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Abstract

Numerical calculations of risk measures and risk contributions in credit risk models amount to the evaluation
of various forms of quantiles, tail probabilies and tail expectations of the portfolio loss distribution. Though
the moment generating function of the loss distribution in the CreditRisk+ model is available in analytic closed
form, efficient, accurate and reliable computation of risk measures (Value-at-Risk and Expected Shortfall)
and risk contributions for the CreditRisk+ model pose technical challenges. We propose various numerical
algorithms for risk measures and risk contributions calculations of the enhanced CreditRisk+ model under the
common background vector framework using the Johnson curve fitting method, saddlepoint approximation
method, importance sampling in Monte Carlo simulation and check function formulation. Our numerical
studies on stylized credit portfolios and benchmark industrial credit portfolios reveal that the Johnson curve
fitting approach works very well for credit portfolios with a large number of obligors, demonstrating high level
of numerical reliability and computational efficiency. Once we implement the systematic procedure of find-
ing the saddlepoint within an approximate domain, the saddlepoint approximation schemes provide efficient
calculation and accurate numerical results. The importance sampling in Monte Carlo simulation methods
are easy to implement, but they compete less favorably in accuracy and reliability with other numerical al-
gorithms. The less commonly used check function formulation is limited to risk measures calculations. It
competes favorably in accuracy and reliability, but an extra optimization algorithm is required.

Keywords: Value-at-Risk, Expected Shortfall, CreditRisk+ common background vector models, Johnson curve
fitting, saddlepoint approximation, importance sampling, check function

1 Introduction

Based on the actuarial science framework of default risks, the CreditRisk+ model was first formulated by Credit
Suisse First Boston (1997). A good source of research articles on various theoretical extensions and implemen-
tation issues on the CreditRisk+ framework can be found in the book edited by Matthias and Lehrbass (2004).
In order to capture the correlations and severity variations among risky obligors in a portfolio, Akkaya et al.
(2004) model the dependence structures of sector risk and stochastic severity variations of default losses. Giese
(2003) introduces a compound gamma distribution to represent more complex default correlation structures
among risky obligors. However, these attempts to incorporate sector correlation are limited to a narrow range
of covariance structures. Later extensions of the CreditRisk+ framework consider more complex dependence
structures among the random sector variables, like the hidden Gamma model of Han and Kang (2008), extreme
copula model of Wang et al. (2015), and among others.

In this paper, we focus on the common background vector model (CR+-CBV) developed by Fischer and
Dietz (2011), in which dependence between the sector variables is linked to multiple background variables that
may be related to the state of the economy and macroeconomics conditions. Later, Fischer and Mertel (2012)
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extend the sector variables in the CR+-CBV model from the usual gamma distribution to the more generalized
tempered α-stable distribution. The CR+-CBV model can be further extended to include stochastic recovery
rates (Fischer et al., 2016) and the mixed vectors with positive and negative correlated common background
variables (Zhang et al., 2018). Papalamprou and Antoniou (2019) perform empirical studies on the performance
among various CreditRisk+ models in the Greek banking sector and show that the CR+-CBV model can provide
better realistic estimations in the downturn economic conditions when compared with other credit risk models.

Capital allocation for credit portfolios is a crucial risk management procedure in financial institutions. To
determine the economic capital of an aggregate credit portfolio, Value-at-Risk (VaR) and Expected Shortfall
(ES) are the most common risk measures for the evaluation of capital requirement. Besides, at an individual
obligor or sub-portfolio level, the VaR contribution and ES contribution of an obligor measure how much each
obligor contributes to the VaR and ES in a portfolio, respectively. The development of efficient, accurate and
reliable computational algorithms for calculating risk measures and risk contributions for the CreditRisk+ model
poses various forms of technical challenges. The common methods include the Panjer recursion schemes (Haaf et
al., 2004), Fourier inversion method (Reiß, 2004) and Monte Carlo simulation. The Panjer recursion calculations
become computationally demanding when the number of obligors and risk factors are large. The Fourier
inversion method typically requires judicious choices of parameter values in the algorithm for its successful
implementation and may not be reliable for credit portfolios with complex composition. The Monte Carlo
simulation method shows a deterioration of accuracy to an unacceptable level when conditional evaluation of
losses is performed in risk contribution calculations at high confidence level. This is because only a small portion
of simulation paths can satisfy the condition that the portfolio loss assumes or exceeds the VaR threshold since
these cases are typically rare events. Importance sampling is a viable technique to circumvent such difficulties
by performing more sampling in the tail of the loss distribution.

In this paper, we consider three analytic approximation methods and their numerical implementation proce-
dures to compute risk measures and risk contributions of a credit portfolio under the CR+-CBV model. These
include the Johnson curve fitting method, saddlepoint approximation method and check function formulation.
Simonato (2011) proposes the use of the family of Johnson distributions (Johnson, 1949) in the fitting curve to
compute VaR and ES of a credit portfolio. The curve fitting method employs matching of the first four order
moments of the loss distribution with an approximate normal curve via the Johnson curve transform. The
family of Johnson distributions can generate genuine distributions for all possible skewness and kurtosis. We
then use the approximate distribution to compute the quantile and tail expectation. Gordy (2002) initiates the
use of the saddlepoint approximation method in calculating VaR for the CreditRisk+ model. The saddlepoint
approximation method is based on the asymptotic expansion of a complex integral that represents the tail ex-
pectation of the loss distribution. Kwok and Zheng (2018) summarize the use of the saddlepoint approximation
methods in calculating risk measures and risk contributions for various industrial risk management models,
including the CreditRisk+ model. The check function formulation (Koenker and Basset, 1978) relates the dis-
tribution quantile (VaR) and tail expectation (ES) of a loss distribution to the minimizer of a check function.
Interestingly, VaR is seen to be the argument that gives ES as the minimum value of the check function. Our
numerical tests on these three methods reveal that they provide efficient calculations and highly accurate results
for computing risk measures and risk contributions of typical credit portfolios under the CR+-CBV model and
require much less computing time when compared with the Monte Carlo simulation methods.

The remaining sections of this paper are organized as follows. In Section 2, the main features of the
CreditRisk+ framework under the common background vector model are reviewed. We derive the moment
generating functions and cumulant generating functions of the random portfolio loss under the CR+-CBV
model that are required for the later numerical implementation of the three analytic approximation methods.
In Section 3, we show how to relate the two risk measures, VaR and ES, via a check function. We also derive
expectation formulas for computing risk contributions under the CR+-CBV model. Section 4 discusses the
Johnson curve transform of calibrating the four parameters of the approximate normal curve via matching
of the first four order moments of the loss distribution. Once the portfolio loss distribution has been fitted
by an approximate Johnson SB distribution, we explain how to find the portfolio VaR and ES together with
risk contributions for individual obligors from the approximate Johnson curve. In Section 5, we review the
saddlepoint approximation approach and present various saddlepoint approximation formulas for computing risk
measures and risk contributions in credit portfolios. Practical implementation issues for finding the saddlepoint
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in an appropriate domain are discussed. In Section 6, we review the two-step importance sampling technique
in the Monte Carlo simulation of computing risk measures and risk contributions of credit portfolios under the
CR+-CBV model. In Section 7, comprehensive numerical tests on the performance of calculating risk measures
and contributions using various credit portfolios under the CR+-CBV model are presented to demonstrate the
efficiency, accuracy and reliability of our proposed algorithms. The last section contains conclusive remarks and
a summary of the paper.

2 CreditRisk+ Model Framework

Some of the essential features of the CreditRisk+ framework are summarized as follows:

1. No financial modeling for the default event
The default of an obligor is described as a purely random event, which is characterized by the probability of
default. For analytic tractability, the CreditRisk+ model takes the Poisson approximation to the Bernoulli
type default events.

2. Use of exposure bands
Instead of working with a large number of obligors, the CreditRisk+ model groups obligors into a small
number of exposure bands to reduce computational costs. Each exposure amount of an obligor is replaced
by an integer multiple (rounded to the ceiling) of the basic unit of exposure. To compensate for the error
due to rounding, the expected probability of default is adjusted so that the expected loss is maintained
to remain the same.

3. Randomization of the probability of default
The probability of default of an obligor is taken to be a random variable that is driven by several sector
variables through a linear relationship. This feature is used to generate default correlation among the
obligors, which arise only implicitly due to the same sector variables. Conditional independence of default
is also assumed where the defaults of obligors are independent given the sector variables.

In the standard CreditRisk+ framework, the sector variables are assumed to be independent. In the more
recent common background vector model (Fischer and Dietz, 2011) considered in this paper, the sector variables
are assumed to be dependent on a set of common background variables and one’s own idiosyncratic sector
variables. All these variables are assumed to follow the Gamma distribution, which is chosen due to analytic
tractability.

2.1 Common Background Vector Model

Let A be a collection of risky obligors in a credit portfolio. Let ε̂A and p̂A denote the respective exposure and
expected probability of default of obligor A inside A. Let l denote the normalized loss unit in dollar amount.
We take an adjusted exposure εA (in units of l) of obligor A to be the ceiling of ε̂A/l. The expected probability
of default of obligor A is adjusted to be pA such that the expected loss of obligor A remains the same; that is,

pA =
ε̂Ap̂A
εAl

.

Let DA denote the default indicator of obligor A as a Bernoulli random variable: default with probability
pA and no default with probability 1 − pA. The normalized random loss of obligor A is given by εADA. The
normalized random portfolio loss L is the summation of all normalized random losses from all obligors in A,
where

L =
∑
A∈A

εADA. (2.1)

For analytic tractability, the CreditRisk+ framework takes the default indicator DA to be a mixture Poisson
random variable whose randomized intensity is λA with mean pA. This assumption would implicitly assume
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multiple defaults. However, for small value of default probability, this may be considered as an acceptable
assumption.

