time. By

following a similar argument as presented inAppendix C, we can establish

F∗(I, t;p) = max(M,1)F∗
mid(I,M, t;p). (3.19)

3. Similar to a usual American option, a longer-lived protected fund with withdrawal right should be worth more
than its shorter-lived counterpart. Hence,Vp(F, I, t) is monotonically increasing with respect to the time to
expiry, τ = T − t. Also, a higher value function curve intersects the intrinsic value line at a higher with-
drawal threshold soF∗(I, t;p) is increasing with respect toτ. Correspondingly,y∗p(τ) is a decreasing function
of τ.

4. At time close to expiry,τ → 0+, the investor should optimally withdraw at any fund value, for allp ≥ 0 and
qp ≥ 0 butp andqp not both equal zero. This means that (seeAppendix Efor its proof)

y∗p(0
+) = 0 for p ≥ 0, qp ≥ 0 butpandqp not both equal zero. (3.20)

5. InAppendix F, we explore the asymptotic behaviors of the value functionWp(y, τ) and the free boundaryy∗p(τ) at
τ → ∞. The asymptotic solutionsWp(y,∞) andy∗p(∞) exhibit a wide range of solution behaviors, depending
on the choices of values for the parameters,qi, qp andp. In those cases where the free boundaryy∗p(τ) has a
finite asymptotic limit asτ → ∞, the free boundaryy∗p(τ) exists for allτ > 0. Some of the important properties
of the asymptotic solutions are highlighted below:
(a) Whenqi = p = 0 andqp ≥ 0,Wp(y,∞) becomes infinite in value. The same result has been observed by

Gerber and Shiu (2003).
(b) Whenqp = p = 0, the holder never withdraws prematurely, so thatF∗(I, t;p) = ∞ or y∗p(τ) = −∞ for

all values ofτ. At τ → ∞, the value functionWp(y,∞) is finite whenqi > 0 but becomes infinite in value
whenqi = 0.
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Fig. 2. (a) The value functionV of the protected fund with withdrawal right and payment of proportional fees is plotted against the primary fund
valueF . Whenqp ≥ 0,p ≥ 0 butqp andp not both equal zero, the value curves touch tangentially the dotted line, which is the intrinsic value
line. Other parameter values used in the calculations are:I = M = 1, τ = 5,qi = 0.02 andσ = 0.2. (b) The withdrawal thresholdF∗ is plotted
against time to expiryτ for varying value of rate of proportional feep. The holder should withdraw at a lower threshold whenp increases.
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(c) Whenqp = 0 the behaviors of asymptotic solutions depend onqi = 0 orqi > 0.
(i) Whenqi > 0, bothWp(y,∞) andy∗p(∞) exist forp > 0. However, forp = 0, onlyWp(y,∞) exists

buty∗p(∞) = −∞.
(ii) When qi = 0,Wp(y,∞) andy∗p(∞) exist forp > 0. Forp = 0, bothWp(y,∞) andy∗p(∞) do not

exist.
(d) Whenqi > 0 andqp > 0, bothWp(y,∞) andy∗p(∞) exist for allp ≥ 0.

3.3. Numerical calculations

With embedded withdrawal right, the price of the protected fund does not admit a closed-form analytic formula
since the free boundaryy∗p(τ) is not known in advance. We performed numerical calculations to obtain the value
functionWp(y, τ) andy∗p(τ) via the finite difference scheme and the recursive integration method. The recursive
integration method solves for the free boundaryy∗p(τ) directly from the integral equation. The numerical procedure
involves the numerical integration of the integral withdrawal premium term, then followed by solving recursively
for y∗(τ) at successive time steps. In the finite difference calculations, in order to take care of the early withdrawal
right, we incorporate the dynamic programming procedure of comparing the continuation value and value upon
withdrawal at each lattice node. The purpose of adopting two different numerical approaches is to verify the
analytic expressions appearing in the integral representation formulas of the early withdrawal premium and the cost
of payment of proportional fees. The details on the construction of these two numerical algorithms can be found in
Kwok’s text (1998).

