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Abstract

We construct the contingent claims models that price participating policies with rate guar-

antees, bonuses and default risk. These policies are characterized by the sharing of profits

from an investment portfolio between the insurer and the policy holders. A certain surplus

distribution mechanism (reversionary bonus) is employed to credit interest at or above

certain specified guaranteed rate periodically to the policy holders. Besides the rever-

sionary bonus, terminal bonus is also paid to the policy holder if the terminal surplus is

positive. However, the insurer may default at maturity and the policy holders can only

receive the residual assets. By neglecting market frictions, mortality risk and surrender

option, and under certain assumptions on the bonus distribution mechanism, we are able to

find analytic approximation solution to the pricing model. We also develop effective finite

difference algorithms for the numerical solution of the contingent claims models. Pricing

behaviors of these participating policies with respect to various parameters in the pricing

models are examined.

1. Introduction

Participating life insurance policies have been very popular in the past decades since they

provide a low risk but yet competitive return compared to other equity-linked products. In

these policies, the insurer’s profits from an investment portfolio are shared with the policy
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holders. At the initiation of the contract, the policy holder pays a single lump sum deposit

to the insurance company. The insurer then manages the trusted funds by investing in a

well diversified and specified reference portfolio. A certain bonus distribution mechanism

is employed to credit interest on the policy’s account balance, the amount of which is

linked to the annual market return of the investment portfolio. The credit interest rate

is usually ensured not to fall below some specified guaranteed level. The net difference

between the market value of the asset portfolio and the book value of the policy holder’s

account is called the bonus reserve or buffer. The bonus reserve is used to provide stable

and smooth returns to policy holders in the future and protect against solvency. Besides

the interest rate guarantee and bonus distribution mechanism, these participating policies

also contain other embedded features. For example, the maturity guarantee promises to

pay the holder some guaranteed amount at maturity, and the surrender option entitles the

holder the right to terminate the contract prior to maturity. More detailed discussion on

the product nature of these policies can be found in Grosen and J6orgensen’s paper (2000)

and Ballotta et al .’s paper (2003). Also, Consiglio et al . (2001) discuss asset and liability

modeling for participating policies with guarantees.

Accurate pricing of the fair value of the participating policy using the contingent claims

approach requires the careful modeling of all of the embedded features in such policy. In

recent years, the accurate valuation of these guarantees has received much attention since

the guarantees become quite valuable due to falling equity returns and interest rate. The

rule of the bonus distribution mechanism obviously plays a crucial role in the determination

of the value of the participating policy. Wilkie (1987) pioneers the use of modern option

pricing approach to analyze the embedded options in with-profits policies. Grosen and

J 6orgensen (2000) analyze the minimum rate guarantee and bonus distribution mechanism

and model the surrender risk as American early exercise feature in their contingent claims

model. They examine the pricing behaviors of the policy value with different levels of

interest rates, bonus policy parameters and volatility of asset portfolio value. Prieul et al .

(2001) construct the continuous contingent claims model that include the path dependence

associated with the bonus distribution mechanism. They apply appropriate similarity

transformation of variables to reduce the dimension of the pricing model, and perturbation

techniques are then used to obtain an asymptotic solution of the policy value. They also

construct numerical scheme to solve for the optimal surrender policy. In a series of papers,

Bacinello (2001, 2003a,b) constructs pricing models of participating policies with different

types of embedded features and devises binomial schemes for the numerical solution of the

models. Jensen et al . (2001) construct an implicit finite difference scheme for numerical

valuation of participating life insurance policies with interest rate guarantee, bonus and

surrender options. Willder (2003) apply option pricing techniques to analyze the effects of

different bonus strategies in unitized with-profits policies. To model insolvency and default

risks, Grosen and J6orgensen (2002) construct the contingent claims model that takes into

account the seniority of claims on the company’s asset at maturity by various parties in

the policies. Also, they study the impact of regulatory intervention rules for reducing
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the insolvency risk of the policies using a barrier option framework. Ballotta et al . (2003)

propose valuation techniques for participating policies that incorporate reversionary bonus,

terminal bonus and default option.