The earlier version of the CreditRisk+ framework assumes the probability of default of an obligor is driven
by several sector variables. Each sector variable may be associated with an industry type or geographical
location. An obligor can participate in various sectors with different weights. We assume the randomized
intensity λA of DA (as a mixture Poisson random variable) to be dependent on a number of sector variables
Sk, k = 1, 2, ...,K, with weights 0 ≤ wAk ≤ 1, k = 1, 2...,K, where K is the total number of sectors. It is
common to standardize the sector variables so that they all have unit mean, where E[Sk] = 1, k = 1, 2, ...,K.
There exists the idiosyncratic variable S0 with weight wA0 that has no volatility. For notational convenience,
we take S0 = 1. Since all weights must be summed to one, we have

wA0 = 1−
K∑
k=1

wAk.

The randomized intensity λA of DA assumes the following linear relationship:

λA = pA(wA0 + wA1S1 + ...+ wAKSK). (2.2a)

Since the mean of Sk, k = 1, 2, ...,K, is set to be one and the sum of all weights is one, it is consistent to observe
that the mean of λA is the expected probability of default pA.

In the standard CreditRisk+ framework, the sector variables Sk, k = 1, 2, ...,K, are assumed to follow the
Gamma distribution for analytic tractability; that is,

Sk ∼ Γ(θk, δk), k = 1, 2, ...,K.

Here, θk and δk are the parameters of the Gamma distribution Γ with

E[Sk] = θkδk = 1 and var(Sk) = θkδ
2
k = δk, k = 1, 2, ...,K.

Other assumptions on the underlying distribution of the sector variables have been made in the literature. For
example, Fischer and Mertel (2012) propose the tempered α-stable distribution for the sector variables. This
assumed distribution retains analytic tractability and nests the Gamma distribution asymptotically when the
specific parameter α tends to zero.

Next, we present the CR+-CBV model, where each sector variable is assumed to be dependent on M
common background variables T1, T2, ..., TM modeled as independent Gamma random variables. We modify the
randomized intensity λA of the mixture Poisson variable DA to take the following form:

λA = pA(wA0 + wA1Ŝ1 + ...+ wAK ŜK), (2.2b)

where Ŝk is a weighted sum of an idiosyncratic sector variable Sk and independent common background variables
T1, T2, ..., TM . More specifically, we define

Ŝk = δkSk +

M∑
m=1

γmkTm, k = 1, 2, ...,K, (2.3)

where δk and γmk are the respective weights. These variables all follow the Gamma distribution, where

Sk ∼ Γ(θk, 1), k = 1, 2, ...,K, and Tm ∼ Γ(θ̂m, 1), m = 1, 2, ...,M.

The scaling property of the Gamma distribution dictates that given Sk ∼ Γ(θk, 1) and the proportional constant
δk, we have δkSk ∼ Γ(θk, δk). We reformulate λA in the CR+-CBV model as the standard CreditRisk+ model
with K +M sector variables, where

λA = pA(wA0 + wA1S̃1 + ...+ wAK S̃K + wA,K+1S̃K+1 + ...+ wA,K+M S̃K+M ). (2.4)

4



The new variables S̃1, S̃2, ..., S̃K+M are given by

S̃i =

{
δiSi, i = 1, 2, ...,K,

Ti−K , i = K + 1,K + 2, ...,K +M,
(2.5)

and the reformulated weights wA,K+1, wA,K+2, ..., wA,K+M can be expressed as

wA,K+m =
K∑
k=1

wAkγmk, m = 1, ...,M. (2.6)

Under the reformulation of the weights, the sum of weights wA0 +
∑K+M

i=1 wA,i is no longer equal to one.

Under the CR+-CBV model, the mean, variance and covariance for the set of variables Ŝk, k = 1, 2, ..,K,
are found to be

E[Ŝk] = δkθk +

M∑
m=1

γmkθ̂m,

var(Ŝk) = δ2
kθk +

M∑
m=1

γ2
mkθ̂m,

cov(Ŝi, Ŝj) =
M∑
m=1

γmiγmj θ̂m, i 6= j. (2.7)

2.2 Moment Generating Functions and Cumulant Generating Functions

We take the Poisson approximation for the default indicator variable DA for all A ∈ A. Conditional on
realization of the random variables, S = (S1, ..., SK , T1, ..., TM ), the Poisson default indicator variables are
independent. The conditional probability generating function ΨA(t|S) for obligor A with exposure εA is given
by ΨA(t|S) = exp[λA(tεA − 1)]. By virtue of conditional independence, the conditional moment generating
function (mgf) ML(t|S) of the portfolio loss L is given by the product of the individual conditional moment
generating function MA(t|S) of all obligors. This gives

ML(t|S) =
∏
A

MA(t|S) =
∏
A

ΨA(et|S) = exp

(∑
A

λA(eεAt − 1)

)

= exp

(∑
A

pAwA0(eεAt − 1) +
K∑
k=1

δkSk
∑
A

pAwAk(e
εAt − 1) +

M∑
m=1

Tm
∑
A

pAwA,K+m(eεAt − 1)

)

= exp

(
P0(t) +

K∑
k=1

δkSkPk(t) +

M∑
m=1

TmPK+m(t)

)
, (2.8)

where

Pk(t) =
∑
A

pAwAk(e
εAt − 1), k = 0, 1, ...,K, (2.9a)

PK+m(t) =
∑
A

pAwA,K+m(eεAt − 1), m = 1, 2, ...,M. (2.9b)

By virtue of (2.6), we have

PK+m(t) =

K∑
k=1

γmkPk(t), m = 1, 2, ...,M.
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Since Sk ∼ Γ(θk, 1), k = 1, 2, ...,K, and Tm ∼ Γ(θ̂m, 1),m = 1, 2, ...,M , are all independent, the uncondi-
tional moment generating function ML(t) of the portfolio loss L under the CR+-CBV model is obtained by
integrating with respect to the product of the Gamma density functions. This gives

ML(t) = exp(P0(t))

K∏
k=1

1

Γ̂(θk)

∫ ∞
0

sθk−1
k esk[δkPk(t)−1] dsk

M∏
m=1

1

Γ̂(θ̂m)

∫ ∞
0

sθ̂m−1
m esm[PK+m(t)−1] dsm,

where Γ̂(z) =
∫∞

0 xz−1e−x dx is the Gamma function. Let yk = sk[1 − δkPk(t)], k = 1, 2, ...,K, and ym =
sm[1− PK+m(t)],m = 1, 2, ...,M , we then have

ML(t) = exp(P0(t))
K∏
k=1

[1−δkPk(t)]−θk
1

Γ̂(θk)

∫ ∞
0

yθk−1
k e−yk dyk

M∏
m=1

[1−PK+m(t)]−θ̂m
1

Γ̂(θ̂m)

∫ ∞
0

yθ̂m−1
m e−ym dym

= exp(P0(t))

K∏
k=1

[1− δkPk(t)]−θk
M∏
m=1

[1− PK+m(t)]−θ̂m . (2.10)

In the later numerical schemes for risk measures calculations derived based on the Johnson curve fitting
method and saddlepoint approximation method, the higher order derivatives of the cumulant generating function
(cgf) of the random portfolio loss L are involved. Let κL(t) denote the cgf of L, which is defined as the logarithm
of the mgf ML(t) of L, so that

κL(t) = ln(ML(t)) = P0(t)−
K∑
k=1

θk ln(1− δkPk(t))−
M∑
m=1

θ̂m ln(1− PK+m(t)) (2.11)

= P0(t) +
K∑
k=1

θkφk(t) +
M∑
m=1

θ̂mφ̂m(t),

where

φk(t) = − ln(1− δkPk(t)), k = 1, 2, ...,K,

φ̂m(t) = − ln(1− PK+m(t)), m = 1, 2, ...,M.

The higher order derivatives of κL(t) can be expressed in terms of the higher order derivatives of φk(t), k =
1, 2, ...,K, and φ̂m(t),m = 1, 2, ...,M . For notational convenience, we define

Nk,j(t) =
P

(j)
k (t)

1− δkPk(t)
, k = 1, 2, ...,K,

N̂m,j(t) =
P

(j)
K+m(t)

1− PK+m(t)
, m = 1, 2, ...,M,

where P
(j)
k (t) and P

(j)
K+m(t) denote the jth order derivative of Pk(t) and PK+m(t), respectively. By virtue of

(2.9a,b), we have

P
(j)
k (t) =

∑
A

εjApAwAke
εAt, k = 1, 2, ...,K,

P
(j)
K+m(t) =

K∑
k=1

γmkP
(j)
k (t), m = 1, 2, ...,M.