3.3.1. Comparison of numerical accuracy
In our numerical experiment to compare the numerical accuracy of the finite difference scheme and recursive

integration method for computingVp(F, I, t), we chose the following set of parameter values in our pricing model:
τ = 5, qi = 0.02,qp = 0.03,p = 0.01,σ = 0.2. We take the numerical results obtained from the finite difference
calculations using 2560 time steps as the “exact” solution and compare the numerical solution toVp(F, I, t) obtained
using a fewer number of time steps or via recursive integration method at selected lattice points in the computational
domain. The root mean square error (RMSE) of numerical results is computed based on the formula

RMSE=
√√√√ 1

N

N∑
i=1

(Vp,i − V exact
p,i )

2, (3.21)

whereN is the total number of lattice points chosen for comparison andVp,i the numerical solution toVp(F, I, t)
at theith lattice point.

In Table 1, we list the RMSE of the calculated results of the value function obtained from the finite difference
calculations and recursive integration method with varying number of time steps. We observe reasonably good
accuracy of the numerical results using either numerical algorithm. Since the finite difference scheme computes
the numerical solution based on the dynamic programming procedure, which does not require the knowledge of
the analytic integral representation formulas of the withdrawal premium and the cost of the payment of propor-
tional fees, the consistency of numerical results from both methods serves to verify the accuracy of the integral
formulas.

Table 1
Comparison of numerical accuracy of the finite difference scheme and recursive integration method for computing the value functionVp(F, I, t).
The parameter values used in the calculations are:τ = 5, qi = 0.02,qp = 0.03,p = 0.01 andσ = 0.2

Number of time steps 40 160 640
RMSE in finite difference 1.8546× 10−1 2.1871× 10−2 6.8376× 10−3

Number of time steps 10 20 30
RMSE in recursive integration 2.0147× 10−2 9.1786× 10−3 5.5493× 10−3
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3.3.2. Behaviors of the price function and withdrawal threshold
We performed numerical calculations to computeVp(F, I, t) andF∗(I, t;p) of the protected fund with withdrawal

right and payment of proportional fees. InFig. 2a, we show the plot ofVp(F, I, t) againstF for varying values ofqp
andp. The dotted line is the intrinsic value line:V = F . The set of parameter values used in the calculations are:
I = 1, τ = 5, qi = 0.02 andσ = 0.2. Whenqp = p = 0, the value curve always lies above the intrinsic value line
showing that it is never optimal to withdraw prematurely. Whenqp ≥ 0, p ≥ 0 butqp andp not both equal zero,
we observe that the value curve cuts the intrinsic value line tangentially (smooth paste property) at sufficiently high
fund valueF (withdrawal threshold fund value).Fig. 2(b) shows the plot of the withdrawal thresholdF∗ against
time to expiryτ for varying value of rate of proportional feep. The threshold value curves clearly reveal the two
monotonicity properties ofF∗, namely,F∗ is an increasing function ofτ and a decreasing function ofp.

4. Conclusion

We have constructed and analyzed the pricing models for protected funds with reset and withdrawal rights. When
the number of allowable resets tends to infinity, the protection clause becomes “automatic reset”, that is, the fund
value is upgraded automatically to the reference index value whenever a drop of fund value below the index value
occurs. The pricing model of the protected fund with automatic reset resembles that of a lookback option model. We
provide the justification why the protected (modified) fund process can be obtained by placing a reflecting boundary
at the guarantee level on the primary fund process. We also derive the relation between the price functions of the
grant-date value and mid-contract value of the protected fund. Concerning valuation of the protected fund value
during mid-contract time, though the number of units of primary fund may have been increased by virtue of the
automatic-reset clause, one can use the grant-date price function for valuation by taking the “modified” fund as the
primary fund. We also illustrate how to apply the rollover hedging strategy to derive an analytic representation of
the mid-contract price function.