In this paper, we construct continuous contingent claims model for pricing participat-

ing policies with interest rate guarantee, reversionary bonus, terminal bonus distribution

and default option at maturity. We neglect market frictions, mortality risk and surren-

der option in our model. For certain type of bonus distribution mechanism, we manage

to obtain analytic approximation solution of the pricing model. Since the coefficients in

the governing equation are state dependent, the numerical solution by the usual binomial

scheme may suffer numerical instabilities and oscillations. We construct an implicit finite

difference scheme that provides more effective numerical valuation of the pricing model.

The paper is organized as follows. In the next section, we construct the continuous contin-

gent claims pricing model for participating policies with rate guarantee, bonus distribution

and default option. We then present details of the implicit finite difference scheme for the

numerical solution of the pricing models under general bonus distribution mechanism. In

Section 3, we derive analytic approximation solution to the pricing model. In Section 4,

computational results of the price functions of participating policies are presented and their

pricing behaviors are examined. Conclusive remarks are summarized in the last section.

2. Contingent claims models

We follow a similar approach as adopted by Grosen and J6orgensen (2000) and Ballotta et

al . (2003) to derive the continuous contingent claims model for finding the fair value of a

participating policy. We assume that the balance sheet of a life insurance company consists

of a homogeneous block of participating policies so that the whole business is modeled as

a single contract. At initiation of the contract, a single premium is invested in an asset

portfolio. Let A(t) denote the market value of the asset, whose dynamics is modeled by

dA(t)

A(t)
= µdt + σ dZ(t). (1)

Here, µ is the expected growth rate, σ is the volatility and Z(t) is the standard Wiener

process. Let P (t) denote the book value of the policy reserve and B(t) be the bonus reserve.

The sum of the policy reserve and bonus reserve observes the following accounting identity

A(t) = P (t) + B(t), (2)

where P (0) = αA(0), 0 < α ≤ 1, and P (0) is the single premium paid by the policy holder

at initiation of the contract. Here, α is called the cost allocation parameter. That is, the

policy holder finances an α-portion of the initial asset portfolio.

Let µP (A,P ) denote the interest rate credited to the policy reserve, that is,

dP (t)

P (t)
= µP dt. (3)
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The bonus distribution rule is determined by the management of the insurance company,

thus provides the specification of µP . The actual process of deciding µP is highly subtle.

Grogen and J6orgensen (2000) propose that there is a long term constant target ratio β (say,

10−15%) specified by the management. The insurance company normally would distribute

to the policy holder certain fraction δ of the excess of the ratio of bonus reserve B(t) to

the policy reserve P (t) over the target ratio β. We call δ to be the reversionary bonus

distribution rate, 0 < δ ≤ 1. In addition, the imposition of the interest rate guarantee

means that µP cannot fall below some specified guarantee rate rg. We assume that the

interest rate crediting scheme is prescribed as1

µP = max

(
rg, δ

(
ln

A(t)

P (t)
− β

))
. (4)

In summary, the interest rate credited to the policy holder’s account includes both the

guaranteed rate and the reversionary bonus.

Let V (A,P, t) denote the fair value of the participating policy. We would like to

formulate the contingent claims model with the inclusion of bonus distribution rule, ter-

minal bonus and default option for pricing the participating policy. By following the usual

Black-Scholes continuous riskless hedging argument, we consider a portfolio that consists

of long position of one unit of the policy and short position of ∆ units of the underlying

asset A(t). Over the time interval (t, t + dt], the infinitesimal change of the portfolio value

Π(t) is given by

dΠ =

(
∂V

∂t
+

σ2

2
A2 ∂2V

∂A2
+ µP P

∂V

∂P

)
dt, (5)

where ∆ has been chosen to be
∂V

∂A
in order to hedge against the financial risk. By the

no-arbitrage principle, the rate of return from the portfolio should be equal to the riskfree

interest rate r. We then have

dΠ = rΠ dt = r

(
V − ∂V

∂A
A

)
dt. (6)

1 Grosen and J6orgensen (2000) and Prieul et al . (2001) both choose the following form

µP = max

(
rg, δ

(
B(t)

P (t)
− β

))
.

