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Abstract

Contingent convertible (CoCo) bonds are characterized by forced equity conversion under
either accounting or regulatory trigger. Accounting trigger occurs when the capital ratio of the
issuing bank falls below some contractual threshold. Under the regulatory trigger, sometimes
called the point-of-non-viability (PONV) trigger, the regulatory authority may enforce equity
conversion when the financial health of the bank deteriorates to certain distressed level. In this
paper, we propose an equity-credit modeling of the joint process of the stock price and capi-
tal ratio that integrates both the structural approach of accounting trigger and reduced form
approach of PONV trigger of equity conversion. We also construct effective Fortet algorithms
and finite difference schemes for numerical pricing of CoCo bonds under various forms of equity
conversion payoff. The pricing properties of the CoCo bonds under different assumptions of the
state dependent intensity of PONV trigger, contractual specifications and market conditions are
examined.

Keywords: Contingent convertibles, equity-credit modeling, Fortet algorithms

1 Introduction

The contingent convertible (CoCo) bond provides a higher coupon rate compared to its non-
convertible counterpart since it is embedded with a loss absorption mechanism that is triggered
when the capital of the issuing bank falls close to the regulatory level as required by the Basel Com-
mittee on Banking Supervision (BCBS). At a triggering event, the bond is automatically converted
into equity of the issuing bank (or an equivalent amount of cash). The equity conversion is meant
to provide a timely recapitalization of the issuing bank and boost its capital adequacy when it is
under financial distress. This would help mitigate the chance of a systemic banking crisis, thus
minimizing the use of taxpayers’ money to bail out distressed financial institutions.

Since the first issuance of the Enhanced Capital Notes by the Lloyds Banking Group in Decem-
ber 2009, there has been an active discussion on the triggering mechanism and loss absorption design
of CoCo bonds. In a typical contractual design of a CoCo bond, there are two possible triggering
mechanisms: accounting trigger and regulatory trigger. In an accounting trigger, the capital ratio
is chosen as the indicator on a bank’s financial health. For example, when the core tier-1 capital

∗E-mail: btkchung@gmail.com
†E-mail: maykwok@ust.hk

1



ratio falls below a predetermined level, the bond is converted automatically into equity. In a regu-
latory trigger, sometimes called the point-of-non-viability (PONV) trigger, the banking supervisory
authority holds the discretion based on the financial health of the bank to decide whether equity
conversion should be activated. As noted in a recent survey on the contractual features of CoCo
bonds (Avdjiev et al., 2013), most of the CoCo bonds include the provision of accounting trigger.

There have been a number of papers that address pricing and risk management of a CoCo bond
using various modeling approaches. The structural approach starts with the modeling of a bank’s
balance sheet dynamics that allows one to analyze the impact of the issuance of contingent convert-
ibles on the capital structure (Albul et al., 2010; Brigo et al., 2015; Glasserman and Nouri, 2012;
Pennacchi, 2011). On the other hand, Cheridito and Xu (2015) apply the reduced form approach to
price CoCo bonds. The reduced form approach, commonly used for pricing of credit derivatives, has
better flexibility to perform calibration of the model parameters using the market prices of traded
derivatives, like the credit default swap (CDS) spreads. Also, Spiegeleer and Schoutens (2012)
propose an easy-to-use equity derivative approach by approximating the accounting trigger of the
capital ratio by the first passage time of the stock price process to an implied barrier level. Following
a similar approach, Corcuera et al. (2013) pursue a smile conforming model that assumes the stock
price to follow a Lévy process. Gupta et al. (2013) discuss pricing issues related to various contrac-
tual features of CoCo bonds and resort to numerical methods for pricing CoCo bonds under a mean
reversion process of the capital ratio. Wilkens and Bethke (2014) report the empirical assessment
of the aforementioned approaches and find that the equity derivative approach implies a hedging
ratio that may be practically useful with reference to the risk management of CoCo bonds during
the sample period of 2011. Leung and Kwok (2015) model the regulatory trigger using the Parisian
feature where equity conversion is activated when the capital ratio stays under the non-viable state
cumulatively over a certain period of time.

A proper modeling of the capital ratio process is crucial with regard to the contractual design
of a CoCo bond with accounting trigger. Since the capital ratio is a balance sheet quantity, the
structural modeling approach provides a natural starting point for pricing CoCos. The structural
approach, however, does not usually possess the flexibility for calibration to traded security prices
and fails to generate a reasonable shape of the credit spread (Eom et al., 2004). Furthermore, since
equity is priced as a contingent claim on the bank asset value, the joint dynamics of the stock price
and capital ratio is less tractable under the structural framework (Chen and Kou, 2009). It is also
not straightforward to incorporate a jump in the stock price, which further restricts its ability to
reflect the potential write-down of the CoCo bond value upon equity conversion. On the other hand,
the reduced form approach has been found to be efficient for pricing corporate bonds (Duffie and
Singleton, 1999; Jarrow et al., 2010). When used in pricing CoCos, the reduced form approach only
requires the specification of the conversion intensity and the jump magnitude of the stock price at
the conversion time (Cheridito and Xu, 2015). Some earlier empirical studies show that the capital
ratio may be subject to manipulation by a distressed bank, where the capital ratio remains at
healthy level even the bank is in the distressed state. The reduced form approach remains feasible
to capture the possibility of regulatory trigger even when the capital ratio is not quite close to the
trigger threshold. The equity conversion under regulatory trigger can be treated as a random event
that can be modeled by a single Poisson jump. In this model framework, the CoCo bond is seen
to consist of a straight bond component while the equity component is only a residual. A criticism
of the reduced form approach is that it completely ignores the contractual feature of an accounting
trigger and neglects the interaction between stock price and capital ratio (Brigo et al., 2015).

In this paper, we propose a bivariate equity-credit modeling of the stock price and capital
ratio together with a jump-to-non-viability (JtNV) feature. This framework of a joint modeling is
particularly important for pricing CoCos since the conversion value depends on the joint distribution
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of the first passage time of the capital ratio hitting the trigger threshold and the stock price at
conversion. Since we model the bivariate process of capital ratio and stock price for pricing CoCos
directly, the parametrization procedure is easier than a bottom-up structural model that requires a
judicious choice of the proxy conversion epoch linked to other balance sheet quantities (Brigo et al.,
2015; Pennacchi, 2011). We demonstrate that the equity derivative approach proposed by Spiegeleer
and Schoutens (2012) can be recast under our bivariate framework when the stock price and capital
ratio are perfectly correlated, and explain the justification for the equity derivative approach that
replicates the CoCo components using barrier options. In the aftermath of the Lehman Brothers
financial crisis, it is not uncommon to see substantial write downs by major investment banks due
to unexpected trading losses and bleaching of regulation, which might erode a significant part of
the bank’s capital. In our equity-credit model, we add the reduced form feature that is important
to capture JtNV that can be used to model the sudden deterioration of a bank’s financial health
leading to a PONV trigger. The reduced form approach has been popular in the modeling of rare
financial events such as company default, mortgage prepayment and stock market crash (Bates,
1991; Dai et al., 2007; Jarrow et al., 2010). We may allow the intensity of PONV trigger to be
dependent on the state variables that are linked to the financial health of the bank. In summary,
our proposed approach of integrating the reduced form approach and structural approach is natural
for pricing a CoCo bond that has multiple sources of risk.

For the sake of practical implementation, we adopt a model that is tractable and contains
essential structural features that determine the market prices of CoCos. We postulate the mean
reversion capital ratio process and model the accounting trigger by the first passage time of the
capital ratio bleaching a predetermined threshold. Before the PONV trigger, the capital ratio and
the stock price follow a bivariate diffusion process. Furthermore, we assume the stock price process
to include the jump feature in order to capture the abrupt change in the stock price upon PONV
trigger. When the conversion intensity of the JtNV trigger is constant, we may employ an integral
equation approach known as the Fortet method to compute the relevant density function of the first
passage time to the triggering threshold of the capital ratio. When the conversion intensity is state
dependent, the CoCo bond price can be obtained by solving a two-dimensional partial differential
equation numerically using the finite difference method. Though it is possible to extend to more
sophisticated dynamics of stock price and capital ratio, like the inclusion of stochastic volatility or
stochastic intensity, the infrequent observation and the lack of historical data of the capital ratio
may not well justify the pursue of these more complex dynamic processes.

Our proposed framework is an extension of the equity-credit hybrid modeling framework that
models the interaction between equity risk and credit risk (Carr and Linetsky, 2006; Carr and Wu,
2009; Cheridito and Wugalter, 2012). The traditional equity-credit modeling typically adopts a pure
reduced form setting in which the jump-to-default of a financial derivative is modeled by a random
jump with a stochastic intensity process. These studies mainly concentrate on pricing of defaultable
derivatives and credit default swaps (Chung and Kwok, 2014). In this paper, we integrate the equity-
credit modeling with the structural approach of capturing the accounting trigger of a CoCo bond
via the first passage time feature of the capital ratio process. In addition to capturing the JtNV
feature, our reduced form approach is seen to be more flexible since it allows for modeling various
embedded options such as the coupon cancellation and callable features. In summary, our enhanced
equity-credit model illustrates the versatible approach of capturing the multiple risk exposures in
CoCo bonds.