With embedded withdrawal right, the pricing model of the protected fund with automatic reset becomes a free
boundary value problem. This is because the optimal withdrawal policy adopted by the fund holder is not known in
advance. Rather, the withdrawal threshold has to be determined as part of the solution procedure. We derive the inte-
gral representation of the withdrawal premium in terms of the withdrawal threshold values. We also obtain the integral
equation that determines the withdrawal threshold values at different times. When the primary fund is non-dividend
paying, we provide the mathematical justification why it is never optimal to exercise the withdrawal right prematurely.

We have considered the impact of payment of proportional fees by the fund holder to the sponsor. We examine
the characterization of the early withdrawal policy under the combination of withdrawal right and payment of
proportional fees, in particular, the behaviors of the free exercise boundary at times close to expiration and infinitely
far from expiration. The withdrawal threshold values exhibit two monotonicity properties, namely, the holder should
optimally withdraw at a higher threshold value with increasing value of time to expiry and at a lower threshold value
with increasing rate of proportional fees.

Finite difference scheme and recursive integral method were employed to compute the price functions and
withdrawal threshold values. The comparison of numerical accuracy revealed good agreement between the numerical
results obtained from both numerical methods. The consistency of the numerical results also serve to verify the
accuracy of the analytic representation formulas of the value functions.

Appendix A. Derivation of W∞(y, τ)

We perform the continuation of the initial condition to the whole domain(−∞,∞), where

W∞(y,0) =
{

1 if y < 0,

ψ(y) if y ≥ 0.
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The functionψ(y) is determined such that the Robin boundary condition is satisfied. Letg(y, τ; ξ) denote the
fundamental solution to the governing differential equation, where

g(y, τ; ξ) = e−qpτ
√

2πσ2τ
exp

(
− (ξ − y − µτ)2

2σ2τ

)
.

The solution toW∞(y, τ) can be formally expressed as

W∞(y, τ) =
∫ ∞

−∞
W∞(ξ,0)g(y, τ; ξ)dξ = e−qpτ

[
1 −N

(
y + µτ
σ
√
τ

)]
+
∫ ∞

0
ψ(ξ)g(y, τ; ξ)dξ. (A.1)

Performing the differentiation with respect toy on both sides ofEq. (A.1), we obtain

∂W∞
∂y
(y, τ) = −g(y, τ; 0)−

∫ ∞

0
ψ(ξ)

∂g

∂ξ
(y, τ; ξ)dξ =

∫ ∞

0
ψ′(ξ)g(y, τ; ξ)dξ.

Next, we apply the Robin boundary condition inEq. (2.5)to obtain∫ ∞

0
{[ψ′(ξ)− ψ(ξ)]g(0, τ; ξ)− g(0, τ; −ξ)} dξ = 0

so thatψ(ξ) has to satisfy the following differential equation

ψ′(ξ)− ψ(ξ) = g(0, τ; −ξ)
g(0, τ; ξ) = e(α+1)ξ, where α = 2(qi − qp)

σ2
.

The auxiliary condition forψ(ξ) is obtained by observing continuity ofW(y,0) at y = 0, givingψ(0) = 1. The
solution ofψ(ξ) depends onα �= 0 orα = 0, namely,

(i) whenα �= 0,

ψ(ξ) = eξ
(

eαξ

α
+ 1 − 1

α

)
;

(ii) whenα = 0,ψ(ξ) = (1 + ξ)eξ.
By substituting the known solution ofψ(ξ) into the integral inEq. (A.1), we obtain

(i) whenα �= 0,

W∞(y, τ)= ey−qiτ
(

1 − 1

α

)
N

(
y + µ̃τ
σ
√
τ

)
+ 1

α
e(1+α)y−qpτN

(
y − µτ
σ
√
τ

)

+ e−qpτN
(−y − µτ
σ
√
τ

)
, y < 0; (A.2a)