Here, we replace the ratio
B(t)

P (t)
by its continuous compounding version, ln

(
1 +

B(t)

P (t)

)

= ln
A(t)

P (t)
. Our functional form of µP is consistent with the lognormal assumption of the

stochastic process for A(t).
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By rearranging the terms, we obtain the following governing equation for the value of the

participating policy

∂V

∂t
+

σ2

2
A2 ∂2V

∂A2
+ rA

∂V

∂A
+ µP P

∂V

∂P
− rV = 0, A > 0, P > 0, t < T. (7)

The auxiliary condition of the pricing model is given by the payoff on policy maturity date

T . One feasible form of terminal payoff is given by (Ballotta et al ., 2003)

V (A,P, T ) =





A if A < P
P if P ≤ A ≤ P/α
P + γB if A > P/α

= P + γB − D. (8)

Here, B = (αA−P )+ represents the terminal bonus option and D = (P −A)+ represents

the terminal default option. The notation x+ is defined by x+ = max(x, 0). The parameter

γ is the terminal bonus distribution rate. The bonus option is a call option granted to the

policy holder in the sense that the policy holder has the right to pay the policy as strike

to receive α-portion of the asset portfolio. On the other hand, the policy holder grants a

put option to the insurer so that the insurer has the right to put the asset for the policy

value when the asset value falls below the policy value.

Dimension reduction of the model formulation via similarity transformations

The governing equation is a two-dimensional degenerate diffusion equation, similar to that

of an Asian option model. The path dependent feature of the pricing model is exhibited

by the term µP P
∂V

∂P
, which represents the impact of the interest rate crediting scheme.

When A(t) is well in excess of P (t), the crediting effect due to µP P
∂V

∂P
dominates over

the diffusion effect
σ2

2
A2 ∂2V

∂A2
due to volatility of the asset value. Provided that the

crediting scheme µP and the ratio of terminal payoff to policy reserve value V (A,P, T )/P

are expressible in terms of the similarity variable A/P , the governing equation can be

reduced to an one-dimensional equation by taking P as the numeraire. Suppose we let

x = lnA/P and U(x, t) = V (A,P, t)/P, (9a)

and provided that

µP (A,P ) = µP (x) and V (A,P, T )/P = H(x), (9b)

then Eq. (7) can be simplified into the following one-dimensional equation

∂U

∂t
+

σ2

2

∂2U

∂x2
+

[
r − µP (x) − σ2

2

]
∂U

∂x
− [r − µP (x)]U = 0,

−∞ < x < −∞, t < T, (10)
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with auxiliary condition: U(x, T ) = H(x).

Assume that µP takes the form as shown in Eq. (4). We define the following param-

eters

ε =
σ2

2δ
, r̂ =

2r

σ2
, r̂g =

2rg

σ2
, β̂ =

2βδ

σ2

and independent variables

τ = δ(T − t) and y = x − (r̂g + β̂)ε,

then the governing equation for U(y, τ) can be further reduced to

∂U

∂τ
= εLU + y+

(
U − ∂U

∂y

)
, −∞ < y < ∞, τ > 0, (11a)

where L denotes the linear operator

L =
∂2

∂y2
+ (r̂ − r̂g − 1)

∂

∂y
− (r̂ − r̂g).

Furthermore, we define

KD = e−(β̂+r̂g)ε and KB =
KD

α
,

then the terminal payoff can be expressed as

U(y, 0) = Ĥ(y) = 1 +
γ

KB
(ey − KB)+ − 1

KD
(KD − ey)+. (11b)

In the differential equation (11a), the term y

(
U − ∂U

∂y

)
appears only when y > 0.