The derivatives of Nk,j(t) and N̂m,j(t) observe the following recurrence relations:

d

dt
Nk,j(t) = Nk,j+1(t) + δkNk,j(t)Nk,1(t), k = 1, 2, ...,K,

d

dt
N̂m,j(t) = N̂m,j+1(t) + N̂m,j(t)N̂m,1(t), m = 1, 2, ...,M.
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Based on the above recurrence relations, the higher order derivatives of φk(t), k = 1, 2, ...,K, and φ̂m(t),m =
1, 2, ...,M, can be expressed in terms of Nk,j(t) and N̂m,j(t). The derivatives of φk(t) and φ̂m(t) (up to the
fourth order) are found to be

φ′k(t) = δkNk,1(t), φ̂′m(t) = N̂m,1(t),

φ′′k(t) = δkNk,2(t) + δ2
kN

2
k,1(t), φ̂′′m(t) = N̂m,2(t) + N̂2

m,1(t),

φ′′′k (t) = δkNk,3(t) + 3δ2
kNk,1(t)Nk,2(t) + 2δ3

kN
3
k,1(t),

φ̂′′′m(t) = N̂m,3(t) + 3N̂m,1(t)N̂m,2(t) + 2N̂3
m,1(t),

φ′′′′k (t) = δkNk,4(t) + 3δ2
kN

2
k,2(t) + 4δ2

kNk,1(t)Nk,3(t) + 12δ3
kN

2
k,1(t)Nk,2(t) + 6δ4

kN
4
k,1(t),

φ̂′′′′m (t) = N̂m,4(t) + 3N̂2
m,2(t) + 4N̂m,1(t)N̂m,3(t) + 12N̂2

m,1(t)N̂m,2(t) + 6N̂4
m,1(t). (2.12)

The skewness and kurtosis of the loss variables L can be expressed in terms of the higher order derivatives of
κL(t) as follows:

skewness =
κ′′′L (0)

κ′′L(0)3/2
, kurtosis =

κ′′′′L (0)

κ′′L(0)2
+ 3. (2.13)

3 Risk Measures and Risk Contributions

At the portfolio level, the bank’s risk management procedure requires the determination of the economic capital
as a buffer against unexpected catastrophic losses in a credit portfolio. The economic capital of a credit portfolio
is commonly set to be the difference between a high quantile (VaR at a chosen confidence level) of the portfolio
loss distribution and the expected loss. The risk measure VaR is widely used in theory and practice in the
financial industry as the basis in economic capital allocation. Since VaR does not satisfy subadditivity, ES is
used as an alternative risk measure in setting the economic capital (Tasche, 2002). Once the economic capital
allocation step has been completed, the risk managers would be interested to break down the unexpected loss
of the portfolio to individual obligor level in order to identify the risk drivers within the credit portfolio. The
detailed risk analysis requires an understanding of the risk contributions from individual obligors to the overall
portfolio risk.

In this section, we review the definitions of VaR and ES, and their mathematical relation in the formulation
of minimization of a check function (Bertsimas et al., 2004). More precisely, we show that VaR is the argument
that gives ES as the minimum value of the check function. The minimization in the check function formulation
can be solved via an optimization software in a single optimization calculation under a credit risk model. We
also present the expectation formulas for the computation of risk contributions to VaR and ES for individual
obligor under the CR+-CBV model.

3.1 Relation of VaR and Expected Shortfall in Check Function

At a given confidence level α ∈ (0, 1), VaRα of the random portfolio loss L is defined as the left α-quantile
q−1
L (α), where

VaRα = q−1
L (α) = inf{l ∈ R : FL(l) ≥ α}. (3.1)

Here, FL(l) is the cumulative distribution function (cdf) of L and the confidence level α is usually chosen to be
sufficiently close to 1.0, says, α = 0.99. Assuming L to be a continuous distribution, ESα of L at the confidence
level α is defined by

ESα = E(L|L ≥ VaRα) =
1

1− α

∫ ∞
VaRα

lfL(l) dl =
1

1− α

∫ 1

α
VaRu du, (3.2)

where E and fL(l) are the expectation operator and the probability density function (pdf) of L, respectively.
After some algebraic manipulation, we establish that

ESα = F−1
L (α) +

1

1− α

∫ 1

α
[F−1
L (u)− F−1

L (α)] du = VaRα +
1

1− α
E[(L−VaRα)+].
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This motivates the following definition of the check function f(x) associated with the loss variable L:

f(x) = x+
1

1− α
E[(L− x)+] = x+

1

1− α

∫ ∞
x

[1− FL(l)] dl. (3.3)

By taking x0 = VaRα, one can show that

1. x1 > x0: For l ∈ (x0, x1), we observe 1− FL(l) ≤ 1− α so that

f(x1)− f(x0) = x1 − x0 −
1

1− α

∫ x1

x0

[1− FL(l)] dl ≥ x1 − x0 −
1

1− α
(1− α)(x1 − x0) = 0;

2. x2 < x0: For l ∈ (x2, x0), we observe 1− FL(l) > 1− α so that

f(x2)− f(x0) =
1

1− α

∫ x0

x2

[1− FL(l)] dl − (x0 − x2) >
1

1− α
(1− α)(x0 − x2)− (x0 − x2) = 0.

We establish that f(x) attains its global minimum value at x0 = VaRα since x1 is any value greater than x0 and
x2 is any value smaller than x0. In conclusion, we obtain the following mathematical relation between VaRα

and ESα with regard to the check function:

VaRα = argmin
x∈R

f(x) and ESα = min
x∈R

f(x). (3.4)

3.2 Risk Contributions

From risk management perspective, it is important to examine the risk contributions of individual exposure to
the overall portfolio risk. The marginal risk contribution (commonly called the Euler allocation) examines the
impact of investing an additional small amount in an obligor on the overall portfolio risk (Rosen and Saunders,
2010). Let ρ(L) denote a chosen risk measure of a portfolio loss distribution. Suppose each obligor A with
exposure εA and default indicator DA is in the collection A for a credit portfolio. The marginal risk contribution
of the obligor A with respect to the risk measure ρ(L) is given by

CρA(L) = lim
δ→0

ρ(L+ δεADA)− ρ(L)

δ
= εA

∂ρ(L)

∂εA
. (3.5)

Assuming that ρ(L) is positive homogeneous in εA, A ∈ A, where

ρ(λL) = λρ(L), λ > 0,

one can establish ∑
A∈A

CρA(L) =
∑
A∈A

εA
∂ρ(L)

∂εA
= ρ(L), (3.6)

where the sum of marginal risk contributions from all obligors equals the total portfolio risk.
The two risk measures, VaRα and ESα, both satisfy the positive homogeneous property. Assuming VaRα and

ESα to be differentiable with respect to the exposures of obligors, the corresponding marginal risk contribution
of VaRα and ESα of obligor A with exposure εA are defined by

VaRCA
α = εA

∂VaRα

∂εA
and ESCA

α = εA
∂ESα
∂εA

. (3.7)

Tasche (2004) shows that the above two marginal risk contributions can be represented by the following pair of
conditional expectation formulas:

VaRCA
α = εAE[DA|L = VaRα] = εA

E[DA1{L=VaRα}]

E[1{L=VaRα}]
= εA

E[λA1{L=VaRα−εA}]

E[1{L=VaRα}]
, (3.8a)
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ESCA
α = εAE[DA|L ≥ VaRα] = εA

E[DA1{L≥VaRα}]

P[L ≥ VaRα]
= εA

E[λA1{L≥VaRα−εA}]

P[L ≥ VaRα]
, (3.8b)

where E and P are the expectation operator and probability measure under the loss distribution L, respectively.
By following similar procedures [proof of Theorem 4 in Tasche (2004)] in the evaluation of the conditional
expectation formulas, we obtain the following formulas for the marginal risk contributions under the CR+-CBV
model:

VaRCA
α

=εApA
wA0E[1{L=VaRα−εA}]+

∑K
k=1wAkδkθkEL1(k)[1{L=VaRα−εA}]+

∑M
m=1wA,K+mθ̂mEL2(m)[1{L=VaRα−εA}]

E[1{L=VaRα}]
,

(3.9a)

ESCA
α

=εApA
wA0P[L≥VaRα−εA]+

∑K
k=1wAkδkθkPL1(k)[L≥VaRα−εA]+

∑M
m=1wA,K+mθ̂mPL2(m)[L≥VaRα−εA]

P[L ≥ VaRα]
.

(3.9b)
For the operators EL1(k) and PL1(k), k = 1, 2, ...,K, and EL2(m) and PL2(m),m = 1, 2, ...,M , they have similar

interpretation as E and P under the loss distribution L, except that L1(k) and L2(m) correspond to some other
loss distribution modified from L. By virtue of (2.5), to obtain L1(k), k = 1, 2, ...,K, we require the Gamma
distribution for the kth sector variable δkSk to be changed from δkΓ(θk, 1) to δkΓ(θk + 1, 1) while those for all
other variables S̃i, i 6= k, remain unchanged. Similarly, to obtain L2(m),m = 1, 2, ...,M , we require the Gamma
distribution for the mth common background variable Tm to be changed from Γ(θ̂m, 1) to Γ(θ̂m + 1, 1) while
those for all other variables S̃i, i 6= K + m, stay the same. The proof of the above marginal risk contribution
formulas (3.9a,b) is presented in Appendix A.

4 Johnson Curve Fitting Method

The Johnson curve transform (Johnson, 1949) is commonly used to transform an arbitrary continuous random
variable X with an unknown distribution into a standard normal random variable Z. There are three classic
Johnson distributions: the lognormal distribution (SL), unbounded distribution (SU ) and bounded distribution
(SB), the details of which have been summarized in Elderton and Johnson (1969). For a given set of data
generated from the random variable X with the observed mean, variance, skewness and kurtosis, one can derive
a unique four-parameter Johnson distribution by matching the first four order moments of the given set of data
using the Johnson curve fitting method.

Hill et al. (1976) provide a comprehensive algorithm to determine which Johnson distribution is required
and how to evaluate the four parameters of the Johnson distribution based on the first four order moments of
the random variable X. Other methods that estimate the four parameters of the Johnson distribution include
the percentile approach (Slifker and Shapiro, 1980) and quantile method (Wheeler, 1980). The Johnson curve
toolbox developed by Jones (2014) provides a set of Matlab functions for estimating the four parameters of
the Johnson distribution using moments or quantiles. Once an appropriate Johnson distribution is found, the
percentiles of the random variable X can be estimated efficiently from the percentiles of the standard normal
variable Z.

For the CR+-CBV model specifically considered in this paper, we are interested in evaluating the four-
parameter Johnson SB distribution that is bounded on both ends based on the first four order moments. This
is because the loss variable L is bounded by the minimal value Lmin = 0 and the maximal value Lmax =

∑
A εA,

where εA is the exposure for obligor A ∈ A. The first four order moments of the loss variable L can be
effectively computed using the derivatives in (2.12). The risk measures and risk contributions of the portfolio
loss distribution are then calculated approximately from the approximate Johnson SB distribution. Details of
the algorithm to find the four parameters of the Johnson SB distribution by using a Newton-Raphson iterative
scheme is presented in Appendix B.