This paper is structured as follows. Section 2 presents the model setup of the enhanced hybrid
modeling approach. We present various structural features of the CoCo bond and explain why the
determination of the joint distribution of the random time of equity conversion and the stock price
at conversion time is crucial in the pricing procedure. In particular, we discuss the characterization
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of the jump in stock price upon PONV trigger. The arrival of the JtNV is characterized by the
intensity of a Poisson jump. Both cases of constant intensity and state dependent intensity are
considered. We illustrate the versatibility of our pricing framework by showing how it can be used
to cope with more complex structural features, like the floored payoff, coupon cancellation and
perpetuality with callable feature. Section 3 presents the numerical examples that perform risk
sensitivities analysis of a CoCo bond. We analyze the impact of various model parameters, like
correlation, stock price volatility and conversion intensity on the price functions of the CoCo bonds
with various contractual features. We also examine the conditional distribution of the stock price
at an accounting trigger and analyze the decomposition of the CoCo bonds into their bond and
equity components. Section 4 presents summary of results and conclusive remarks.

2 An Enhanced Hybrid Modeling

2.1 The structure

A typical structure of a CoCo bond consists of:

1. Bond component: coupon payments (ci)i=1,2,...n paid at time points ti, i = 1, 2, . . . , n, and
principal payment F at the maturity T , where tn = T .

2. Equity component: at a trigger event, the bond is converted into G shares of stock of the
issuing bank.

The equity exposure to the CoCo bond is revealed through the forced equity conversion. In general,
pricing of a CoCo bond is related to interest rate risk (discounting on the coupons and principal),
equity risk (equity conversion at a trigger event) and conversion risk (loss absorption mechanism).
The conversion risk is the risk of an unfavorable conversion to a declined stock price that wipes off
a significant portion of the value of the bond. We emphasize that pricing of CoCos is not directly
related to default risk since equity conversion always happens before a bank’s default and CoCo
bonds are structured to help banks from insolvency. As a part of the challenge in pricing CoCos, it
is necessary to model the stock price right after the PONV trigger.

2.2 Model setup

We fix a filtered probability space (Ω,F , (Ft)t≥0, Q) in which Q is a risk neutral measure. All the
underlying processes in our equity-credit model are assumed to be observable and adapted to the
filtration (Ft)t≥0. We take the stock price process to be St = exp (xt) and capital ratio process to
be Ht = exp (yt), where Xt = (xt, yt) follows a bivariate process under the risk neutral measure Q
as follows:

dxt =

[
r − q − σ2

2
− γλ(xt, yt)

]
dt+ σ dW 1

t + ln(1 + γ) dNt, x0 = x,

dyt = κ (θ − yt) dt+ η
(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
, y0 = y. (2.1)

Here, W 1
t and W 2

t are uncorrelated Brownian motions. The log capital ratio yt is specified as an
Ornstein-Unlenbeck (OU) process with the mean reversion feature. This is because banks usually
actively manage the amount of regulatory capital in response to changing market values of asset and
liability. They have the incentives to maintain a healthy level of capital ratio in order to stay away
from any regulatory bleach. The interest rate r ≥ 0, dividend yield q ≥ 0, stock price volatility
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σ > 0, capital ratio volatility η > 0, correlation coefficient −1 ≤ ρ ≤ 1, mean reversion level θ and
speed of reversion κ > 0 of the capital ratio are assumed to be constant. The stock price process is
modeled as a Geometric Brownian motion with jump upon equity conversion due to PONV trigger
that arises from a sudden deterioration of the bank’s financial health or other distressed event. We
let Nt denote the Poisson process that models the arrival of the PONV trigger and λ(xt, yt) ≥ 0 be
the state dependent intensity of Nt. The constant jump magnitude of the stock price upon PONV
trigger is denoted by −1 < γ <∞.

Let HB be the contractual threshold of the capital ratio for an accounting trigger and we define
yB = lnHB. The accounting trigger is modeled by the first passage time of the log capital ratio yt
to a predetermined lower threshold yB as

τB = inf {t ≥ 0; yt = yB} .

In addition, the random time of JtNV is modeled by the first jump of the Poisson process Nt, where

τR = inf {t ≥ 0; Nt = 1} .

The random time of equity conversion is taken to be the earlier of the first passage time τB and the
JtNV time τR, where

τ = τB ∧ τR.

It is well acceptable to assume that Pr {τB = τR} = 0 for the sake of simplicity. That is, the two
random times do not occur at the same time almost surely. Note that the conversion takes place
when at least one of the τB and τR does not exceed the maturity T .

The no-arbitrage price of a CoCo can be decomposed into three components:

PCoCo = PC + PF + PE .

1. Value of the coupon payments, PC :

PC =
n∑
i=1

EQ
[
cie
−rti1{τ>ti}

]
=

n∑
i=1

cie
−rti [1−Q (τ ≤ ti)] ,

which is the sum of discount coupon payments received prior to the conversion time τ .1

2. Value of the principal payment, PF :

PF = EQ
[
Fe−rT1{τ>T}

]
= Fe−rT [1−Q (τ ≤ T )] ,

in which F is the principal payment when there is no conversion until maturity.

3. Conversion value, PE :
PE = EQ

[
e−rτGSτ1{τ≤T}

]
,

where the CoCo is converted into G units of shares of the underlying equity at the conversion
time τ .

1We ignore the small amount of interest accrual when a conversion occurs between two consecutive coupon payment
dates.
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It suffices to compute the conversion probability for evaluation of the bond component (sum of PC
and PF ). The key step in computing the conversion value PE is the determination of the joint
modeling of the conversion time τ and stock price Sτ . For conversion into cash, we only need to
replace the term GSτ by a constant cash payment and this reduces to an easier pricing problem.
There are several other interesting contractual features, like the floored payoff, coupon cancellation
and issuer’s call. All these features and their effects on the pricing procedures will be discussed in
later sections.

The bivariate first passage time models with a one-sided threshold have been commonly adopted
in modeling defaultable bonds and barrier options under stochastic interest rates (Longstaff and
Schwartz, 1995; Collin-Dufresne and Goldstein, 2001; Coculescu et al., 2008; Bernard et al., 2008).
Our proposed bivariate equity-credit models extend these bivariate first passage time models in
several aspects. The accounting trigger is modeled by the first passage time of the mean reversion
capital ratio hitting a threshold, which is typical in structural risky bond models. In addition,
we adopt the reduced form approach of incorporating a random PONV trigger that is modeled
by the first jump of a Poisson process and a jump in stock price upon PONV trigger. When the
intensity of PONV trigger is constant, it is possible to simplify the pricing problem to become
one-dimensional model. One can then employ an efficient numerical algorithm (Fortet method)
to compute the CoCo bond price. When the intensity is chosen to be state dependent, the stock
price and capital ratio processes interact through the correlation of the Brownian motions together
with the state dependent jump intensity λ(xt, yt). This form of bivariate dependence of the jump
intensity provides additional flexibility to model various triggering mechanisms in a CoCo bond.
With some appropriate choices of the state dependent intensity functions, we manage to price the
CoCo bonds by solving a two-dimensional pricing model numerically using standard finite difference
schemes.

It is worthwhile to discuss the jump in stock price upon equity conversion. At the accounting
trigger τ = τB, the stock price is assumed to be continuous with no jump. The rationale is that
the stock price should have gradually taken into account the possibility of such a conversion. At
the regulatory trigger τ = τR, there would exhibit a fixed jump in stock price as modeled by
SτR = (1 + γ)SτR− , where γ ∈ (−1,∞). We rule out the case of γ = −1, which corresponds to
jump to default. Recall that regulatory trigger is structured to avoid default of the issuing bank.
Apparently, γ ≤ 0 appears to be reasonable due to signaling of deterioration of bank’s financial
health by the PONV trigger. However, the other case of γ > 0 may still be possible since market
may react positively to recapitalization upon equity conversion and this leads to a positive jump of
stock price.

In practice, it is not straightforward to determine the sign of the parameter γ since it is not
sure whether the PONV trigger would enhance equity value or otherwise. The equity conversion
helps reduce the liability of the bank by canceling the coupon and principal payments of the bond,
which in turn boosts the capital adequacy and leads to a stronger balance sheet and stock price. On
the other hand, the conversion into shares of stock causes dilution to existing equity holders which
would be reflected by a weakened stock price. The actual effect of equity conversion on the stock
price would become better known when there are actual conversion events in the future. Lastly, it
is not necessary to make any model assumption on the change of the capital ratio after JtNV as
this information is irrelevant to pricing issues.