Also, the terminal payoff is expressible in terms of y only. For the special forms of crediting

scheme and terminal payoff chosen in our model, we are able to achieve dimension reduction

of the model formulation via the similarity transformations defined in Eq. (9a). In the

left region y ≤ 0, the equation is a parabolic convection-diffusion equation. In the right

region y > 0, the equation has a strongly dominated convective term when the value of y

is sufficiently large.

In general, no analytic solution can be found for Eqs. (11a,b). One may obtain numer-

ical solution to the pricing model via the finite difference method. Since the coefficients

in the differential equation contain the factor y, it is advisable to use an implicit finite

difference scheme to avoid plausible numerical instabilities and oscillations in the finite

difference calculations.
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Implicit finite difference scheme

While the continuous version of the pricing model has infinite domain, the discretized com-

putational domain must be limited by finite boundaries. Let [−L,L] × [0, T ] denote the

finite computational domain, where the width of the spatial interval 2L is chosen to be suf-

ficiently large. The computational domain is discretized into a finite difference mesh, where

∆y and ∆τ are the stepwidth and time step, respectively. Let Um
j denote the numerical

approximation to U(j∆y,m∆τ), where m = 0, 1, 2, · · · , j = −J,−J +1, · · · ,−1, 0, 1, · · · , J ,

and J∆y = L. Instead of prescribing the boundary conditions along the numerical bound-

aries, corresponding to j = −J and j = J , we enforce the satisfaction of the discretized

version of the governing equation along the boundaries. This is done by using one-sided

difference operators to approximate the differential operators in the differential equation

so that fictitious mesh points outside the computational domain are avoided. Say, at the

left boundary j = −J , we approximate the differential terms in the differential equation

by the difference terms as follows:

∂2U

∂y2
(−J∆y,m∆τ) ≈ 2Um

−J − 5Um
−J+1 + 4Um

−J+2 − Um
−J+3

∆y2

∂U

∂y
(−J∆y,m∆τ) ≈ −3Um

−J + 4Um
−J+1 − Um

−J+2

2∆y
.

We apply fully implicit discretization in the construction of our finite difference scheme,

that is, all spatial differential terms in the differential equation are discretized at the new

time level. We define the following set of parameters

a =
ε∆τ

∆y2
, bj =

ε∆τ

∆y
(r̂ − r̂g − 1) − j+∆τ,

cj = j+∆y∆τ − (r̂ − r̂g)ε∆τ.

In terms of the above parameters, the implicit finite difference scheme that relates numer-

ical solution values at the (m + 1)th and mth time levels is given by

(i) at the interior points, j = −J + 1, · · · , 0, J − 1,

(bj − a)Um+1
j−1 + (1 + 2a − bj − cj)U

m+1
j − aUm+1

j+1 = Um
j , (12a)

(ii) along the left boundary, j = −J ,

(
1 − 2a +

3

2
b−J − c−J

)
Um+1
−J + (5a − 2b−J)Um+1

−J+1

+

(
1

2
b−J − 4a

)
Um+1
−J+2 + aUm+1

−J+3 = Um
−J , (12b)
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(iii) along the right boundary, j = J ,

(
1 − 2a − 3

2
bJ − cJ

)
Um+1

J + (5a + 2bJ)Um+1
J−1

−
(

1

2
bJ + 4a

)
Um+1

J−2 + aUm+1
J−3 = Um

J . (12c)

3. Analytic approximation solutions

The governing equation (11a) consists of two components: the diffusion component εLU

and the crediting component y+

(
U − ∂U

∂y

)
. The diffusion term is pre-multiplied by the

parameter ε which is a small quantity. Say, we take σ = 0.2, δ = 0.8, then ε = 0.025. If we

treat ε as a perturbation parameter, then the pricing model resembles a singular pertur-

bation problem since the perturbation parameter appears in the highest order derivative

term. Here, the diffusion component will be dominated by the crediting term when y � ε.