Consider the following transform of the random variable X as

Y =
X − c
d

, (4.1)

9



where c is the minimum value of X and c + d is the maximum value of X. The transform that changes the
random variable X into the standard normal variable Z for the Johnson SB distribution is defined by

Z = a+ b ∗ ln

(
Y

1− Y

)
= a+ b ln

(
X − c

c+ d−X

)
, c < X < c+ d, (4.2)

where a and b are the shape parameters, c is the location parameter and d is the scale parameter. The last two
parameters, c and d, do not change the shape of the curve but translate and scale the density curve, respectively.
The inverse transformation to change the standard normal variable Z back into the random variable X is given
by

X = c+
d

1 + exp(a−Zb )
. (4.3)

The pdf of X for the Johnson SB curve can be derived from the standard normal variable Z, which is found to
be

fB(x) =
bd√

2π(x− c)(c+ d− x)
exp

(
−1

2

[
a+ b ∗ ln

(
x− c

c+ d− x

)]2
)
, c < x < c+ d. (4.4)

The cdf of X can be calculated through the cdf of the standard normal variable Z, that is

FB(x) = Φ

(
a+ b ln

(
x− c

c+ d− x

))
, (4.5)

where Φ(·) is the standard normal distribution function.
After determining the four parameters by using the algorithm in Appendix B, one can obtain the value of

VaRα in (3.1) through the quantile function of the cdf of X. Let φ(·) be the standard normal density function
and φ−1(α) be the quantile function of the standard normal variable Z evaluated at confidence level α ∈ (0, 1).
The corresponding VaRα under the Johnson SB distribution is then given by

VaRα = F−1
B (α) = c+

d

1 + exp
(
a−φ−1(α)

b

) . (4.6)

Using (3.2), ESα under the Johnson SB distribution is given by

ESα = E(L|L ≥ VaRα) =
1

1− α

∫ ∞
zα

[
c+

d

1 + exp
(
a−z
b

)]φ(z) dz, (4.7)

where

zα = a+ b ∗ ln
VaRα − c

c+ d−VaRα
.

Also, the VaR contribution and ES contribution defined in (3.9a,b) can be easily obtained using the ap-
proximate Johnson SB distribution. To compute the VaR contribution from each obligor, the expectation cal-
culations required in (3.9a) can be preformed using the pdf of the Johnson SB distribution in (4.4). Similarly,
to compute the ES contribution from each obligor, the tail probabilities required in (3.9b) can be estimated
using the cdf of the Johnson SB distribution in (4.5). When we calculate EL1(k) and PL1(k), k = 1, 2, ...,K,
and EL2(m) and PL2(m),m = 1, 2, ...,M , it is necessary to modify the four parameters of the Johnson SB
distribution to fit the first four order moments of the modified loss distribution L1(k), k = 1, 2, ...,K, and
L2(m),m = 1, 2, ...,M .

5 Saddlepoint Approximation Methods

The calculations of risk measures and risk contributions of a credit portfolio involve numerical evaluation
of quantiles, tail probabilities and tail expectations of the portfolio loss L. The saddlepoint approximation
approach has been known to be a versatile tool in statistics that is based on the steepest descent method to
derive analytic approximation formulas of the Laplace inversion integrals for the density function, tail probability
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and tail expectation of a random variable. In the derivation procedure, we deform a contour in the complex
plane to pass through a saddlepoint along the steepest descent path. The dominant contribution to the value
of the complex inversion integral can be obtained by considering a local expansion around the saddlepoint.
The saddlepoint is obtained via the solution of an algebraic equation involving the derivative of the cgf of the
random variable. The saddlepoint approximation approach works well when the analytic form of the higher
order derivatives of the cgf are available. Fortunately, such analytic tractability requirements of the cgf are
observed for the portfolio loss variable under the CR+-CBV model (see Sec. 2.2).

There have been numerous research works on the use of the saddlepoint approximation methods in risk
measures calculations in the CreditRisk+ model and other industrial credit risk models, like the Vasicek model
(Huang et al., 2007) and Gaussian copula models (Glasserman, 2006). Gordy (2002) pioneers the use of the
Lugannani-Rice saddlepoint formula in VaR calculation for the standard CreditRisk+ model. He also proposes
a systematic procedure to find the upper bound of the solution of the saddlepoint equation so as to ensure the
existence of saddlepoint for VaR calculation. This is an important procedure for the success of the saddlepoint
approximation method, the details of which are presented in Appendix C. Studer (2001) proposes the use of the
measure change in the saddlepoint approximation procedure to compute ES. More recently, Fischer et al. (2016)
develop the saddlepoint approximation formula for computing VaR under the CR+-CBV model with stochastic
recovery rates. Besides the CreditRisk+ model, Huang et al. (2007) derive various saddlepoint approximation
formulas for computing risk measures and risk contribution for the Vasicek portfolio credit loss model. There
are several sources of comprehensive review of the use of the saddlepoint approximation methods in credit risk
models, like the two book chapters by Broda and Paolella (2012) and Martin (2013) as well as the monograph
by Kwok and Zheng (2018).

We reveal the classical saddlepoint approximation formulas for the numerical approximation of the pdf and
cdf of a continuous random variable. For any continuous random variable L with cgf κL(t), Daniels (1954)
devises the following first order saddlepoint approximation to the pdf fL(x):

fL(x) ≈ 1√
2πκ′′L(t̂)

exp(κL(t̂)− t̂x), (5.1)

where t̂ denotes the unique solution to the saddlepoint equation:

κ′L(t̂) = x. (5.2)

In addition, the second order saddlepoint approximation to the pdf fL(x) is given by

fL(x) ≈ exp(κL(t̂)− t̂x)√
2πκ′′L(t̂)

{
1 +

1

8

[
λ4(t̂)− 5

3
λ2

3(t̂)

]}
, (5.3)

where

λ3(t̂) =
κ′′′L (t̂)

κ′′L(t̂)3/2
and λ4(t̂) =

κ′′′′L (t̂)

κ′′L(t̂)2
. (5.4)

Note that the third order and fourth order cumulants are involved in the second order saddlepoint approximation
formula, which may lead to cumbersome calculations.

Lugannani and Rice (1980) devise the following renowned saddlepoint approximation to the cdf FL(x):

FL(x) ≈

Φ(w)− φ(w)
(

1
u −

1
w

)
, x 6= µL,

1
2 +

κ′′′L (0)

6
√

2πκ′′L(0)3/2
, x = µL,

(5.5)

where µL = E[L] is the mean of L and

w = sgn(t̂)

√
2[t̂x− κL(t̂)] and u = t̂

√
κ′′L(t̂). (5.6)

The higher order approximation formulas for the cdf FL(x) is given by

FL(x) ≈ Φ(w)− φ(w)

{
1

u
− 1

w
+

1

w3
− 1

u3
− λ3(t̂)

2u2
+

1

u

[
λ4(t̂)

8
− 5λ2

3(t̂)

24

]}
, (5.7)

where λ3(t̂) and λ4(t̂) are defined in (5.4).
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5.1 Saddlepoint Approximation to VaR and ES

Gordy (2002) uses the Lugannani-Rice saddlepoint approximation for efficient and accurate computation of
tail quantiles of the loss distribution in the standard CreditRisk+ model. Even though there is no direct
analytical formula for VaR in saddlepoint approximation, the calculation of VaRα is simply the inverse problem
of computing the tail probabilities. Given a specified confidence level α, we set the tail probability 1−FL(x) =
1 − α, where FL(x) is the cdf of the portfolio loss L. Using a root-finding procedure, we solve for the above
equation, whose solution is VaRα.

For x > E[L], the solution t̂ of the saddlepoint equation κ′L(t̂) = x [see (5.2)] can be shown to fall within the
interval (0, t∗), where t∗ = min{t∗1, ..., t∗K , t∗K+1, ..., t

∗
K+M}. Here, t∗k, k = 1, 2, ...,K, and t∗K+m,m = 1, 2, ...,M,

are the roots of the individual logarithmic terms in κL(t) of the CR+-CBV model [see (2.11)]. That is, 1 −
δkPk(t

∗
k) = 0, k = 1, 2, ...,K, and 1− PK+m(t∗K+m) = 0,m = 1, 2, ..,M . They are seen to observe the following

bounds:

0 < t∗k ≤ ln(
1

δk
+ µk)

/∑
A

pAwAkεA, k = 1, 2, ...,K,

0 < t∗K+m ≤ ln(1 +

K∑
k=1

γmkµk)
/ K∑
k=1

γmk
∑
A

pAwAkεA, m = 1, 2, ...,M.

(5.8)

The proof of these analytic properties on the saddlepoint t̂ is presented in Appendix C. Therefore, for any
confidence level α ∈ (FL(E[L]), 1), one can establish the existence of saddlepoint t̂. An effective root finding
procedure to estimate VaRα using the Lugannani-Rice formula for the cgf FL(x) are outlined below:

1. Determine t∗k, k = 1, 2, ...,K, and t∗K+m,m = 1, 2, ...,M, as the roots to the equations obtained by setting
individual logarithmic terms in κL(t) in (2.11) to be zero. Let t∗ = min{t∗1, ..., t∗K , t∗K+1, ..., t

∗
K+M};

2. Establish a set of finite points t1, t2, ..., tN between 0 and t∗, where N is the total number of points;

3. For each point ti, i = 1, 2, ..., N, xi is set to be κ′L(ti). Use the Lugannani-Rice formula to obtain the tail
probability 1− FL(xi). Record the pairs {1− FL(xi), xi}, i = 1, 2, ..., N .