(ii) whenα = 0 (writeq as the common dividend yield),

W∞(y, τ)= e−qτN
(−y + (σ2τ/2)

σ
√
τ

)
+ ey−qτσ

√
τn

(
y + (σ2τ/2)

σ
√
τ

)

+ ey−qτ
(
y + 1 + σ

2τ

2

)
N

(
y + (σ2τ/2)

σ
√
τ

)
, y < 0. (A.2b)
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Appendix B. Theoretical justification of price formula (2.10)

ConsiderVmid(F, I,M, t), due to the lookback payoff structure, we impose the usual auxiliary condition for a
lookback option:

∂Vmid

∂M

∣∣∣∣
M=I/F

= 0. (B.1)

It is obvious thatVmid(F, I,M, t) given inEq. (2.10)satisfies the governing differentialequation (2.8). It suffices to
show thatVmid(F, I,M, t) satisfies the terminal payoff condition and the above auxiliary condition.

First, whenM > 1, it is guaranteed thatM at maturity must be greater than one so the terminal payoff becomes
F max(1,M) = MF. SinceV∞(F, I, T) = F so thatV∞(MF, I, T) = MF, hence the terminal payoff condition is
satisfied.

To show the satisfaction of the auxiliary condition(B.1) at M = I/F , we write V∞(MF, I, t) in the form
MFW∞( ln(I/MF), τ). We obtain

∂V∞
∂M
(MF, I, t) = F

[
W∞(y, τ)− ∂W∞

∂y
(y, τ)

]
,

wherey = ln(I/MF). WhenM = I/F , we havey = 0 so that

∂Vmid

∂M
(F, I,M, t)

∣∣∣∣
M=I/F

= ∂V∞
∂M
(MF, I, t)

∣∣∣∣
M=I/F

= F
[
W∞(0, τ)− ∂W∞

∂y
(0, τ)

]
= 0

by virtue of the Robin boundary condition stated inEq. (2.5).
Second, whenM ≤ 1, we have∂Vmid/∂M = 0; and together with the continuity ofVmid atM = 1, we deduce

that

Vmid(F, I,M, t) = V∞(F, I, t), M ≤ 1.

Appendix C. Proofs of relations (3.3) and (3.4)

First, we considerM > 1, it suffices to verify that the price function̂Vgrant(MF, I, t) and the exercise boundary
F∗

grant(I, t)/M satisfy the pricing formulation posed inEq. (3.2). With F∗
mid = F∗

grant/M, we see that the pricing

models ofV̂grant(F, I, t) and V̂mid(F, I,M, t) share the same continuation region and stopping region. It is quite
obvious thatVgrant(MF, I, t) satisfies both the differential equation and the terminal payoff condition. We would like
to check whether (i) Neumann boundary condition atM = I/F , (ii) value matching and smooth paste conditions at
F = F∗

mid are satisfied. The verification procedures forM > 1 are presented below:

(i)
∂V̂mid

∂M

∣∣∣∣∣
M=I/F

= F ∂V̂grant

∂F̃

∣∣∣∣∣
F̃=I
, where F̃ = MF

∂V̂mid

∂M

∣∣∣∣∣
M=I/F

= 0,

(ii) V̂mid(F
∗
mid, I,M, t) = V̂grant(MF∗

mid, I, t) = V̂grant(F
∗
grant, I, t) = F∗

grant = MF∗
mid = max(M,1)F∗

mid,

(iii)
∂V̂mid

∂F

∣∣∣∣∣
F=F∗

mid

= M∂V̂grant

∂F̃

∣∣∣∣∣
F̃=MF∗

mid

, where F̃ = MF,
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∂V̂mid

∂F

∣∣∣∣∣
F=F∗

mid

= M∂V̂grant

∂F̃

∣∣∣∣∣
F̃=F∗

grant

= M = max(M,1).