We let U+(y, τ) to be an analytic approximation to the pricing model over the right half

domain: y > y0. We may take y0 to be some multiple k of the perturbation quantity ε,

that is, y0 = kε. For convenience, we choose k such that

k ≥
(

lnKB

ε

)+

=

[
− 2

σ2
(rg + βδ + δ lnα)

]+
(13)

so that the terminal payoff can be simplified into

Ĥ(y) = 1 − γ +
γ

KB
ey, y ≥ kε. (14)

Upon expanding the terminal payoff Ĥ(y) in powers of ε, we obtain

Ĥ(y) = Ĥ0(y) + εĤ1(y) + O(ε2) (15a)

where

Ĥ0(y) = 1 − γ + αγey, Ĥ1(y) = αγ(β̂ + r̂g)e
y. (15b)

Solution in the right region, y ≥ kε

We would like to find an approximate solution to U+(y, τ) using the perturbation method

in partial differential equation theory. Suppose we seek the perturbation expansion of

U+(y, τ) in powers of the perturbation parameter ε, that is,

U+(y, τ) = U+
0 (y, τ) + εU+

1 (y, τ) + · · · , (16)
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then the governing equation for the zeroth order term U+
0 (y, τ) is given by the following

linear hyperbolic equation

∂U+
0

∂τ
= y

(
U+

0 − ∂U+
0

∂y

)
, y ≥ kε, τ > 0,

U+
0 (y, 0) = Ĥ0(y) = 1 − γ + αγey. (17)

The solution to the above hyperbolic equation is found to be (detailed derivation is pre-

sented in Appendix A)

U+
0 (y, τ) = Ĥ0(ye−τ ) exp(y(1 − e−τ )). (18)

Next, the governing equation for the first order term U+
1 (y, τ) is given by

∂U+
1

∂τ
= y

(
U+

1 − ∂U+
1

∂y

)
+ LU+

0

U+
1 (y, 0) = Ĥ1(y) = αγ(β̂ + r̂g)e

y. (19)

Here, LU+
0 can be considered as a known source term in the hyperbolic equation. Suppose

we write f(y, τ) = LU+
0 , then the solution to U+

1 (y, τ) can be deduced to be

U+
1 (y, τ) = Ĥ1(ye−τ ) exp(y(1 − e−τ ))

+

∫ τ

0

L̃Z0(ye−τ , u) exp(y(1 − e−(τ−u))) du,

where

L̃ = e−2η ∂2

∂ξ2
+ (r̂ − r̂g − 1) e−η ∂

∂ξ
− (r̂ − r̂g)

and

Z0(ξ, η) = Ĥ0(ξ) exp(ξ(eη − 1)).

After some manipulation, we obtain

U+
1 (y, τ) = exp(y(1 − e−τ )){Ĥ1(ye−τ )

+
1 − e−2τ

2
[Ĥ ′′

0 (ye−τ ) − 2Ĥ ′
0(ye−τ ) + Ĥ0(ye−τ )]

+ (r̂ − r̂g + 1)(1 − e−τ )[Ĥ ′
0(ye−τ ) − Ĥ0(ye−τ )]}. (20)

To the first order approximation, the solution to U+(y, τ) can be expressed as

U+(y, τ) = exp(y(1 − e−τ ))
{[

αγ exp
(
ye−τ + β +

rg

δ

)
+ (1 − γ)

]

+ ε(1 − γ)

[
1 − e−2τ

2
− (r̂ − r̂g + 1)(1 − e−τ )

]}
+ O(ε2),

y ≥ kε, τ > 0. (21)
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Solution in the left region, y < kε

For y < kε, we approximate the solution to U(y, τ) by U−(y, τ), whose governing equation

is given by

∂U−

∂τ
= εLU− + y+

(
U+ − ∂U+

∂y

)
, y < kε, τ > 0, (22)

while the auxiliary conditions are:

U−(y, 0) = Ĥ(y) and U−(kε, τ) = U+(kε, τ).