4. At the confidence level α, interpolate to find x̂ such that 1− FL(x̂) = 1− α. Here, x̂ gives an estimate of
VaRα.

For a given confidence level α, Martin (2006) obtains the first order saddlepoint approximation formula for
ESα as given by

ESα ≈
1

1− α

[
µL[1− Φ(w)] + φ(w)

(x
u
− µL

w

)]
, x = VaRα, (5.9)

where µL = E[L] and t̂, u, w are given in (5.2) and (5.6).
To consider higher order saddlepoint approximation and avoid the third and fourth order derivatives of

κL(t), Bulter and Wood (2004) obtain the following second order saddlepoint approximation for ESα

ESα ≈
1

1− α

[
µL[1− Φ(w)] + φ(w)

(
x

u
− µL

w
+
µL − x
w3

+
1

ut̂

)]
. (5.10)

Studer (2001) introduces the measure change in the saddlepoint approximation procedure to compute ES.
The procedure changes the original loss variable L to a new loss variable L̂, which is similar to the change of
measure in the saddlepoint approximation. We introduce a new probability density function fL̂(x) = xfL(x)/µL
for a new random variable L̂. For a given confidence level α, ESα can be written as:

ESα =
µL

1− α

∫ ∞
VaRα

xfL(x)

µL
dx =

µL
1− α

∫ ∞
VaRα

fL̂(x) dx =
µL

1− α
P[L̂ ≥ VaRα]. (5.11)

The saddlepoint approximation for P[L̂ > VaRα] is found by using the Lugannani-Rice formula (5.5) or (5.7),
which requires the cgf κL̂(t) of this new random variable L̂. Note that the relationship between κL̂(t) and κL(t)
is given by

κL̂(t) = κL(t) + ln(κ′L(t))− ln(κ′L(0)).
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Accordingly, the higher order derivatives of κL̂(t) are found to be

κ′
L̂

(t) = κ′L(t) +
κ′′L(t)

κ′L(t)
,

κ′′
L̂

(t) = κ′′L(t) +
κ′′′L (t)

κ′L(t)
−
κ′′L(t)2

κ′L(t)2
.

Furthermore, we can obtain the corresponding VaRα and ESα simultaneously by using the check function
defined in (3.3). The tail expectation E[(L− x)+] is involved in the check function, which can be estimated by
using the corresponding saddlepoint approximation formula as given by [see (2.28) in Kwok and Zheng (2018)]

E[(L− x)+] ≈ ∆[1− Φ(w)]− φ(w)

(
∆

w
− ∆

w3
− 1

tu

)
, (5.12)

where ∆ = κ′L(0)−x. Substituting the formula into (3.3) and choosing an appropriate solver for the optimization
problem, we obtain ESα as the minimum value of the check function and VaRα as the argument that gives ESα.

5.2 Saddlepoint Approximation for Risk Contribution

Martin et al. (2001) pioneer the one-term saddlepoint approximation to find a simplified saddlepoint approxi-
mation formula for VaR contribution. We start with the following Bromwich integral for the tail probability of
the loss variable L in terms of the cgf κL(t), where

P[L > VaRα] =
1

2πi

∫ ζ+i∞

ζ−i∞

eκL(t)−tVaRα

t
dt. (5.13)

The vertical Bromwich contour Re t = ζ is chosen to lie within the domain of analyticity of κL(t) in the complex
plane. To find the risk contribution VaRCA

α of obligor A with exposure εA at confidence level α, we differentiate
both sides of the above equation with respect to εA and obtain

VaRCA
α = εA

∫ ζ+i∞
ζ−i∞

∂κL(t)
∂εA

1
t exp(κL(t)− tVaRα) dt∫ ζ+i∞

ζ−i∞ exp(κL(t)− tVaRα) dt
. (5.14)

Martin et al. (2001) derive the saddlepoint approximation for VaRCA
α by freezing the term 1

t
∂κL(t)
∂εA

at the

saddlepoint t̂, where κ′L(t̂) = VaRα. This leads to the following one-term saddlepoint approximation formula:

VaRCA
α ≈

εA

t̂

∂κL(t)

∂εA
|t=t̂. (5.15)

In the framework of CR+−CBV model, the corresponding one-term saddlepoint approximation formula for
VaRCA

α is given by

VaRCA
α ≈ εApAeεAt

[
wA0 +

K∑
k=1

θkδk
wAk

1− δkPk(t)
+

M∑
m=1

θ̂m
wA,K+m

1− PK+m(t)

] ∣∣∣∣∣
t=t̂

, (5.16)

where Pk(t), k = 1, 2, ...,K, and PK+m(t),m = 1, 2, ..,M, are defined in (2.9a,b).
Another method for risk contributions calculation makes use of the two marginal risk contribution formulas

(3.9a,b). We substitute the saddlepoint approximation formula for the pdf (4.3) or formula for the cdf (4.5)
into the expectation terms in (3.9a) for VaR contribution and probability terms in (3.9b) for ES contribution,
respectively. Be aware that it is necessary to modify the corresponding cgf and its derivatives when we calculate
the expectation and tail probability for different loss variables, namely, L1(k), k = 1, 2, ...,K, and L2(m),m =
1, 2...,M .
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6 Two-step Importance Sampling in Monte Carlo Simulation

In the calculations of risk measures and risk contributions for credit portfolios, Monte Carlo simulation methods
are much computationally demanding since defaults of obligors are rare events. For example, given one million
simulation paths, there may be only 0.1% or even less of the simulation paths that satisfy the VaR threshold.
Estimation of risk measures and risk contributions can only be made on limited number of simulation paths
that end in the tail of the loss distribution.

Importance sampling is an efficient algorithm to reduce variance since it allows for more sampling in the
tail of the loss distribution L. Glasserman and Li (2003) propose a two-step importance sampling (IS) method
on the mixed Poisson model, which solves the problem of estimating the tail probabilities. Han and Kang
(2008) summarize the two-step IS algorithm for the hidden gamma model to compute risk measures. As for risk
contributions, both Merino and Nyfeler (2004) and Glasserman (2006) develop the IS estimators for marginal
risk contributions. A good review of Monte Carlo methods for computing VaR and VaRC for credit portfolios
can be found in Hong et al. (2014).

Glasserman and Li (2003) propose the two-step IS algorithm that employs the exponential twisting to change
the original portfolio loss distribution into a new portfolio loss distribution, where these two distributions are
linked through the likelihood ratio. Here, we adopt similar exponential twisting procedures under the CR+-CBV
model. The two-step IS algorithm consists of the following two steps:

• For each sector variables and common background variables, modify the parameters of the underlying
Gamma distribution by the exponential twisting procedure.

• Conditional on the realized sector variables and common background variables, for each obligor A ∈
A, change the intensity of the Poisson distribution of the default indicator by the exponential twisting
procedure.

In the first step, we perform exponential twisting on each Gamma distribution in (2.5), namely, δkSk, k =
1, 2, ...,K, and Tm,m = 1, 2, ...,M, into a new set of Gamma distributions by some twisting parameters pk, k =
1, 2, ...,K, and p̂m,m = 1, 2, ...,M , respectively. The new set of Gamma distributions have the same shape
parameters but different scale parameters as the original set of Gamma distributions, which are defined by

S̄k ∼ Γ(θk,
δk

1− δkpk
), k = 1, 2, ...,K,

T̄m ∼ Γ(θ̂m,
1

1− p̂m
), m = 1, 2, ...,M.

(6.1)

The choices of pk and p̂m will be discussed later [see (6.4)]. Conditional on the realized sector variables and
common background variables from the new set of Gamma distributions, S̄ = (S̄1, ..., S̄K , T̄1, ..., T̄M ), each
Poisson distribution DA for obligor A ∈ A is independent with each other and has the modified intensity as
given by

λS̄A = pA(wA0 +

K∑
k=1

wAkS̄k +

M∑
m=1

wA,K+mT̄m). (6.2)

The second step is to apply exponential twisting on the conditional Poisson distribution into a new conditional
Poisson distribution by the twisting parameter t̂. The new Poisson distribution conditional on S̄ becomes

D̂A ∼ Poisson(λS̄Ae
εA t̂). (6.3)

When t̂ > 0, the conditional intensity of the new Poisson distribution for each obligor A increases. The obligor A
then becomes more likely to default, thus we can generate more samples in the tail area of the loss distribution.

According to Glasserman and Li (2003), the exponential twisting parameter t̂ for the Poisson distribution
is chosen to be the saddlepoint that satisfies κ′L(t̂) = x [see (5.2)], where x is some predetermined portfolio
loss which lies within the tail area of the loss distribution L, like VaRα=0.9. This works on the principle that
both the two-step IS algorithm and saddlepoint approximation method estimate the loss distribution around
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the saddlepoint. Accordingly, the exponential twisting parameters for the new set of Gamma distributions are
chosen to be

pk =
∑
A∈A

pAwAk(e
εA t̂ − 1) = Pk(t̂), k = 1, 2, ...,K,

p̂m =
∑
A∈A

pAwA,K+m(eεA t̂ − 1) = PK+m(t̂), m = 1, 2, ...,M.
(6.4)

To guarantee that the scale parameters for the new set of Gamma distributions (6.1) are positive, we require
pk < 1/δk, k = 1, 2, ...,K, and p̂m < 1,m = 1, 2, ...,M .