For illustration purpose, we can follow Ballotta and Kyriakou (2015) and express the solution
of eq.(2.1) in terms of the Brownian motions (W 1

t ,W
2
t ), Poisson process Nt and integrals of the
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Brownian motions as follows

xt = x̃t +Nt ln (1 + γ)− γ
∫ t

0
λ(xs, ys) ds,

yt = y0e
−κt + θ

(
1− e−κt

)
+

∫ t

0
ηe−κ(t−s)

(
ρ dW 1

s +
√

1− ρ2 dW 2
s

)
,

where

x̃t = x0 +

(
r − q − σ2

2

)
t+ σW 1

t .

This representation is useful when we construct the stock price measure in the next section.

2.3 Conversion probability

As part of the pricing procedure, we show how to derive the conversion probability Q (τ ≤ t) under
our bivariate equity-credit framework. It is necessary to consider the convolution of the two stopping
times, τB and τR. We make use of the following two building blocks:

EQ
[
H(τB)1{τR>τB}

]
= EQ

[
e−

∫ τB
0 λu duH(τB)

]
,

EQ
[
H(τR)1{τR<τB}

]
= EQ

[∫ τB

0
λue
−

∫ u
0 λs dsH(u) du

]
,

where H(ξ) is the payoff at the corresponding stopping time ξ = τR or ξ = τB. Note that the state
dependent intensity λt = λ(xt, yt) introduces dependence among τR and τB, which adds further
complexity to the convolution.

Lemma 1. For a fixed t > 0, the probability of equity conversion is given by

Q (τ ≤ t) =

∫ t

0
EQ
[
λue
−

∫ u
0 λs ds1{τB>u}

]
du+ EQ

[
e−

∫ τB
0 λu du1{τB≤t}

]
. (2.2)

The proof of Lemma 1 is presented in Appendix A.1.

It is interesting to examine the conversion probability and the density function of the conversion
time under the hybrid equity-credit framework. Firstly, the conversion density function is non-zero
even as t→ 0+ due to the JtNV feature (as revealed by the term λe−λt). This property is consistent
with exhibiting a finite value of conversion probability even at time close to maturity. Secondly,
when the capital ratio is far away from the triggering threshold such that Q (τB ≤ t) ≈ 0, we observe

Q (τ ≤ t) ≈ EQ
[
1{τR≤t}

]
= Q (τR ≤ t) ,

in which equity conversion arises almost solely from JtNV. In this case, we can treat the CoCo
bond as a straight bond and one can incorporate a bond yield spread that is related to the jump
intensity. This demonstrates the flexibility of the hybrid modeling framework to capture both the
equity and fixed income nature of the CoCo bond.

In the next two subsections, we consider the pricing procedures of CoCo bonds under the as-
sumption of constant intensity and state dependent intensity.
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2.4 Constant intensity

Suppose the bond is converted into a predetermined G units of shares at the conversion time, the
conversion value is given by

PE = GEQ
[
e−rτSτ1{τ≤T}

]
, τ = τB ∧ τR.

When the intensity of the PONV trigger λ is constant, eq.(2.2) can be simplified as

Q (τ ≤ t) =

∫ t

0
λe−λu [1−Q (τB ≤ u)] du+ EQ

[
e−λτB1{τB≤t}

]
.

By direct differentiation, the density function of the random conversion time can be obtained as
(Campi et al., 2009)

Q (τ ∈ dt) = λe−λt [1−Q (τB ≤ t)] + e−λtQ (τB ∈ dt) .

As expected, under constant intensity, the stopping times τB and τR are uncorrelated.
When the conversion payoff is a constant multiple of the stock price S, it is possible to adopt

the stock price measure Q∗ to reduce the dimensionality of the pricing problem by one. We define
the adjusted stock price process as follows:

S̃t = Ste
−(r−q)t

= S0 exp

(
σW 1

t −
σ2

2
t− λγt

)
(1 + γ)Nt , t ≥ 0.

It is readily to observe that the process S̃t is a positive martingale under the risk neutral measure
Q. Hence, we can take S̃t to construct a change-of-measure as

Zt =
dQ∗

dQ

∣∣∣∣
Ft

=
S̃t

S̃0
=
e−(r−q)tSt

S0
,

where Q∗ can be interpreted as the stock price measure.

Lemma 2. Suppose that the bivariate dynamics of xt and yt are specified by eq.(2.1). Under the
stock price measure Q∗, the bivariate process of (xt, yt) evolves as

dxt =

(
r − q +

σ2

2
− γλ

)
dt+ σ dB1

t + ln(1 + γ) dNt, x0 = x,

dyt = [κ (θ − yt) + ρση] dt+ η dB2
t , y0 = y, (2.3)

where B1
t = W 1

t −σt, B2
t =

√
1− ρ2W 2

t +ρB1
t and

〈
dB1

t , dB
2
t

〉
= ρ dt. The intensity of the Poisson

process Nt becomes
λ∗ = (1 + γ)λ.

The proof of Lemma 2 is presented in Appendix A.2.

Now, we can apply the change-of-measure formula to compute the conversion value PE as follows:

PE = GEQ
[
e−rτSτ1{τ≤T}

]
= GS0EQ

[
e−qτ

e−(r−q)τSτ
S0

1{τ≤T}

]
= GS0EQ

∗ [
e−qτ1{τ≤T}

]
,

where τ = τB ∧ τR. As a result, we only need to compute a discounted conversion probability
under the stock price measure Q∗. The next two propositions provide the formulas to compute the
conversion value.
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Proposition 3. Denote λ∗ = (1 + γ)λ. The conversion value PE under constant intensity λ is
given by

PE = GS0

{∫ T

0
λ∗e−(λ

∗+q)u [1−Q∗ (τB ≤ u)] du+ EQ
∗
[
e−(λ

∗+q)τB1{τB≤T}

]}
.

Proof. By Lemma 2, it suffices to replace λ by λ∗ = (1 + γ)λ and take the expectation under the
stock price measure Q∗. The remaining procedure is similar to that of Lemma 1.

By following a similar procedure of performing integration by parts (Campi et al., 2009) on the
equity-credit hybrid modeling using a CEV process, we can obtain an alternative representation of
the conversion value as shown in Proposition 4.

Proposition 4. When λ∗ + q > 0, the conversion value can be expressed as

PE = GS0

{
λ∗

λ∗ + q

[
1− e−(λ∗+q)TQ∗ (τB > T )

]
+

q

λ∗ + q
EQ
∗
[
e−(λ

∗+q)τB1{τB≤T}

]}
.

Proof. Applying integration by parts and noting that
∂

∂t
Q∗ (τB ≤ t) gives the density of τB, we

obtain the result.

By Propositions 3 and 4, we have effectively reduced a two-dimensional problem into a one-
dimensional problem using the change-of-measure formula. As a result, we only need to compute
the distribution function of the first passage time Q∗ (τB ≤ T ) and the associated truncated Laplace
transform

EQ
∗
[
e−(λ

∗+q)τB1{τB≤T}

]
.

These two quantities can be readily computed by applying the one-dimensional Fortet method
which is essentially a recursive algorithm that solves an integral equation for the conversion density
function. The details of the Fortet method are presented in Appendix B. The key steps in the
recursive Fortet algorithm are summarized as follows. We discretize the time interval [0, T ] into m
equal intervals with tj = j∆t for j = 0, 1, 2, ...,m, where m∆t = T . The relevant quantities for the
pricing of CoCo can be obtained by the following formulas:

Q∗ (τB ≤ tm) =
m∑
j=1

qj , EQ
∗
[
e−(λ

∗+q)τB1{τB≤tm}

]
=

m∑
j=1

e−(λ
∗+q)tjqj , (2.4)

where
qj ≈ Q∗ (τB ∈ (tj−1, tj ]) , j = 1, 2, ...,m,

can be obtained by the following recursive scheme

q1 = N (a (t1)) ,

qj = N (a (tj))−
j−1∑
i=1

qiN (b (tj , ti)) , j = 2, 3, ...,m,

with

a (t) =
yB − µ (t, 0)

Σ (t, 0)
, b (t, s) =

yB − µ (t, s)

Σ (t, s)

∣∣∣∣
ys=yB

,
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and

µ (t, s) = yse
−κ(t−s) +

(
θ +

ρση

κ

) [
1− e−κ(t−s)

]
, Σ2 (t, s) =

η2

2κ

[
1− e−2κ(t−s)

]
,

in which N(·) here is the cumulative normal distribution function. The same procedure can be
applied to the calculation of the conversion probability under the risk neutral measure Q for the
coupon and principal payments. Since the Fortet method solves an integral equation by discretiza-
tion in the time domain, the different choices of the numerical integration quadrature may lead to
different forms of the recursive formula. Here, we present the right-point scheme as in Coculescu
et al. (2008), though one may choose alternative discretization schemes in order to achieve better
rate of convergence.

Interest rate risk
The major market risk factors in CoCo bonds are the credit risk and equity risk due to the conversion
mechanism, while the interest rate risk plays a less significant role. Unlike fixed income derivatives,
the interest rate in pricing CoCo bonds only plays the role as the discounting factor but not in
the determination of the payoff. The bond part of a CoCo bond can be treated as a fixed rate
coupon bond and its interest rate risk can be quantified by appropriate discounting factors. On the
other hand, the conversion component is rather insensitive to interest rate risk due to the following
counter-balancing effects. A hike in interest rate leads to a higher expected stock price (due to an
increase in risk neutral drift) while the present value of an equity conversion is reduced due to a
smaller discounting factor. Hence, the interest rate risk of a CoCo bond is of a less concern than
the joint interaction of credit risk and equity risk.