Here, we make the approximation that for y ∈ (0, kε), the crediting component terms

is replaced by the known source term y

(
U+ − ∂U+

∂y

)
. This is well justified since the

difference y

[(
U − ∂U

∂y

)
−
(

U+ − ∂U+

∂y

)]
should be small for 0 < y < kε. The matching

of value of the solutions on the two sides is imposed at y = kε by setting

U−(kε, τ) = U+(kε, τ),

but the smooth pasting of the two solutions at y = kε is not enforced.

In Appendix B, we show how to derive the solution of a linear diffusion equation with

a source term in a semi-infinite domain. Using this known form of solution, the solution

to U−(y, τ) can be deduced to be

U−(y, τ) = U+(kε, τ) − Ĥ(kε)G(y, τ ; kε) +

∫ kε

−∞

Ĥ(ξ)g(y, τ ; ξ) dξ

−
∫ τ

0

[
(r̂ − r̂g)εU

+(kε, τ − u) +
∂U+

∂τ
(kε, τ − u)

]
G(y, u; kε) du

+

∫ τ

0

∫ kε

0

ξ

[
U+(ξ, τ − u) − ∂U+

∂ξ
(ξ, τ − u)

]
g(y, u; ξ) dξdu, (23)

where g(y, τ ; ξ) is the Green function defined in Eq. (B.1) and G(y, τ ; ξ) is an integral of

g(y, τ ; ξ) defined in Eq. (B.2). We define

y1 = −(β̂ + r̂g)ε and y2 = y1 − lnα,

then the initial condition can be expressed as

U−(y, 0) = Ĥ(y) =





ey−y1 y < y1

1 y1 ≤ y ≤ y2

1 − γ + αγey−y1 y > y2

.
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After simplifying the first three terms in Eq. (23), the analytic form of U−(y, τ) can be

reduced to

U−(y, τ) = U+(kε, τ) − αγekε−y1G(y, τ ; kε)

+ γG(y, τ ; y2) − G(y, τ ; y1)

+ αγ[Ĝ(y, τ ; kε) − Ĝ(y, τ ; y2)] + Ĝ(y, τ ; y1)

−
∫ τ

0

[
ε(r̂ − r̂g)U

+(kε, τ − u) +
∂U+

∂τ
(kε, τ − u)

]
G(y, u; kε) du

+

∫ τ

0

∫ kε

0

ξ

[
U+(ξ, τ − u) − ∂U+

∂ξ
(ξ, τ − u)

]
g(y, u; ξ) dξdu, (24)

where

Ĝ(y, τ ; ξ) =

∫ ξ

−∞

ex−y1g(y, τ ;x) dx

= ey−y1

[
N

(
ξ − y − (r̂ − r̂g + 1)ετ√

2ετ

)

−e(r̂−r̂g+1)(kε−y)N

(
ξ + y − 2kε − (r̂ − r̂g + 1)ετ√

2ετ

)]
.

Though the last two integrals in Eq. (24) can be evaluated in closed form, we leave the

numerical evaluation of the two integrals by numerical integration.

4. Behaviors of the pricing functions of participating policies

We performed numerical experiments to examine the accuracy of the analytic approxi-

mation solution by comparing with the numerical solution obtained from finite difference

calculations. While U+ is presented in closed form [see Eq. (21)], the valuation of U− is

done via numerical integration of the integrals in Eq. (24). The finite difference solution

is obtained by performing numerical calculations based on the implicit scheme presented

in Eqs. (12a-c). In the following sample calculations, the time to maturity T − t is set

to be 10. Also, the value of k defined in Eq. (13) is set to be max

(
1,

lnKB

ε

)
. In

Figure 1, we show the comparison of the finite difference solution and analytic approxi-

mation solution to U(x, τ),−1 ≤ x ≤ 1. The parameters used in the pricing model are:

r = 0.05, rg = 0.03, σ = 0.15, δ = 0.3, β = 0.1, γ = 0.9 and α = 0.9, and 1000 time steps

are used in the finite difference calculations. Very good agreement of the two solutions is

exhibited over a reasonable range of values of x.