The payoff takes the form max(M,1)F , soV̂mid becomes insensitive to the current realized maximum valueM

whenM ≤ 1. As V̂mid has no dependence onM, we then have

∂V̂mid

∂M
= 0 for M ≤ 1.

Furthermore, by the continuity of the price function atM = 1, we deduce that forM ≤ 1

V̂mid(F, I,M, t) = V̂mid(F, I,1, t) = V̂grant(F, I, t)

and

F∗
mid(I,M, t) = F∗

mid(I,1, t) = F∗
grant(I, t).

Appendix D. Derivation of G(y, τ; ξ)

Suppose we let

H(y, τ; ξ) = G(y, τ; ξ)− ∂G
∂y
(y, τ; ξ), (D.1)

then the boundary condition alongy = 0 changes from the Robin type forG to the Dirichlet type forH . The
differential equation formulation forH(y, τ; ξ) is given by

∂H

∂τ
= σ

2

2

∂2H

∂y2
+ µ∂H

∂y
, y < 0, τ > 0, H(0, τ; ξ) = 0, H(y, τ; ξ) = 1{y<ξ} + δ(y − ξ).

The solution toH(y, τ; ξ) is given by

H(y, τ; ξ)= 1

σ
√
τ

[
n

(
y − ξ + µτ
σ
√
τ

)
− e2µξ/σ2

n

(
y + ξ + µτ
σ
√
τ

)]

+ 1 −N
(
y − ξ + µτ
σ
√
τ

)
− e−2µy/σ2

N

(
y + ξ − µτ
σ
√
τ

)
.

OnceH(y, τ; ξ) is known, we can useEq. (D.1)to solve forG(y, τ; ξ). This leads to

G(y, τ; ξ) = ψ(τ; ξ)ey +
∫ 0

y

ey−ηH(η, τ; ξ)dη, (D.2)

whereψ(τ; ξ) is an arbitrary function to be determined. By substituting the above solution(D.2) into the gov-
erning equation forG [see Eq. (3.9)] and settingy = 0, we obtain the following differential equation for
ψ(τ; ξ)

dψ

dτ
(τ; ξ)−

(
σ2

2
+ µ

)
ψ(τ; ξ)+ σ

2

2

∂H

∂y
(0, τ; ξ) = 0, ξ < 0, τ > 0, (D.3)

with initial condition:ψ(0; ξ) = 0. The solution toψ(τ; ξ) is found to be

ψ(τ; ξ) = −σ
2

2

∫ τ
0

e(µ+(σ2/2))(τ−u) ∂H
∂y
(0, u; ξ)du, (D.4)
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where

∂H

∂y
(0, τ; ξ) = 2(ξ − σ2τ)

(σ
√
τ)3

n

(
ξ − µτ
σ
√
τ

)
+ 2µ

σ2
N

(
ξ − µτ
σ
√
τ

)
.

The remaining steps amount to tedious integration of the two integrals inEqs. (D.2) and (D.4).

Appendix E. Asymptotic behavior of y∗
p(τ) at τ → 0+

We assumep ≥ 0, qp ≥ 0 but p andqp not both equal zero. SinceF∗(I, t;p) ≥ I for all t, it is obvious
thaty∗p(0+) ≤ 0. To show thaty∗p(0+) = 0, we prove by contradiction. Supposey∗p(0+) < 0, then there existsy
belonging to the interval(y∗p(0+),0) such that the point(y,0+) in they–τ plane lies in the continuation region.
SinceWp(y,0+) = 1, for y∗(0+) < y < 0, we have

∂Wp

∂τ

∣∣∣∣
τ=0+

=
[
σ2

2

∂2Wp

∂y2
+ µ∂Wp

∂y
− qpWp − p

]∣∣∣∣∣
τ=0+

= −qp − p.