Having said that, we note that our valuation procedures can be readily extended to deterministic
or independent stochastic interest rates. Suppose that the risk free interest rate is stochastic as
(rt)t≥0 and independent of the conversion time τ . We denote the corresponding zero coupon bond

price as D(0, t) = EQ
[
e−

∫ t
0 rs ds

]
. The coupon and principal components can be expressed as

PC =
n∑
i=1

EQ
[
cie
−

∫ ti
0 rs ds1{τ>ti}

]
=

n∑
i=1

ciD(0, ti) [1−Q (τ ≤ ti)] ,

PF = EQ
[
Fe−

∫ T
0 rs ds1{τ>T}

]
= FD(0, T ) [1−Q (τ ≤ T )] .

For the conversion value, we can take S̃t = Ste
∫ t
0 rs dse−qt and modify the change-of-measure as

Zt =
dQ∗

dQ

∣∣∣∣
Ft

=
S̃t

S̃0
=
e
∫ t
0 rs dse−qtSt

S0
,

such that

PE = GS0EQ
[
e−qτ

e−
∫ τ
0 rs dseqτSτ
S0

1{τ≤T}

]
= GS0EQ

∗ [
e−qτ1{τ≤T}

]
.

Therefore, the above discussion with constant JtNV intensity can be extended to independent
stochastic interest rate without much complexity.

When the stochastic interest rate is correlated with the capital ratio, the dimensionality of
the pricing problem increases by one. The evaluation becomes more cumbersome and analytical
tractability of the pricing model depends on the choice of the interest rate model. The evaluation
of PC and PF can be performed by using the forward measure, while the evaluation of Q (τ ≤ t)
and PE becomes two-dimensional problems (capital ratio and interest rate). On the other hand, the
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incorporation of stochastic interest rate makes the numerical partial differential equation method
suffer from the curse of dimensionality (see Sect. 2.5). Given that interest rate risk is secondary
compared to the credit and equity risks, it is not quite worthwhile to introduce correlated stochastic
interest rates in the pricing models of CoCo bonds.

2.5 State-dependent intensity

The nice analytical tractability in the direct computation of the conversion probability cannot be
retained when we consider more general payoff structure upon equity conversion and/or the intensity
of the JtNV trigger becomes state dependent. We show how to formulate the pricing problem into
a partial differential equation (PDE) formulation. Once the full characterization of the auxiliary
conditions in the PDE formulation is known, one may compute the numerical solution of the pricing
problem using standard finite difference schemes.

Since equity conversion occurs either at an accounting trigger or JtNV trigger, we may decom-
pose the stock price at the conversion time τ into the following form:

Sτ = SτB1{τR>τB} + (1 + γ)SτR−1{τB>τR}

where there is a stock price jump at a JtNV trigger (τ = τR). By making use of the following
identities:

EQ
[
e−rτBGSτB1{τB≤T}1{τB<τR}

]
= EQ

[
e−

∫ τB
0 (r+λu) duGSτB1{τB≤T}

]
,

EQ
[
e−rτR−G(1 + γ)SτR−1{τR−≤T}1{τR−<τB}

]
= EQ

[∫ τB∧T

0
e−

∫ u
0 (r+λs) dsλu(1 + γ)GSu du

]
,

where 1{τR−≤T}1{τR−<τB} = 1{τR−≤τB∧T} is used in the second identity, the conversion value can

be expressed as

PE = EQ
[
e−

∫ τB
0 (r+λu) duGSτB1{τB≤T} +

∫ τB∧T

0
e−

∫ u
0 (r+λs) dsλu(1 + γ)GSu du

]
. (2.5)

Following a similar interpretation in the employee stock option model of Leung and Sircar (2009),
the two terms in eq.(2.5) can be interpreted as follows.

1. When yt hits the barrier at τB, the investor receives the payoff GSτB ;

2. When t < τB ∧ T , the investor receives the continuous cash-flow λ(1 + γ)GSt.

In our CoCo bond model, the barrier variable is the log capital ratio yt while jump only happens
in the log stock price process xt at a JtNV trigger. Before the jump time, the joint process (xt, yt)
is a bivariate diffusion. Therefore, we can compute the expectation by solving a PDE instead of
a PIDE. A similar solution technique has been used in solving an optimal stopping problem for
jump-diffusion process with a fixed jump size (Egami and Dayanik, 2012).

Next, we present the PDE formulation of the pricing function P (x, y, t) which solves the conver-
sion value of the CoCo bond, where PE = P (x0, y0, 0). Given the joint dynamics (pre-conversion)
of (xt, yt) in eq.(2.1), the corresponding generator is given by

L =
σ2

2

∂2

∂x2
+ α(x, y)

∂

∂x
+ ρση

∂2

∂x∂y
+
η2

2

∂2

∂y2
+ κ (θ − y)

∂

∂y
,

where
α(x, y) = r − q − σ2/2− γλ(x, y).

11



Under certain mild technical conditions such as (i) P ∈ C1,2([0, T ),R2) and (ii) the terminal payoff
P (x, y, T ) is integrable (Karatzas and Shreve, 1991), the pricing function P is the solution to the
following Dirichlet problem

∂P

∂t
+ LP + λ(x, y)(1 + γ)Gex = [r + λ(x, y)]P, (2.6)

for (x, y, t) ∈ (−∞,∞)× [yB,∞)× [0, T ]. The boundary condition and terminal condition are

P (x, yB, t) = Gex,

P (x, y, T ) = 0,

respectively. We assume the usual natural far field boundary conditions for x→ ±∞ and y →∞.
The formulation in eq.(2.6) can be considered as an inhomogeneous PDE due to the non-linear
inhomogeneous term λ(x, y)(1 + γ)Gex, which represents the payoff due to the random termination
at a JtNV trigger. On the other hand, the boundary condition at y = yB is dictated by the equity
conversion payoff at an accounting trigger.

We may model the different forms of dependence of the stock price and/or capital ratio on the
financial state of the issuing bank through an appropriate choice of the state dependent intensity
function. Some of these choices are discussed below.

1. Stock price dependent intensity:

λ(x) = exp(a0 − a1x), a1 > 0,

which prescribes an inverse relation between the intensity and stock price, with λ(x, y)→∞
as S = ex → 0. Das and Sundaram (2007) use a similar specification for a hybrid equity-credit
modeling of convertible bonds. This specification takes the stock price as a measure of the
financial health of the bank in which a low level of stock price indicates a high probability of
PONV trigger.

2. Capital ratio dependent intensity:

λ(y) = b01{y≤yRT }, b0 > 0,

where yRT is a predetermined level that specifies the warning region in which the capital
ratio is close to the contractual threshold such that the supervisory authority initiates the
monitoring procedure of potential activation of the PONV trigger.

3. We can combine the above two specifications as a sum of two terms:

λ(x, y) = exp(a0 − a1x) + b01{y≤yRT }, a1 > 0, b0 > 0.

This is seen to provide more flexible modeling of the PONV trigger.

2.6 Other contractual features

We would like to illustrate the versatibility of our pricing approach that it can accommodate more
complex structural features of the CoCo bonds. We consider three examples of traded CoCo bond
contracts with various payoff structures, like the floored payoff, coupon cancellation and perpetuality
with callable right.

12



2.6.1 Floored payoff

The issuer might impose a floor on the conversion value. For example, the Buffer Capital Note
(BCN) issued by Credit Suisse has the conversion price limited at a floor of 20 USD per share.
The floor feature is attractive from an investor’s perspective since this limits the downside risk of a
CoCo bond that equity conversion occurs at stock price that may be far too low.

The conversion value with a floored payoff can be formulated as

PFloorE = GEQ
[
e−rτmax (Sτ ,K) 1{τ≤T}

]
, τ = τB ∧ τR,

where K is the preset floor. As usual, by performing the following decomposition

max (Sτ ,K) = max (SτB ,K) 1{τR>τB} + max
(

(1 + γ)SτR− ,K
)

1{τB>τR},

the conversion value with a floored payoff can be expressed as

PFloorE = GEQ
[
e−

∫ τB
0 (r+λu) dumax (SτB ,K) 1{τB≤T}

+

∫ τB∧T

0
e−

∫ u
0 (r+λs) dsλumax ((1 + γ)Su,K) du

]
.

The corresponding PDE formulation is seen to be

∂P

∂t
+ LP + λ(x, y)(1 + γ)Gmax ((1 + γ)ex, F ) = [r + λ(x, y)]P,

for (x, y, t) ∈ (−∞,∞)× [yB,∞)× [0, T ]. The auxiliary conditions are given by

P (x, yB, t) = Gmax (ex,K) ,

P (x, y, T ) = 0.