The likelihood ratio for the realized portfolio loss Li =
∑

A εAD̂A in ith simulation path after these two-step
importance sampling procedures becomes

ξ(Li) = exp
(
−t̂Li + κL(t̂)

)
. (6.5)

The two-step IS estimator of the tail probability is then given by

P[L > x] = ξ(L)1{L>x}. (6.6)

The implementation procedures of the two-step IS algorithm are summarized in Algorithm 1 as follows:

Algorithm 1: Pseudo code for the two-step IS algorithm

For any pre-determined x, solve the saddlepoint t̂ that satisfies κ′L(t̂) = x. The exponential twisting
parameters for the Gamma distributions are

pk = Pk(t̂), k = 1, 2, ...,K, and p̂m = PK+m(t̂), m = 1, 2, ...,M.

for i = 1 : N (number of the simulation paths) do
1. For each sector variable and common background variable, draw samples from

S̄k ∼ Γ(θk,
δk

1− δkpk
), k = 1, 2, ...,K, and T̄m ∼ Γ(θ̂m,

1

1− p̂m
), m = 1, 2, ...,M.

2. Compute the conditional default probabilities λS̄A as defined in (6.2).
3. For each obligor A ∈ A, draw samples from

D̂A ∼ Poisson(λS̄Ae
εA t̂).

4. Record the portfolio loss and the likelihood ratio as

Li =
∑
A

εAD̂A and ξ(Li) = exp
(
−t̂Li + κL(t̂)

)
.

(5). Record D̂A for each obligor A ∈ A when Li = VaRα or Li ≥ VaRα. (This step is used for risk
contribution calculations.)

return the two-step IS estimator (6.6).

Given a confidence level α, VaRα is the α-quantile of the equation P (L > x) = 1−α. The estimator of ESα
is the mean value for all realized Li ≥ VaRα, which is given by

ESα = E(L|L ≥ VaRα) =
E[L1{L≥VaRα}]

P[L ≥ VaRα]
=

∑N
i=1 Liξ(Li)1{Li≥VaRα}∑N
i=1 ξ(Li)1{Li≥VaRα}

. (6.7)

where N is the number of simulation paths. From the formulas of VaRC and ESC in (3.8a,b), we obtain the
estimators of VaRC and ESC as given by

VaRCA
α = εA

E[DA1{L=VaRα}]

E[1{L=VaRα}]
= εA

∑N
i=1DAξ(Li)1{Li=VaRα}∑N
i=1 ξ(Li)1{Li=VaRα}

, (6.8a)
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ESCA
α = εA

E[DA1{L≥VaRα}]

P[L ≥ VaRα]
= εA

∑N
i=1DAξ(Li)1{Li≥VaRα}∑N
i=1 ξ(Li)1{Li≥VaRα}

. (6.8b)

7 Numerical Results

We performed extensive numerical experiments to assess the performance in terms of accuracy and efficiency
of the Johnson curve fitting method, saddlepoint approximation method and check function formulation for
calculating risk measures and risk contributions for various CreditRisk+ models on the stylized credit portfolios
and benchmark industrial credit portfolios. The Monte Carlo simulation calculations are set as the benchmark
for comparison of the performance for these numerical methods.

7.1 Stylized credit portfolios

The stylized credit portfolio shown in Table 1 is slightly modified from the portfolio adopted in Kurth and
Tasche (2003). There are 31,615 obligors in the portfolio, which are grouped separately in two sectors. The
obligors with exposures that are equal to or less than 0.01 are put in sector 1 and the other obligors with larger
exposures are put in sector 2. In sector 1, the probability of default of an obligor can be either 0.5% or 1%
while the probability of default ranges from 0.1% to 1.75% for obligors in sector 2. The expected loss for the
whole stylized portfolio is µL = E[L] =

∑
A pAεA = 3.3994.

sector 1 sector 2

exposure per obligor 0.01 0.01 0.005 0.05 0.08 0.1 0.15 0.2 0.3 1

number of obligors 10,000 10,000 10,000 1,000 500 100 10 2 2 1
probability of default 0.5% 1% 1% 1% 1.75% 1.75% 1.25% 0.7% 0.3% 0.1%

Table 1: Exposures and probabilities of default for obligors in different sectors for the stylized credit portfolio.

In the first set of risk calculations, we consider the standard CreditRisk+ model with two independent sector
variables Ŝk, k = 1, 2, which follow the Gamma distribution δkΓ(θk, 1), k = 1, 2. The parameters of the two
Gamma distributions are chosen to be δ1 = 0.0256, δ2 = 0.1296 and θk = 1/δk, k = 1, 2, respectively. In
the second set of risk calculations, we aim to capture the correlation between different sectors by adding two
common background variables for each sector. This leads to the CR+-CBV(2) model. Each sector variable
Ŝk, k = 1, 2, is the weighted sum of an idiosyncratic sector variable Sk, k = 1, 2, and two independent common
background variables Tm,m = 1, 2, based on the following linear relationship:

Ŝk = δkSk + γ1kT1 + γ2kT2, k = 1, 2. (7.1)

Here, Sk ∼ Γ(θk, 1), k = 1, 2, and Tm ∼ Γ(θ̂m, 1),m = 1, 2. The parameters for the CR+-CBV(2) model are
summarized in Table 2.

k δk θk θ̂k γ1k γ2k

1 0.0256 23.4375 4.8000 0.0625 0.0016
2 0.1296 4.6296 62.5000 0.0625 0.0016

Table 2: Parameter values of the CR+-CBV(2) model for the stylized credit portfolio.

Based on the portfolio information and model parameter values given in Tables 1 and 2, respectively, the
Plain Monte Carlo simulation [MC (Plain)] and the two-step IS simulation [MC (IS)] were performed to compute
the risk measures and risk contributions. The implementation of the Plain Monte Carlo simulation uses the
intensity λA of the Poisson default indicator for each obligor in (2.4) directly. In the simulation calculations, the
Plain Monte Carlo simulation is achieved by using 10 subsamples with 10,000 simulation paths each. On the
other hand, the two-step IS simulation is obtained through 10 subsamples with 8,000 simulation paths each. For
each simulation calculations, risk measures are the sample means of the 10 corresponding subsample estimates.
The standard error for each risk measure is taken to be the sample standard deviation of the 10 corresponding
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subsample estimates. The numerical results from these two simulation calculations are used to assess accuracy
and efficiency of other numerical methods.

7.1.1 Numerical calculations of risk measures

Risk measures calculations of VaRα and ESα by using the Johnson curve transform were implemented on the
standard CR+ model and CR+-CBV model for the stylized credit portfolio. The Johnson curve transform
provides an approximate fitting curve for the loss distribution by matching the first four order moments of
the stylized credit portfolio with those of the Johnson SB distribution. After finding the four parameters of
the Johnson SB distribution through the calibration procedure in Appendix B, VaRα can be estimated using
the analytic formula (4.6). The evaluation of ESα given in (4.7) requires numerical integration, which can be
implemented with ease.

Another method for computing risk measures is the saddlepoint approximation method. The monotonicity
of κ′L(t) guarantees the existence of unique solution t̂ of the saddlepoint equation: κ′L(t̂) = x, for any x ≥ µL
(see Appendix C). The root-finding procedure is required to find VaRα as discussed in Section 5.1, while ESα
is calculated by either the first order or second order saddlepoint approximation formulas in (5.9) and (5.10),
respectively. The measure change saddlepoint approximation formula in (5.11) is also an efficient method
to obtain ESα, which requires the change of the loss variable L into a new variable L̂ with a new pdf fL̂ =
xfL(x)/µL. We also apply the check function formulation to compute VaRα and ESα by solving an optimization
problem (3.4) via an optimization solver. The tail expectation calculation as part of the procedure in the check
function is estimated by using (5.12).

The calculation results for VaRα and ESα on the standard CreditRisk+ model and CR+-CBV(2) model
under four confidence levels α = 0.9, 0.95, 0.99, 0.999 are presented in Tables 3 and 4, respectively.

VaRα=0.90 VaRα=0.95 VaRα=0.99 VaRα=0.999 CPU

MC (Plain) 4.3121 (0.0124) 4.6286 (0.0156) 5.2636 (0.0486) 6.0605 (0.0879) 2201

MC (IS) 4.3101 (0.0031) 4.6252 (0.0026) 5.2685 (0.0041) 6.0750 (0.0089) 1375

Johnson curve (4.6) 4.3103 4.6252 5.2688 6.0796 1.025

VaR-1st order (5.5) 4.3101 4.6253 5.2693 6.0779 0.0253

VaR-2nd order (5.7) 4.3103 4.6255 5.2694 6.0778 0.0497

check function (3.4) 4.3103 4.6254 5.2694 6.0778 0.0434

ESα=0.90 ESα=0.95 ESα=0.99 ESα=0.999 CPU

MC (Plain) 4.7379 (0.0198) 5.0216 (0.0298) 5.6124 (0.0646) 6.3572 (0.0938) 2201

MC (IS) 4.7386 (0.0017) 5.0228 (0.0012) 5.6180 (0.0026) 6.4045 (0.0064) 1375

Johnson curve (4.7) 4.7373 5.0223 5.6246 6.4047 1.025

ES-1st order (5.9) 4.7495 5.0373 5.6448 6.4281 0.0019

ES-2nd order (5.10) 4.7375 5.0226 5.6243 6.4003 0.0020

measure change (5.11) 4.7383 5.0234 5.6252 6.4011 0.0039

check function (3.4) 4.7375 5.0226 5.6243 6.4003 0.0434

Table 3: For comparison of accuracy and efficiency, we list the numerical values of VaRα and ESα for the
standard CreditRisk+ model on the stylized credit portfolio at different confidence levels α obtained via various
numerical algorithms. The equations used in the calculations are shown in brackets besides the method types.
The numbers inside the brackets besides the Monte Carlo simulation results are the standard errors. The last
column shows the average CPU time used for each numerical method.