We also explored how different bonus distribution schemes may affect the solution

U(x, τ). Three bonus distribution rules µP (x) are used in our sample calculations, namely

(i) x−β = ln
A(t)

P (t)
−β, (ii) ex−1−β =

B(t)

P (t)
−β, (iii) 2(ex/2−1)−β = 2

(√
A(t)

P (t)
− 1

)
−β.
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The second rule considers the ratio
B(t)

P (t)
based on annual compounding while the first

and third rules consider the ratio based on continuous compounding and semi-annual

compounding, respectively. Parameter values used in the calculations are r = 0.05, rg =

0.03, σ = 0.15, δ = 0.8, β = 0.1, γ = 0.75 and α = 0.7. For the range of values x ∈
[−0.5, 0.5], Figure 2 shows that the difference of the solution values under different crediting

schemes is not significant.

There are several basic parameters in the participating policy pricing model: rg, σ, δ, β,

γ and α. In Figures 3-5, we show how the solution U(x, τ) at τ = 5 and x = −0.2, x = 0

and x = 0.2 depend on some of these parameters. The basic set of parameter values used

in our sample calculations are chosen to be r = 0.05, rg = 0.03, σ = 0.15, δ = 0.5, β =

0.1, γ = 0.5 and α = 0.5. In Figure 3, we show how U(x, τ) may depend on σ with

varying values of x. When x = −0.2, A(t) is below P (t) and U is seen to be a decreasing

function of σ. This is not surprising since the market value of the participating policy is

the difference of the bonus option and default option. Both options are increasing function

of σ, but the default option has stronger influence on U when A(t) < P (t). Depending

on the choices of the parameter values, the plot of U against σ can be hump-shaped or a

strictly increasing function of σ [see Figure 9 in Ballotta et al .’s paper (2003)]. We also

explored the dependence of the policy value on the reversionary bonus distribution rate

δ. As revealed by the plots in Figure 4, the policy value is an increasing function of δ.

This is intuitively obvious since the crediting scheme µP (x) is an increasing function of

δ. When x increases, the rate of increase of U with respect to δ is more significant since

a larger value of x means a higher chance that the crediting scheme µP (x) stays above

the guarantee rate rg. In a similar manner, but in the reverse sense, the policy value is

a decreasing function of the target ratio β since µP (x) is a decreasing function of β (see

Figure 5). Also, a larger value of x means a stronger influence of β on µP (x), hence a more

significant drop in policy value with increasing β.

5. Conclusion

We have developed an analytic approximation method using perturbation techniques to

solve for contingent claims models that price participating policies with rate guarantees,

terminal bonus and default option. By exploring the analytic structure of the contingent

claims model, our perturbation approach provides fairly accurate analytic approximation

to the policy value. To achieve analytic tractability in the perturbation solution, we have

made certain simplifying assumptions in the pricing models, like the neglect of mortality

risk and surrender option. Also, the interest rate crediting scheme assumes some specific

functional forms. As an alternative solution method, we propose an implicit finite difference

scheme for solving the partial differential equation governing the contingent claims model.

The pricing behaviors of participating policies with varying values of the parameters in

the pricing models have also been explored.
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Fig. 1. Comparison of the solution to U(x, τ) at τ = 3 using the finite difference method

and perturbation method.
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Fig. 2. Behaviors of the solution U(x, τ) at τ = 8 based on different bonus distribution

schemes.
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Fig. 3. Plot of U(x, τ) at τ = 5 against asset volatility σ with varying values of x =

lnA/P .
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Fig. 4. Plot of U(x, τ) at τ = 5 against reversionary bonus distribution rate δ with

varying value of x = lnA/P .
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Appendix A — Analytic solution of U+
0 (y, τ)