Constant intensity
Under the assumption that the intensity λ is constant and (1 + γ)SτR− < K, we can evaluate the

conversion value with a floored payoff using the extended Fortet method (see Appendix B.2 for
full details). The key step involves the determination of the numerical approximation to the joint
density of (xτB , τB) defined as follow:

Q (xτB ∈ dx, τB ∈ dt) = q (x, t) dxdt.

In the numerical procedure, we discretize the domain for x and t using a set of rectangular grids
with the right-point scheme as:

xi = xlb + i∆x, i = 1, 2, ..., n,

tj = j∆t, j = 1, 2, ...,m.

The numerical approximation for the joint density can be computed by the following recursive
scheme

q (xi, t1) = ∆x Φ (xi, t1) , j = 1,

q (xi, tj) = ∆x

[
Φ (xi, tj)−

j−1∑
h=1

n∑
k=1

q (xk, th)ψ (xi, tj ;xk, th)

]
, j = 2, 3, ...,m,
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in which analytic closed form formulas for Φ(·) and ψ(·) are available for the bivariate Gaussian
process (see Appendix B.2).

Once the joint density values at successive time points are known, the conversion value with
a floored payoff can be evaluated by performing numerical integration of the following integral
formula:

PFloorE = G

∫ T

0

∫ ∞
−∞

q (x, u) e−(r+λ)umax (ex,K) dxdu+GK

∫ T

0
λe−(r+λ)uQ (τB > u) du.

Note that the optionality in max((1 + γ)SτR− ,K) is avoided by assuming sufficiently strong down-

ward jump in stock price upon PONV trigger such that (1 + γ)SτR− < K.

2.6.2 Coupon cancellation

It is straightforward to modify our equity-credit framework to deal with other interesting features
that appear in some issued CoCo bonds. One of these features is the coupon cancellation mechanism
that entitles the issuer to the discretionary right to cancel the coupon payments before the conversion
event. This can be considered as a partial conversion in which the issuing bank restructures her
balance sheet by reducing the liability on future cash outflows. Corcuera et al. (2014) discuss the
coupon cancellation feature of the CoCo bond issued by the Spanish bank BBVA, in which a coupon
payment can be cancelled upon the sole discretion of the bank or the supervisory authority.

We can model the coupon cancellation (CC) event in a reduced form manner by introducing an
independent exponential random variable τC ∼ Exp(λC). The CoCo bond price can be expressed
as

PCCE =
n∑
i=1

EQ
[
cie
−rti1{τC>ti}

]
+ EQ

[
Fe−rT1{τ>T}

]
+ EQ

[
e−rτGSτ1{τ≤T}

]
, τ = τB ∧ τR,

such that the coupon payments are related to the stopping time τC only, while the principal pay-
ment and conversion value remain the same. The exogenous feature of τC is also consistent with
the discretionary nature of coupon deferral or coupon cancellation in reality. Assuming that the
random time τC is independent of the other random times, it is straightforward to extend to time-
dependent intensity like those with piecewise constant intensity so that the term structure of coupon
cancellation probability can be modeled.

2.6.3 Perpetual CoCo bond with callable feature

One innovative design of CoCos involves perpetual maturity along with a callable feature. For
example, the Perpetual Subordinated Contingent Convertible Securities issued by the HSBC bank
can be redeemed at par by the issuer on any coupon reset date. The major challenge in pricing these
CoCo bonds lies in the modeling of the issuer’s call policy. As noted in Jarrow et al. (2010), one may
approximate the issuing bank’s call policy using a reduced form approach from market perspective.
The reduced form approach of modeling the call policy can be found in other applications, like
mortgage prepayment and exercise of employee’s stock options.

Suppose that the CoCo bond is perpetual with a constant coupon stream c and call price K.
We introduce an independent exponential random variable τC ∼ Exp(λC) as the random time of
issuer’s call. This is seen to be equivalent to our equity-credit framework by setting γ = 0 and
λ = λC . In view of this observation, we can formulate the CoCo bond price as

PCallableE =
∞∑
i=1

EQ
[
ce−rti1{τC∧τB>ti}

]
+ EQ

[
e−rτCGK1{τB>τC}

]
+ EQ

[
e−rτBGSτB1{τC>τB}

]
,
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where K is the call price as specified in the contract. The first term is the coupon payment stream
up to issuer’s call or accounting trigger, the second term is the discounted expected value when
the issuer call before conversion while the third term is the discounted expected value when the
accounting trigger occurs prior to a call.

3 Numerical Examples

We consider a CoCo bond with the following contractual specification: 5-year maturity, 10% coupon
rate with the face value F of $100, and the number of conversion shares G is set to be 200 (which
implies the conversion price to be $0.5). The accounting triggering level is set to be 5%, which gives
yB = ln 0.05. Unless otherwise stated, the current stock price is set to be S0 = 0.5.

3.1 Model parameters

Given the contractual specification of a CoCo bond (ci, F and G), we need to perform calibration
on the model parameters (σ, ρ, η, κ, θ) for the bivariate process and (λ, γ) for the embedded JtNV
feature. While our proposed model is versatile to capture various CoCo bond features, the parameter
calibration is not easy due to the lack of market data. For instance, the difficulty to infer the time-
series of capital ratio makes the estimation of the capital ratio volatility η and correlation coefficient
ρ not an easy task. Moreover, the consistent estimation of the mean reversion parameters requires
not only a large number of observations but also a long time span of historical data (Yu, 2012).
On the other hand, since an actual equity conversion is yet to occur, it is hard to disentangle the
Poisson jump part and pin down the intensity and corresponding jump size in the stock price.

In our sample calculations, we set some economically reasonable parameter values in the pricing
model of CoCos as follows.

r q σ ρ η κ θ λ γ
0.02 0.01 0.40 0.50 0.30 0.20 ln(0.10) 0.05 -0.70

We set the correlation coefficient to be 0.5 to reflect the moderate but imperfect comovement of the
capital ratio and the stock price. We take the stock price volatility to be 40% to reflect a volatile
market environment such that the equity risk is important. For the capital ratio dynamics, we
assume a long-term level of 10% with a mean reversion speed of 0.2, indicating that the bank takes
around 5 years to adjust its capital ratio to its long-term mean level. This follows from Collin-
Dufresne and Goldstein (2001) who take the value of 0.18 for the mean reversion speed of their
dynamic leverage ratio model. The annualized volatility of the log capital ratio taken at the level
of 30% reflects a non-negligible probability of accounting trigger for a time horizon of 5 years.

For the jump part, we assume that the JtNV intensity is λ = 0.05 with the jump size γ = −0.70.
The intensity of 5% can be translated to a credit spread of roughly 350 bps using the rule-of-thumb:
sCDS = λ(1−R) with the recovery rate R of 30%.2 As discussed, the jump size upon conversion is
rather arbitrary and it requires the trader’s own judgment. We set a high level of 70% write-down
in stock price to reflect the arrival of a negative shock (bad news) leading to a PONV conversion.
In the case of state dependent intensity, we choose a1 = 0, 0.5 or 1.0 in the functional form of the
stock price dependence and a0 is set by matching λ(x0) = 0.05. This allows us to have a benchmark
comparison with the constant intensity case. Figure 1 illustrates the inverse relationship between
the conversion intensity and stock price with varying values of a1.

2We apply the CDS analogy here because a conversion always happens before a default. Hence, the CDS implied
default intensity can be justified as a lower bound of the conversion intensity.
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3.2 Check for numerical accuracy among various numerical schemes

In our sample calculations for checking numerical accuracy among various numerical schemes for
pricing the CoCo bonds, we used the parameter values: S0 = 100 and G = 1 for convenience. We
set the time horizon to be t = 1, 2, 3, 4, 5. We calculated the conversion value PE using the Fortet
method, explicit finite difference (FD) scheme and Monte Carlo simulation. For the FD scheme,
we adopted 500 grid points in both the x- and y-direction and chose the natural boundary points
to be sufficiently far such that the numerical results converge. In order to ensure that the explicit
FD scheme is stable, we chose a small time step ∆t = 0.0001. For the Monte Carlo simulation, we
also took a small time step ∆t = 0.0001 in order to capture the barrier hitting event effectively.
The number of simulation paths was taken to be 100, 000 in order to achieve sufficiently good
accuracy. We implemented the Fortet method using the right point scheme and chose ∆t = 0.0001
for consistency with other numerical schemes. Comparison of the numerical results using these
three numerical methods are presented in Tables 1a, 1b and 1c. Good agreement of the numerical
results for PE using various numerical schemes is confirmed.