From Tables 3 and 4, the CPU time required by both the Plain Monte Carlo simulation and two-step IS
algorithm is of order of thousand seconds. The Johnson curve fitting algorithm typically requires one second,
while only a few percent of one second or less is required for the saddlepoint approximation calculations. The
two-step IS algorithm outperforms the Plain Monte Carlo simulation with less CPU time and smaller standard
errors. The results from the Johnson curve fitting method, saddlepoint approximation method and check
formula agree very well with those obtained from the two-step IS simulation. In some cases, the numerical
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results from different numerical methods match with each other up to 4 significant figures accuracy. The
higher CPU time required for the Johnson curve fitting method compared with the saddlepoint approximation
calculations mainly comes from the iteration process to find the four parameters of the Johnson SB distribution.
The computation efforts required by the saddlepoint approximation calculations arise mainly from finding the
saddlepoint t̂, which involves simple root finding procedure of a scalar equation. The second order saddlepoint
approximation does provide better accuracy than the first order saddlepoint approximation on the estimation of
VaRα and ESα, revealing the merit of applying a higher-order approximation at slightly higher computational
costs. Meanwhile, the check function formulation gives a good verification on accuracy of the second order
saddlepoint approximation. Though these two numerical methods are based on different derivation principles,
they do produce almost the same value of ESα. An iteration optimization solver is required to solve the check
function (3.4). A nice feature is that the solution from the optimization procedure provides the value of VaRα

and ESα simultaneously [see (3.4)]. The measure change saddlepoint approximation formula (5.11) also provides
highly accurate results on ESα for both the standard CreditRisk+ model and CR+-CBV(2) model.

VaRα=0.90 VaRα=0.95 VaRα=0.99 VaRα=0.999 CPU

MC (Plain) 4.3921(0.0200) 4.7260 (0.0245) 5.4310 (0.0460) 6.2770 (0.0898) 2243

MC (IS) 4.3821 (0.0017) 4.7231 (0.0019) 5.4263 (0.0016) 6.2966(0.0038) 1737

Johnson curve (4.6) 4.3825 4.7239 5.4214 6.2952 1.2430

VaR-1st order (5.5) 4.3824 4.7240 5.4214 6.2947 0.0349

VaR-2nd order (5.7) 4.3825 4.7241 5.4213 6.2946 0.0493

check function (3.4) 4.3825 4.7240 5.4213 6.2945 0.0582

ESα=0.90 ESα=0.95 ESα=0.99 ESα=0.999 CPU

MC (Plain) 4.8514 (0.0209) 5.1611 (0.0282) 5.8201 (0.0548) 6.6519 (0.0957) 2243

MC (IS) 4.8476 (0.0011) 5.1594 (0.0023) 5.8089 (0.0014) 6.6415 (0.0042) 1737

Johnson curve (4.7) 4.8453 5.1540 5.8050 6.6426 1.2431

ES-1st order (5.9) 4.8570 5.1682 5.8243 6.6682 0.0023

ES-2nd order (5.10) 4.8453 5.1540 5.8047 6.6419 0.0025

measure change (5.11) 4.8456 5.1544 5.8051 6.6421 0.0064

check function (3.4) 4.8453 5.1540 5.8047 6.6419 0.0582

Table 4: For comparison of accuracy and efficiency, we list the numerical values of VaRα and ESα for the CR+-
CBV(2) model on the stylized credit portfolio at different confidence levels α obtained via various numerical
algorithms. The equations used in the calculations are shown in brackets besides the method types. The
numbers inside the brackets besides the Monte Carlo simulation results are the standard errors. The last
column shows the average CPU time used for each numerical method.

7.1.2 Numerical calculations of risk contributions

The risk contributions from individual obligors to the whole stylized credit portfolio are computed by using the
marginal risk contribution formulas (3.9a,b). The pdf and cdf of the loss distribution L from the Johnson curve
fitting method given in (4.4) and (4.5) can be used directly to calculate the expectations and tail probabilities
in formulas (3.9a,b), respectively. For the loss distributions L1(k), k = 1, 2, ...,K, and L2(m),m = 1, 2, ...,M,
modified from L, it is necessary to change the corresponding kth sector variable or mth common background
variable into a new variable while all other variables stay the same. Due to these modifications, the four
parameters of the Johnson SB distribution need to be recomputed to fit the first four order moments of the
new set of model parameters for each L1(k) or L2(m). The expectation and tail probability of L1(k) or L2(m)
are estimated through the pdf and cdf under the new Johnson SB distribution. Specifically, since (4.6) is the
quantile function of (4.5), here we adopted (4.6) to evaluate the tail probability via the root finding procedure
in our numerical calculations for the ES contributions. Similarly, the pdf and cdf of the loss distribution L
by the saddlepoint approximation method presented in (5.1) or (5.3) and (5.5) or (5.7) are used to calculate
the expectation and tail probability, respectively. It is also required to modify the corresponding cgf and its
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derivatives for different loss distributions L1(k) and L2(m) when employing the saddlepoint approximation
method to calculate the expectation and tail probability. Besides, the one-term saddlepoint approximation
formula (5.16) for VaRα (Martin et al., 2001) is also used to compute VaRCα for both the standard CreditRisk+

model and CR+-CBV(2) model.
The calculation results for risk contributions on the standard CreditRisk+ model and CR+-CBV(2) model

under three confidence levels α = 0.95, 0.99, 0.999 are presented in Tables 5 and 6, respectively.

sector 1 sector 2
sum of

contributions

VaRCα=0.95 (4.6254)

MC (Plain) 0.5716 1.1394 0.5611 0.7961 1.2021 0.3046 0.0331 0.0046 0.0048 0.0084 4.6258

MC (IS) 0.5667 1.1362 0.5606 0.8020 1.1982 0.3111 0.0370 0.0052 0.0041 0.0057 4.6268

Johnson curve (4.4) 0.5677 1.1354 0.5622 0.8102 1.1926 0.3081 0.0358 0.0058 0.0043 0.0047 4.6267

pdf-1st order (5.1) 0.5674 1.1348 0.5619 0.8098 1.1919 0.3079 0.0358 0.0058 0.0043 0.0047 4.6242

pdf-2nd order (5.3) 0.5676 1.1352 0.5621 0.8100 1.1922 0.3080 0.0358 0.0058 0.0043 0.0047 4.6255

Martin (5.16) 0.5585 1.1171 0.5537 0.8194 1.2083 0.3127 0.0365 0.0059 0.0045 0.0085 4.6253

VaRCα=0.99 (5.2694)

MC (Plain) 0.5868 1.1530 0.5738 1.0003 1.4947 0.3891 0.0468 0.0084 0.0068 0.0081 5.2678

MC (IS) 0.5836 1.1698 0.5776 0.9958 1.4771 0.3912 0.0463 0.0097 0.0079 0.0197 5.2787

Johnson curve (4.4) 0.5869 1.1738 0.5798 0.9917 1.4829 0.3872 0.0462 0.0077 0.0061 0.0112 5.2734

pdf-1st order (5.1) 0.5866 1.1732 0.5795 0.9901 1.4802 0.3865 0.0461 0.0077 0.0060 0.0111 5.2670

pdf-2nd order (5.3) 0.5868 1.1736 0.5797 0.9906 1.4811 0.3867 0.0461 0.0077 0.0061 0.0112 5.2670

Martin (5.16) 0.5780 1.1559 0.5716 0.9993 1.4959 0.3911 0.0468 0.0078 0.0063 0.0167 5.2693

VaRCα=0.999 (6.0778)

MC (Plain) 0.6084 1.2196 0.6030 1.2177 1.8505 0.4711 0.0670 0.0120 0.0068 0.0125 6.0686

MC (IS) 0.6042 1.2041 0.5970 1.2255 1.8430 0.4874 0.0605 0.0113 0.0079 0.0303 6.0712

Johnson curve (4.4) 0.6038 1.2077 0.5953 1.2231 1.8537 0.4885 0.0596 0.0101 0.0084 0.0239 6.0742

pdf-1st order (5.1) 0.6040 1.2080 0.5954 1.2229 1.8534 0.4884 0.0596 0.0101 0.0084 0.0238 6.0742

pdf-2nd order (5.3) 0.6042 1.2084 0.5956 1.2239 1.8550 0.4888 0.0597 0.0101 0.0084 0.0239 6.0780

Martin (5.16) 0.5959 1.1918 0.588 1.2316 1.8679 0.4926 0.0603 0.0103 0.0086 0.0311 6.0779

ESCα=0.95 (5.0226)

MC (Plain) 0.5806 1.1593 0.5739 0.9157 1.3723 0.3550 0.0426 0.0067 0.0054 0.0086 5.0201

MC (IS) 0.5782 1.1576 0.5726 0.9219 1.3710 0.3567 0.0433 0.0071 0.0053 0.0091 5.0228

Johnson curve (4.6) 0.5794 1.1588 0.5729 0.9220 1.3715 0.3569 0.0422 0.0069 0.0054 0.0088 5.0248

cdf-1st order (5.5) 0.5793 1.1585 0.5728 0.9215 1.3706 0.3566 0.0422 0.0069 0.0054 0.0088 5.0226

cdf-2nd order (5.7) 0.5793 1.1586 0.5728 0.9214 1.3705 0.3566 0.0422 0.0069 0.0054 0.0088 5.0225

ESCα=0.99 (5.6243)

MC (Plain) 0.5908 1.1881 0.5842 1.0925 1.6571 0.4237 0.0495 0.0087 0.0094 0.0140 5.6180

MC (IS) 0.5964 1.1932 0.5879 1.0901 1.6465 0.4288 0.0530 0.0093 0.0076 0.0153 5.6281

Johnson curve (4.6) 0.5946 1.1892 0.5868 1.0931 1.6453 0.4316 0.0521 0.0088 0.0071 0.0166 5.6252

cdf-1st order (5.5) 0.5947 1.1893 0.5869 1.0926 1.6446 0.4314 0.0521 0.0087 0.0071 0.0166 5.6239

cdf-2nd order (5.7) 0.5947 1.1894 0.5869 1.0927 1.6447 0.4314 0.0521 0.0087 0.0071 0.0166 5.6243