Sincep ≥ 0, qp ≥ 0 butp andqp not both equal zero, we obtain

∂Wp

∂τ

∣∣∣∣
τ=0+

< 0

so thatWp(y, τ) < 1 for some point(y, τ) in the continuation region. This leads to a contradiction sinceWp(y, τ) > 1
for all points(y, τ) in the continuation region. We then deduce that

y∗p(0
+) = 0 for p ≥ 0, qp ≥ 0 butpandqp not both equal zero.

Recall that whenp = qp = 0, we have shown that [seeEq. (3.12)]

y∗p(τ) = −∞ for all τ.

Appendix F. Asymptotic behavior of Wp(y, τ) and y∗
p(τ) at τ → ∞

With infinite time to expiration,Wp(y, τ) becomes insensitive toτ so that∂Wp/∂τ = 0. Without dependence on
τ, the formulation forWp = Wp(y,∞) reduces to

σ2

2

d2Wp

dy2
+ µdWp

dy
− qpWp − p = 0, y∗p(∞) < y < 0,

with auxiliary conditions:

(i) at y = 0, dWp/dy = Wp,
(ii) at y = y∗p(∞),Wp = 1 and dWp/dy = 0.

The nature of the solution to the above formulation depends on the properties of the two roots of the following
indicial equation:(σ2/2)λ2 + µλ− qp = 0. In terms of the parametersqi, qp andσ2, these two roots are found to
be

λ± = 1

2
+ qi − qp

σ2
±
√(

1

2
+ qi − qp

σ2

)2

+ 2qp
σ2
.
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Depending on different choices of values for the parameters:qi, qp andp, Wp(y,∞) andy∗p(∞) exhibit a wide
range of solution behaviors:

(i) qi = qp = 0
(a) p > 0

Wp(y,∞) = 2p

σ2
(e(σ

2/2p)+y − y − 1) and y∗p(∞) = − σ
2

2p
.

(b) Solution does not exist whenp = 0.
(ii) qi = 0, qp > 0

(a) p > 0

Wp(y,∞) = p

qp + (σ2/2)

[
σ2

2qp
e−(2qp/σ2)y +

(
1 + qp

p

)(σ2/2qp)+1

ey
]

− p

qp

and

y∗p(∞) = − σ
2

2qp
ln

(
1 + qp

p

)
.

(b) Solution does not exist whenp = 0.
(iii) qi > 0, qp = 0

(a) p = 0

Wp(y,∞) = 1 + σ2

2qi
e((2qi/σ

2)+1)y and y∗p(∞) = −∞.

(b) p > 0

Wp(y,∞) = 1 + 2p(y∗ − y)
σ2 + 2qi

+ 2pσ2

(σ2 + 2qi)2

[
exp

((
2qi
σ2

+ 1

)
(y − y∗)

)
− 1

]
,

wherey∗ = y∗p(∞) is the solution to the algebraic equation

1 + 2p

σ2 + 2qi

[
y∗ − 1

λ+
−
(

1 − 1

λ+

)
e−λ+y∗ + 1

]
= 0.

(iv) qi > 0, qp > 0
(a) p = 0

Wp(y,∞) = A+ eλ+y + A− eλ−y − p

qp
,

where

A+ = λ−
λ− − λ+

[
λ+(1 − λ−)
λ−(1 − λ+)

]λ+/(λ+−λ−)
, A− = λ+

λ+ − λ−

[
λ−(1 − λ+)
λ+(1 − λ−)

]λ−/(λ−−λ+)
,

y∗p(∞) = 1

λ+ − λ−
ln
λ−(1 − λ+)
λ+(1 − λ−)

.

(b) p > 0

Wp(y,∞) = 1 + (p/qp)
λ+ − λ−

[λ+ eλ−(y−y
∗) − λ− eλ+(y−y

∗)] − p

qp
,
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wherey∗ = y∗p(∞) is the solution to the algebraic equation

λ+(1 − λ−)e−λ−y∗ − λ−(1 − λ+)e−λ+y∗ + (λ− − λ+)p
p+ qp = 0.
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