3.3 Sensitivity analysis: constant intensity

We performed sensitivity analysis to examine how various model parameters may affect the CoCo
bond price. First, we focus on the simple case with constant intensity and conversion into shares
with no other complex contractual provision. In this case, the pricing formula can be expressed
succinctly as

P =
n∑
i=1

cie
−rti [1−Q (τ ≤ ti)] + Fe−rT [1−Q (τ ≤ T )] +GS0EQ

∗ [
e−qτ1{τ≤T}

]
. (3.1)

Here, Q is the risk neutral measure and Q∗ is the stock price measure. The correlation coefficient
ρ and stock price volatility σ enter into the pricing formula implicitly through the adjustment term
added to the capital ratio dynamics under the stock price measure Q∗ in the conversion value PE
term [the last term in eq.(3.1)]. In other words, the correlation coefficient and stock price volatility
have no direct impact on the bond components PC and PF [the first two terms in eq.(3.1)].3 From
Lemma 2, we observe that the conversion value PE is related to the conversion probability under
the stock price measure Q∗. When the correlation coefficient is positive, ρ > 0, the capital ratio
dynamics has a higher mean reversion level due to the adjustment term ρση > 0. This implies a
smaller conversion probability under Q∗ and hence a smaller conversion value PE . These theoretical
observations are essential to understand the numerical plots of the pricing properties of the CoCo
bonds presented below.

Impact of correlation coefficient, ρ

The joint density of the conversion time and stock price at an accounting trigger is highly dependent
on the correlation coefficient ρ. When the correlation coefficient ρ is more positive, the capital ratio
exhibits a stronger correlated movement with the stock price. As the capital ratio declines in value
and hits the accounting trigger threshold, the stock price tends to stay at a lower level, thus resulting
a smaller conversion value PE . This explains why the CoCo price is a decreasing function of ρ. By
comparing Figures 2a and 2b, we observe that the impact of ρ on the CoCo price is more significant

3This differs from the equity derivative approach in which the conversion time is proxied by the first passage time
of the stock price to an implied threshold, in which the stock price volatility affects directly the CoCo bond price
through the conversion probability.
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when the current capital ratio is further from the trigger threshold and the stock price volatility is
higher. In Section 3.6, we present more detailed discussion of ρ on the conditional distribution of
the stock price at an accounting trigger and the resulting CoCo price.

Impact of stock price volatility, σ

Figure 3 shows that the CoCo bond price is decreasing with stock price volatility σ when the
correlation coefficient ρ is positive. This pricing property is somewhat similar to that of a reverse
convertible. When ρ is zero, the CoCo bond price is insensitive to the stock price volatility (vega
value is zero). This is expected since the conversion value is not affected by σ due to the martingale
property of the discounted stock price and the bond component is not affected by the stock price
when the intensity is constant. The sensitivity of the CoCo price with respect to stock price volatility
is stronger when the correlation coefficient is closer to one. Similar to a reverse convertible, there
is no upside gain on the CoCo price when the stock price increases. However, the downside move
of the stock price correlated with downside move in the capital ratio at positive correlation leads to
a higher probability of activation of the loss absorption feature in the CoCo bond. This negative
effect on the CoCo bond becomes more prominent when the stock price volatility is higher.

Impact of conversion intensity, λ

Figure 4 reveals the sensitivity of the CoCo bond price to the level of JtNV intensity λ at different
sizes of negative stock price jump γ at conversion. We vary the jump size as γ = -0.3, -0.5, -0.7,
which means that the proportional drop in stock price due to a JtNV is assumed to be 30%, 50% and
70%, respectively. Since the capital ratio of 8% is quite far away from the triggering threshold, most
of the conversion risk of the CoCo bond lies at the possibility of a JtNV with the associated drop of
the stock price and conversion value. The CoCo bond price can be highly sensitive to the intensity
under the assumption of a large downward jump size. In other words, the added JtNV feature
provides the flexibility to incorporate a risk premium that lowers the value of a CoCo bond. This
may explain lowering of the market price of the CoCo bond even when the conversion probability
generated by the capital ratio diffusion is relatively small.

3.4 Floored payoff

We would like to examine how the floored payoff may affect the conversion risk. In Figure 5, we
show the CoCo bond price with different levels of stock price (delta risk) and stock price volatility
(vega risk) with K = 0.2 and K = 0.4, corresponding to setting the floor to be 40% and 80% of
the current stock price level S0 = 0.5, respectively. For a high floor value set at K = 0.4, the CoCo
bond price approaches the bond floor as the stock price falls close to the floor level of K = 0.4.
For the vega risk, Figure 5(b) shows that the CoCo bond with a floored payoff is less sensitive to
the stock price volatility and hence exhibits lower vega sensitivity. When we have the floor level
set at a lower level K = 0.2, the floored payoff serves to protect the investor only at times with
extremely low stock price. When the stock price level and volatility are at normal levels, the CoCo
bond behaves like a standard CoCo bond without the floor and exhibits similar vega sensitivity. To
summarize, the floored payoff provides protection for the investor from conversion risk and set a
lower bound on the CoCo bond price. This generates a positive convexity of the CoCo bond price
versus the stock price as well as a reduction on the vega sensitivity.
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3.5 State dependent intensity

We explore the impact of stock price dependent intensity as exhibited by the following function

λ(x) = exp(a0 − a1x), a1 > 0;

in particular, the impact of the coefficient a1 on the delta risk (see Figure 6). When a1 = 0, the
intensity function is reduced to the constant case and the CoCo bond price has a linear dependence
to the stock price (due to the martingale property). When we introduce the stock price dependent
intensity with a1 = 0.5 and a1 = 1.0, a negative convexity effect appears when the stock price is
low. This is due to a higher probability of a JtNV trigger at low stock price such that the CoCo
bond price becomes lower. On the other hand, the JtNV intensity decreases gradually as the stock
price increases due to the inverse relationship. The CoCo bond prices converge to those under
constant intensity (a1 = 0) at high stock price. The incorporation of an inverse relation of the state
dependent intensity on the stock price is important since the pricing model can generate negative
convexity that models the death spiral effect in which equity sensitivity of a CoCo bond increases
as the stock price is under distressed.

We would like to examine how the stock price dependent intensity induces additional vega
sensitivity of the CoCo bond price. Figure 7(a) shows that when the correlation coefficient is zero,
the CoCo bond price decreases with increasing stock price volatility. Recall from Figure 3 that the
vega sensitivity is zero under constant intensity when ρ = 0. When the intensity has an inverse
stock price dependence, a higher stock price volatility implies a higher chance of JtNV trigger since
the stock price is more likely to diffuse to a lower level. As expected, the vega sensitivity is higher
when we set a larger value of a1. In Figure 7(b), we observe at ρ = 0.5 that a stronger stock price
dependence on the intensity leads to higher vega sensitivity of the CoCo bond price, though the
impact is less when compared with the case where the correlation is zero.

3.6 Conditional distribution of the stock price at an accounting trigger

We would like to examine the conditional distribution of the stock price at an accounting trigger.
This can be seen as an extension to the notion of implied trigger in Spiegeleer and Schoutens (2012)
when there is an imperfect correlation between the stock price and capital ratio.

By the law of conditional probability, we deduce that the conditional distribution of xt at the
accounting trigger τB is given by

Pr (xτB ∈ dx| τB ∈ dt) =
Pr (xτB ∈ dx, τB ∈ dt)

Pr (τB ∈ dt)
. (3.2)

In order to examine the impact of varying levels of interaction between the stock price and capital
ratio, we chose ρ = 0.3 and ρ = 0.9 in our sample calculations. The dispersion of the stock
price distribution can be significant when ρ = 0.3. In Table 2, we observe that the mean of the
implied stock price distribution can be much higher than the initial stock price of 0.5, indicating
the possibility of significant divergence between the capital ratio and stock price at an accounting
trigger. When ρ is 0.9, the mean of the implied stock price distribution concentrates around and
lies below 0.5. Figures 8(a) and 8(b) show that the implied stock price distribution becomes more
concentrated when ρ increases. This indicates that under a sufficiently high value of ρ, it becomes
reasonable to infer the chance of an accounting trigger by monitoring the stock price level. This
is consistent with the equity derivative approach that models the accounting trigger by the hitting
time of the stock price to a lower barrier (down-and-out).
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3.7 Decomposition into the bond and equity components

We examine the decomposition of the CoCo bond value into its bond and equity components with
varying values of the capital ratio. This serves to illustrate the change in equity exposure of the
CoCo bond as the capital ratio increases.

As revealed in Figure 9, the proportion of the equity component can be almost half of the CoCo
bond value when the capital ratio is close to the accounting trigger threshold of 5%. This highlights
the importance of modeling the interaction of the bivariate stock price and capital ratio dynamics.
When there is no JtNV (λ = 0), the equity part of a CoCo bond becomes small as the capital ratio
increases to 12%, indicating diminishing equity exposure. When there exists more significant JtNV
risk (λ = 0.05), we observe a residual equity component of the CoCo bond even when the capital
ratio increases to 12%. This is consistent with the market consensus that the CoCo bond remains
to face with some equity risk when the possibility of JtNV persists.