The zeroth order solution U+
0 (y, τ) in the right half domain, y ≥ y0 and τ > 0, is governed

by the following first order hyperbolic equation

∂U+
0

∂τ
+ y

∂U+
0

∂y
= yU+

0 , y ≥ y0 and τ > 0,

with the initial condition: U+
0 (y, 0) = H0(y), y ≥ y0. Consider the integral surface

z = U+
0 (y, τ) and let r = (y, τ, z) be the position vector of a point on the integral sur-

face. From the initial condition, we deduce that the following curve r0(ξ) = (ξ, 0, Ĥ0(ξ))

lies on the integral surface. We use ξ and η to parameterize the characteristic curve

(Y (ξ, η),Γ(ξ, η), Z(ξ, η)) on the integral surface. The curve r0(ξ) corresponds to η = η0.

The evolution equations for the characteristic curves on the integral surface are given by

dY (ξ, η)

dη
= Y (ξ, η), Y (ξ, η0) = ξ,

dΓ(ξ, η)

dη
= 1, Γ(ξ, η0) = 0,

dZ(ξ, η)

dη
= Y (ξ, η)Z(ξ, η), Z(ξ, η0) = Ĥ0(ξ).

The solution to (Y,Γ, Z) is given by

(Y (ξ, η),Γ(ξ, η), Z(ξ, η)) = (ξeη−η0 , η − η0, Ĥ0(ξ) exp(ξ(eη−η0 − 1)).

We then deduce that y = ξeη−η0 and τ = η − η0 so that ξ = ye−τ and η = τ + η0. Hence,

we obtain

U+
0 (y, τ) = Ĥ0(ye−τ ) exp(y(1 − e−τ )).

Appendix B — Analytic solution of U−(y, τ)

Consider the following linear diffusion equation with a known source term f(y, τ)

∂U−

∂τ
= εLU− + f(y, τ), y < kε, τ > 0,

with auxiliary conditions: U−(y, 0) = Ĥ(y) and U−(kε, τ) = h(τ). Let V (y, τ) = U−(y, τ)

−h(τ), then V (y, τ) is governed by

∂V

∂τ
= εLV + f(y, τ) − h′(τ) − ε(r̂ − r̂g)h(τ), y < kε, τ > 0,
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with auxiliary conditions: V (y, 0) = Ĥ(y) − h(0) and V (kε, τ) = 0. Let g(y, τ ; ξ) denote

the Green function that satisfies

∂g

∂τ
= εLg, y < kε, τ > 0,

with auxiliary conditions: g(y, 0; ξ) = δ(y − ξ) and g(kε, τ ; ξ) = 0. The analytic solution

of g(y, τ ; ξ) is found to be

g(y, τ ; ξ) =
1√
2ετ

e−(r̂−r̂g)ετ

[
n

(
y − ξ + (r̂ − r̂g − 1)ετ√

2ετ

)

− e(r̂−r̂g−1)(kε−y)n

(
y + ξ − 2kε − (r̂ − r̂g − 1)ετ√

2ετ

)]
. (B.1)

The solution of V (y, τ) is then given by

V (y, τ) =

∫ kε

−∞

[Ĥ(ξ) − h(0)]g(y, τ ; ξ) dξ −
∫ τ

0

[ε(r̂ − r̂g)h(τ − u) + h′(τ − u)]G(y, u; kε) du

+

∫ τ

0

∫ kε

−∞

f(ξ, τ − u)g(y, u; ξ) dξdu.

where

G(y, τ ; kε) =

∫ kε

−∞

g(y, τ ; ξ) dξ

= e−(r̂−r̂g)ετ

[
N

(−y + kε − (r̂ − ĝ − 1)ετ√
2ετ

)

− e(r̂−r̂g−1)(kε−y)N

(
y − kε − (r̂ − r̂g − 1)ετ√

2ετ

)]
. (B.2)
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