4 Conclusion

We propose an enhanced equity-credit model with underlying bivariate process of the stock price and
capital ratio, together with equity conversion feature that is subject to accounting trigger and point-
of-non-viability (PONV) trigger. The accounting trigger is modeled using the structural approach as
the event of the capital ratio hitting a preset contractual threshold value from above. On the other
hand, we model the PONV trigger by the reduced form approach and consider it as a Poisson arrival
with specified conversion intensity. We consider various specifications of the contractual payoff upon
equity conversion from actual CoCo bond contracts traded in the market. We also discuss different
functional forms of state dependence of the conversion intensity on the stock price and capital
ratio. For general payoff structure upon equity conversion and state dependent conversion intensity
under PONV trigger, we manage to formulate the pricing problem as a two-dimensional partial
differential equation (PDE). The numerical solution of the governing PDE can be computed using
standard finite difference schemes. Under certain simplifying assumption on the conversion payoff
and constant conversion intensity, we reduce the pricing problem to evaluation of the conversion
probability. We show how to construct efficient numerical algorithms using the Fortet method to
compute prices of the CoCo bonds. We also discuss various issues in the calibration of the model
parameters from market prices of traded instruments. The pricing properties of the CoCo bonds
under various market conditions and the sensitivity analysis of the price functions under varying
values of the model parameters are examined. Our bivariate equity-credit model provides a flexible
pricing framework that can incorporate various modeling features and contractual specifications of
CoCo bonds traded in the market.
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A Proof of Lemmas

A.1 Lemma 1

We consider a general stochastic intensity λt = λ(Xt) with Markov process Xt ∈ R2. Since τ =
τB ∧ τR, the decomposition into the two events {τB > τR} and {τR > τB} gives

Q (τ ≤ t) = EQ
[
1{τB∧τR≤t}

]
= EQ

[
1{τR≤t}1{τB>τR}

]
+ EQ

[
1{τB≤t}1{τR>τB}

]
.

The first term corresponds to the scenario where the JtNV trigger occurs prior to the accounting
trigger. By virtue of iterated expectation, we obtain

EQ
[
1{τR≤t}1{τB>τR}

]
= EQ

[
EQ
[
1{τR≤t}1{τB>τR}

∣∣ τR = u
]]

=

∫ t

0
EQ
[
λ (Xu) e−

∫ u
0 λ(Xs) ds1{τB>u}

]
du.

The second term gives the conversion probability conditional on accounting trigger occurring prior
to the JtNV trigger. It is straightforward to obtain

EQ
[
1{τB≤t}1{τR>τB}

]
= EQ

[
e−

∫ τB
0 λ(Xu) du1{τB≤t}

]
.

A.2 Lemma 2

The proof follows from Lemma 11.6.1 and Theorem 11.6.2 in Shreve (2004). From the adjusted
stock price process S̃t, we can decompose the Radon-Nikodym density as

Zt = ZctZ
J
t ,

where

Zct = exp

(
σW 1

t −
σ2

2
t

)
and ZJt = exp (−γλt) (1 + γ)Nt ,

corresponding to the change-of-measure for the continuous path and jump path, respectively. Since
the Brownian motion is only affected by the change-of-measure Zct , by the Girsanov theorem, we
have

dB1
t = dW 1

t − σ dt.

We have the log stock price under the stock price measure Q∗ as

dxt =

(
r − q +

σ2

2
− λγ

)
dt+ σ dB1

t + ln(1 + γ) dNt,

while the dynamic equation for yt under Q∗ is given by

dyt = κ (θ − yt) dt+ η
(√

1− ρ2 dW 2
t + ρ dW 1

t

)
= [κ (θ − yt) + ρση] dt+ η dB2

t ,

where dB2
t =

√
1− ρ2 dW 2

t +ρ dB1
t and

〈
dB1

t , dB
2
t

〉
= ρ dt. On the other hand, the Poisson process

is affected only by the change-of-measure ZJt as

ZJt = exp (−γλt) (1 + γ)Nt = e(λ−λ
∗)t

(
λ∗

λ

)Nt
,

where the second equality is derived from the change-of-measure for a Poisson process with constant
intensity. Hence, the intensity becomes λ∗ = (1 + γ)λ under the stock price measure Q∗.
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B Fortet Method

B.1 One-dimensional Fortet scheme

Consider the following dynamic equation of the capital ratio yt under the stock price measure Q∗,
where

dyt = [κ(θ − yt) + ρση] dt+ η dBt.

Let τB denote the first passage time of yt hitting the threshold yB and q(t) be the corresponding
density function defined by Pr {τB ∈ dt} = q (t) dt. The transition probability density for the process
yt conditional on s < t is defined by

Pr
{
yt ∈ dy| ys ∈ dy′

}
= f

(
y, t; y′, s

)
dy.

Suppose the capital ratio process starts at y0 at t = 0 and moves downstream to y at time t, where
y < yB < y0, then the process must cross the threshold yB at some time prior to time t as it moves
from y0 to y. By the continuity and strong Markov property of the capital ratio process, we observe

f (y, t; y0, 0) =

∫ t

0
q (s) f (y, t; yB, s) ds.

Integrating y on both sides over (−∞, yB], we obtain the Fortet equation as follows:

N

(
yB − µ (t, 0)

Σ (t, 0)

)
=

∫ t

0
q (s) N

(
yB − µ (t, s)

Σ (t, s)

)∣∣∣∣
ys=yB

ds, (B.1)

where

µ (t, s) = yse
−κ(t−s) +

(
θ +

ρση

κ

) [
1− e−κ(t−s)

]
, Σ2 (t, s) =

η2

2κ

[
1− e−2κ(t−s)

]
.

We write

a (t) =
yB − µ (t, 0)

Σ (t, 0)
, b (t, s) =

yB − µ (t, s)

Σ (t, s)

∣∣∣∣
ys=yB

,

so that eq.(B.1) can be expressed as

N (a (t)) =

∫ t

0
q (s)N (b (t, s)) ds.

This is seen to be a Volterra integral equation of the first kind. To solve the integral equation
numerically, we apply the right point scheme of numerical integration. By approximating the
integral over the discrete time points, tj = j∆t, j = 0, 1, ...,m, where ∆t is the uniform time step,
we obtain

N (a (tj)) ≈
j∑
i=1

qiN (b (tj , ti)) .

Here, we have chosen the discrete approximation

qj ≈ Pr {τB ∈ (tj−1, tj ]} , j = 1, 2, ...,m.

We then deduce the following recursive scheme for calculating qj , j = 1, 2, . . . ,m, successively
(Longstaff and Schwartz, 1995; Coculescu et al., 2008):

q1 = N (a (t1)) ,

qj = N (a (tj))−
j−1∑
i=1

qiN (b (tj , ti)) , j = 2, 3, ...,m.
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B.2 Two-dimensional Fortet scheme

The calculation for floored payoff and the conditional stock price distribution require the joint
density of (xτB , τB) under the risk neutral measure Q. The joint dynamics of (xt, yt) conditional on
(xs, ys), s < t, and the event {τR > t} can be written as

xt = xs +

(
r − q − 1

2
σ2 − λγ

)
(t− s) +

∫ t

s
σ dB1

u,

yt = yse
−κ(t−s) + θ

[
1− e−κ(t−s)

]
+

∫ t

s
ηe−κ(t−u)dB2

u,

where
〈
dB1

t , dB
2
t

〉
= ρ dt. Note that an adjustment term −λγ is added in the drift term of xt due

to the constant intensity jump upon equity conversion. We would like to apply the Fortet method
to find the numerical approximation of the joint density q(x, t) of (xτB , τB) as defined by

Pr {xτB ∈ dx, τB ∈ dt} = q (x, t) dxdt.

Let f(y, x, t; y′, x′, s) denote the transition probability density for the bivariate process (yt, xt) con-
ditional on (xs, ys), s < t, where

Pr
{
yt ∈ dy, xt ∈ dx| ys ∈ dy′, xs ∈ dx′

}
= f

(
y, x, t; y′, x′, s

)
dydx.

Similar to the one-dimensional case, suppose yt starts at y0 at t = 0 and moves downstream to y at
time t, then the capital ratio process crosses yB at some time prior to time t, where y < yB < y0.
By the continuity and strong Markov property of the joint process (yt, xt), we have

f (y, x, t; y0, x0, 0) =

∫ t

0

∫ ∞
−∞

q
(
x′, s

)
f
(
y, x, t; yB, x

′, s
)
dx′ds.

Integrating y on both sides over (−∞, yB], we obtain the extended Fortet equation as follows:

Φ (x, t) =

∫ t

0

∫ ∞
−∞

q
(
x′, s

)
ψ
(
x, t;x′, s

)
dx′ds, (B.2)

where the marginal distribution functions are given by

Φ (x, t) =

∫ yB

−∞
f (y, x, t; y0, x0, 0) dy, ψ

(
x, t;x′, s

)
=

∫ yB

−∞
f
(
y, x, t; yB, x

′, s
)
dy,

and whose closed form expressions will be presented later. Since y0 > yB, it is seen that

lim
t→0

Φ (x, t) = 0, lim
t→s

ψ
(
x, t;x′, s

)
= δ

(
x− x′

)
, (B.3)

where δ (·) is the Dirac delta function. In order to solve the two-dimensional integral equation (B.2)
numerically, we discretize the domain for x and t using a set of rectangular grids as follows:

xi = xlb + i∆x, i = 1, 2, ..., n, and tj = j∆t, j = 1, 2, ...,m.

We approximate the integral equation (B.2) by

Φ (xi, tj) =

j∑
`=1

n∑
k=1

q (xk, t`)ψ (xi, tj ;xk, t`) ,
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where q(xi, tj) denotes the discrete approximation

q (xi, tj) ≈ Pr {xτB ∈ (xi−1, xi], τB ∈ (tj−1, tj ]} .

For j = 1, we obtain the approximation formula

∆x Φ (xi, t1) = ∆x
n∑
k=1

q (xk, t1)ψ (xi, t1;xk, t1) = q (xi, t1) ,

using the properties in eq.(B.3). For j > 1, we obtain the approximation scheme

∆x Φ (xi, tj) = ∆x
n∑
k=1

q (xk, tj)ψ (xi, tj ;xk, tj) + ∆x

j−1∑
`=1

n∑
k=1

q (xk, t`)ψ (xi, tj ;xk, t`) .

By eq.(B.3), the first term on the right hand side gives q (xi, tj). As a result, we have the following
recursive scheme for finding q(xi, tj) at successive time points tj , j = 1, 2, . . . , n, and at varying
level of xi, i = 1, 2, . . . , n:

q (xi, t1) = ∆x Φ (xi, t1) ,

q (xi, tj) = ∆x

[
Φ (xi, tj)−

j−1∑
`=1

n∑
k=1

q (xk, t`)ψ (xi, tj ;xk, t`)

]
, j = 2, 3, ...,m. (B.4)

Lastly, we derive the closed form expressions for Φ and ψ in eq.(B.4). To this end, we observe
that yt|xt,Fs ∼ N

(
µ (t; s) ,Σ2 (t; s)

)
is Gaussian and whose conditional moments under the risk

neutral measure Q can be obtained by the projection theorem as follows:

µ (t; s) , Es [yt|xt] = Es [yt] +
covs (yt, xt)

vars [xt]
[xt − Es [xt]] ,

Σ2 (t; s) , vars [yt|xt] = vars [yt]−
covs (yt, xt)

2

vars [xt]
.

The unconditional moments are readily obtained as

Es [xt] = xs +

(
r − q − 1

2
σ2 − λγ

)
(t− s) , Es [yt] = yse

−κ(t−s) + θ
[
1− e−κ(t−s)

]
,

vars [xt] = σ2 (t− s) , vars [yt] =
η2

2κ

[
1− e−2κ(t−s)

]
, covs (yt, xt) = ρση

[
1− e−κ(t−s)

κ

]
.

The conditional probability relation gives

f (yt, xt, t; ys, xs, s) = f (xt, t;xs, s) f (yt, t; ys, xs, s|xt) ,

where

f (xt, t;xs, s) =
1√

2πσ2 (t− s)
exp

(
−
[
xt − xs −

(
r − q − 1

2σ
2 − λγ

)
(t− s)

]2
2σ2 (t− s)

)
,

f (yt, t; ys, xs, s|xt) =
1√

2πΣ2 (t; s)
exp

(
− [yt − µ (t; s)]2

2σ2Σ2 (t; s)

)
.
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The integration of the above conditional density formula with respect to y over (−∞, yB) gives the
following closed form expressions for Φ (x, t) and ψ (x, t;x′, s):

Φ (x, t) = f (xt, t;x0, 0)N

(
yB − µ (t; 0)

Σ (t; 0)

)
,

ψ
(
x, t;x′, s

)
= f (xt, t;xs, s)N

(
yB − µ (t; s)

Σ (t; s)

)∣∣∣∣
ys=yB

.
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(i) Capital ratio = 6%

Time Fortet FD Scheme Monte Carlo

1 37.762 37.769 37.420 (0.139)
2 46.612 46.617 46.115 (0.141)
3 51.090 51.094 50.670 (0.142)
4 54.080 54.083 53.681 (0.141)
5 56.354 56.355 55.871 (0.143)

(ii) Capital ratio = 8%

Time Fortet FD Scheme Monte Carlo

1 6.627 6.629 6.459 (0.062)
2 14.526 14.527 14.418 (0.091)
3 20.027 20.028 19.877 (0.104)
4 24.191 24.190 24.004 (0.113)
5 27.573 27.565 27.600 (0.121)

(iii) Capital ratio = 10%

Time Fortet FD Scheme Monte Carlo

1 2.241 2.241 2.235 (0.031)
2 6.638 6.639 6.664 (0.057)
3 10.949 10.948 10.917 (0.074)
4 14.733 14.726 14.729 (0.087)
5 18.059 18.038 17.850 (0.097)

Table 1a: Numerical calculations of the conversion value with constant intensity λ = 0.05 and
varying values of the capital ratio using the Fortet method, finite difference (FD) scheme and
Monte Carlo simulation method. The bracket quantities are the standard errors of the Monte Carlo
simulation results. Good agreement of the numerical results using different numerical methods is
observed.
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(i) Capital ratio = 6%

Time FD Scheme Monte Carlo

1 37.720 37.170 (0.138)
2 46.472 46.029 (0.141)
3 50.827 50.381 (0.141)
4 53.674 53.300 (0.141)
5 55.785 55.400 (0.142)

(ii) Capital ratio = 8%

Time FD Scheme Monte Carlo

1 6.591 6.511 (0.063)
2 14.379 14.141 (0.090)
3 19.714 19.663 (0.103)
4 23.666 23.623 (0.112)
5 26.795 26.795 (0.118)

(iii) Capital ratio = 10%

Time FD Scheme Monte Carlo

1 2.209 2.172 (0.030)
2 6.503 6.385 (0.056)
3 10.643 10.657 (0.073)
4 14.193 14.152 (0.085)
5 17.230 17.380 (0.094)

Table 1b: Numerical calculations of the conversion value with state dependent intensity specified as
λ(x) = exp(a0 − a1x), where a1 = 0.5 and a0 is set by matching λ(x0) = 0.05. Good agreement of
the numerical results using the finite difference (FD) scheme and Monte Carlo simulation method
is observed. The bracket quantities are the standard errors of the Monte Carlo simulation results.
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(i) Capital ratio = 6%

Time FD Scheme Monte Carlo

1 38.701 38.364 (0.139)
2 47.540 47.158 (0.143)
3 51.900 51.701 (0.143)
4 54.734 54.335 (0.144)
5 56.828 56.704 (0.146)

(ii) Capital ratio = 8%

Time FD Scheme Monte Carlo

1 6.932 6.913 (0.064)
2 14.915 14.846 (0.092)
3 20.342 20.389 (0.106)
4 24.343 24.198 (0.113)
5 27.501 27.506 (0.120)

(iii) Capital ratio = 10%

Time FD Scheme Monte Carlo

1 2.279 2.293 (0.031)
2 6.703 6.643 (0.056)
3 10.938 10.873 (0.073)
4 14.554 14.722 (0.087)
5 17.639 17.584 (0.095)

Table 1c: Numerical calculations of the conversion value with state dependent intensity specified as
λ(x, y) = exp(a0 − a1x) + b01{y≤yRT }, where a1 = 0.5, a0 is set by matching λ(x0) = 0.05, b0 = 0.1
and yRT = 0.07. Good agreement of the numerical results using the finite difference (FD) scheme
and Monte Carlo simulation method is observed. The bracket quantities are the standard errors of
the Monte Carlo simulation results.

Time 1 2 3 4 5

ρ = 0.3 0.48 0.58 0.69 0.82 0.96
ρ = 0.9 0.28 0.31 0.34 0.38 0.43

Table 2: Conditional mean of the stock price distribution at an accounting trigger. At ρ = 0.3, the
mean of the implied stock price distribution can be much larger than the initial stock price of 0.5.
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Figure 1: Inverse relationship between conversion intensity and stock price with varying values of
a1 in the state dependent intensity function.
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(a) Capital ratio = 5.125%.
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(b) Capital ratio = 8%.

Figure 2: Impact of correlation coefficient ρ on the CoCo bond price.
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Figure 3: Impact of stock price volatility σ on the CoCo bond price with capital ratio of 8%.
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Figure 4: Impact of JtNV intensity λ on the CoCo bond price with capital ratio of 8%.
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Figure 5: Impact of floored payoff on the CoCo bond price.
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Figure 6: Effect of stock price dependent intensity on the delta risk of the CoCo bond prices.
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Figure 7: Effect of stock price dependent intensity on the vega risk of the CoCo bond prices.
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(a) Correlation coefficient, ρ = 0.3.
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(b) Correlation coefficient, ρ = 0.9.

Figure 8: Plots of the conditional distribution of stock price at an accounting trigger with varying
values of the correlation coefficient.
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(a) The JtNV intensity is set to zero: the equity exposure dimin-
ishes when the capital ratio stays around 12%.
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(b) The JtNV intensity is set to be 5%: the equity exposure re-
mains to be significant even when the capital ratio stays around
12%.

Figure 9: Decomposition of the CoCo bond value into the bond and equity components.
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