ESC α=0.999 (6.4003)

MC (Plain) 0.6093 1.2209 0.6124 1.3068 2.0026 0.5365 0.0687 0.0133 0.0123 0.0320 6.4148

MC (IS) 0.6080 1.2178 0.5985 1.3140 2.0110 0.5414 0.0633 0.0119 0.0087 0.0338 6.4084

Johnson curve (4.6) 0.6088 1.2175 0.5998 1.3133 1.9983 0.5280 0.0649 0.0111 0.0094 0.0305 6.3816

cdf-1st order (5.5) 0.6093 1.2187 0.6003 1.3183 2.0063 0.5302 0.0652 0.0112 0.0094 0.0306 6.3995

cdf-2nd order (5.7) 0.6094 1.2187 0.6004 1.3185 2.0067 0.5303 0.0652 0.0112 0.0094 0.0306 6.4004

Table 5: Risk contributions for VaRCα and ESCα are computed for the standard CR+ model on the stylized
credit portfolio. The numerical values of VaRCα and ESCα at different confidence levels α are obtained via
various numerical algorithms. The equations used in the calculations are shown in brackets besides the method
types. The numbers shown in bracket in the last column are the best estimates of VaRα and ESα (sum of
contributions) from Table 3.
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sector 1 sector 2
sum of

contributions

VaRCα=0.95 (4.7240)

MC (Plain) 0.6131 1.2339 0.6088 0.7796 1.1492 0.2958 0.0292 0.0059 0.0037 0.0031 4.7223

MC (IS) 0.6183 1.2383 0.6142 0.7712 1.1314 0.3020 0.0327 0.0062 0.0047 0.0041 4.7231

Johnson curve (4.4) 0.6210 1.2420 0.6156 0.7722 1.1335 0.2924 0.0338 0.0054 0.0040 0.0045 4.7244

pdf-1st order (5.1) 0.6208 1.2415 0.6154 0.7718 1.1329 0.2922 0.0338 0.0054 0.0040 0.0045 4.7224

pdf-2nd order (5.3) 0.6209 1.2419 0.6156 0.7721 1.1334 0.2923 0.0338 0.0054 0.0040 0.0045 4.7241

Martin (5.16) 0.6181 1.2361 0.6131 0.7745 1.1377 0.2937 0.0341 0.0055 0.0042 0.0071 4.7240

VaRCα=0.99 (5.4213)

MC (Plain) 0.6723 1.3315 0.6598 0.9272 1.4114 0.3514 0.0478 0.0055 0.0044 0.0074 5.4187

MC (IS) 0.6812 1.3559 0.6729 0.9211 1.3692 0.3657 0.0428 0.0053 0.0057 0.0082 5.4280

Johnson curve (4.4) 0.6788 1.3576 0.6715 0.9210 1.3715 0.3572 0.0423 0.0070 0.0055 0.0097 5.4221

pdf-1st order (5.1) 0.6786 1.3571 0.6712 0.9203 1.3705 0.3569 0.0423 0.0070 0.0055 0.0097 5.4190

pdf-2nd order (5.3) 0.6788 1.3576 0.6714 0.9208 1.3712 0.3571 0.0423 0.0070 0.0055 0.0097 5.4214

Martin (5.16) 0.6765 1.3529 0.6695 0.9223 1.3739 0.3580 0.0425 0.0070 0.0056 0.0132 5.4214

VaRCα=0.999 (6.2945)

MC (Plain) 0.7517 1.5108 0.7402 1.1528 1.6424 0.4443 0.0292 0.0089 0.0050 0.0120 6.2973

MC (IS) 0.7543 1.4939 0.7371 1.0979 1.6677 0.4509 0.0530 0.0111 0.0070 0.0182 6.2911

Johnson curve (4.4) 0.7494 1.4987 0.7398 1.1078 1.6705 0.4387 0.0531 0.0090 0.0073 0.0191 6.2934

pdf-1st order (5.1) 0.7492 1.4984 0.7397 1.1073 1.6698 0.4385 0.0531 0.0090 0.0073 0.0191 6.2915

pdf-2nd order (5.3) 0.7495 1.4990 0.7399 1.1080 1.6709 0.4388 0.0532 0.0090 0.0073 0.0191 6.2947

Martin (5.16) 0.7480 1.4960 0.7388 1.1083 1.6715 0.4391 0.0533 0.0090 0.0074 0.0234 6.2947

ESCα=0.95 (5.1540)

MC (Plain) 0.6569 1.3099 0.6501 0.8668 1.2817 0.3331 0.0396 0.0059 0.0044 0.0095 5.1579

MC (IS) 0.6566 1.3137 0.6503 0.8650 1.2777 0.3332 0.0390 0.0066 0.0051 0.0075 5.1547

Johnson curve (4.6) 0.6566 1.3132 0.6500 0.8639 1.2803 0.3323 0.0391 0.0064 0.0049 0.0078 5.1546

cdf-1st order (5.5) 0.6526 1.3053 0.6480 0.8424 1.2289 0.3155 0.0360 0.0057 0.0040 0.0072 5.0458

cdf-2nd order (5.7) 0.6566 1.3132 0.6500 0.8638 1.2801 0.3323 0.0391 0.0064 0.0049 0.0078 5.1540

ESCα=0.99 (5.8047)

MC (Plain) 0.7013 1.4095 0.6985 1.0044 1.5024 0.3894 0.0459 0.0076 0.0072 0.0244 5.7906

MC (IS) 0.7096 1.4224 0.7014 1.0040 1.5016 0.3914 0.0466 0.0077 0.0063 0.0139 5.8049

Johnson curve (4.6) 0.7099 1.4197 0.7015 1.0030 1.5028 0.3930 0.0471 0.0079 0.0063 0.0137 5.8048

cdf-1st order (5.5) 0.7074 1.4149 0.7003 0.9898 1.4713 0.3827 0.0453 0.0074 0.0058 0.0133 5.7382

cdf-2nd order (5.7) 0.7099 1.4198 0.7016 1.0030 1.5027 0.3930 0.0471 0.0079 0.0063 0.0137 5.8048

ESCα=0.999 (6.6419)

MC (Plain) 0.7723 1.5815 0.7661 1.1667 1.7353 0.4566 0.0495 0.0056 0.0033 0.0403 6.5772

MC (IS) 0.7671 1.5421 0.7596 1.1839 1.7983 0.4747 0.0607 0.0098 0.0067 0.0258 6.6287

Johnson curve (4.6) 0.7770 1.5540 0.7666 1.1815 1.7886 0.4710 0.0574 0.0097 0.0081 0.0238 6.6378

cdf-1st order (5.5) 0.7755 1.5509 0.766 1.1727 1.7666 0.4637 0.0561 0.0095 0.0077 0.0203 6.5889

cdf-2nd order (5.7) 0.7773 1.5546 0.7669 1.1825 1.7901 0.4714 0.0575 0.0098 0.0081 0.0238 6.6420

Table 6: Risk contributions for VaRCα and ESCα are computed for the CR+-CBV(2) model on the stylized
credit portfolio. The numerical values of VaRCα and ESCα at different confidence levels α are obtained via
various numerical algorithms. The equations used in the calculations are shown in brackets besides the method
types. The numbers shown in bracket in the last column are the best estimates of VaRα and ESα (sum of
contributions) from Table 4.
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The performance of Monte Carlo simulation on risk contributions deteriorates as the confidence level α
increases, because the number of simulation paths ending in the tail area of loss distribution becomes more
limited. The two-step IS algorithm can generate more simulation paths ending in the tail area, so the risk
contributions calculations are more accurate. In the VaRC calculation, the simulation path with realized loss
amount Li that exactly hits the value of VaRα is a rare event, so we preset a small threshold dα to proxy the
event {Li = VaRα} by {Li ∈ (VaRα − dα,VaRα + dα)}. Usually, there are less number of simulation paths
ending beyond VaRα when α is larger. The chosen threshold dα has to be larger for larger α in order to capture
more eligible simulation paths.

In Tables 5 and 6, we check the sum of risk contributions from all obligors, for both VaRC and ESC, using
different numerical methods. For most cases, the sum of risk contributions is close to the best estimate of the
corresponding risk measure from Table 3 or 4. The two-step IS algorithm provides more accurate results on
VaRCα and ESCα comparing with the Plain Monte Carlo simulation. This is reasonable since the estimates from
the two-step IS simulation are based on more simulation paths in the tail area of the loss distribution. Though
the one-term saddlepoint approximation formula (5.16) is derived based on a crude analytic approximation,
the sum of all individual VaR contributions estimated by this saddlepoint approximation formula agrees with
the best estimate of VaR very well. The implementation procedures of the Johnson curve fitting method and
saddlepoint approximation method on risk contributions become more tedious, but they are reliable methods
on the estimation of both VaRC and ESC. The calculation results for VaRC and ESC from these two numerical
methods are very close to each other, up to 3 significant figures even at α = 0.999.

7.2 Benchmark industrial credit portfolio

We examine the performance of various numerical methods for calculating risk measures and risk contributions
on a benchmark industrial credit portfolio with a large number of obligors and industry sectors. We choose
the benchmark industrial credit portfolio from the International Association of Credit Portfolio Management
and International Swaps and Derivatives Association (see the websites www.isda.org and www.iapcm.org). The
credit portfolio has two term loans with 3,000 obligors each. All obligors are classified into 10 industry sectors.
The information on the risk parameters for each industry sector of the benchmark industrial credit portfolio
is presented in Table 7. The sector variances and correlation matrix are estimated from the real market data,
which are specified by using actual cases of US corporate defaults from 1995 to 2009. More detailed information
on the benchmark industrial credit portfolio can be found in Fischer and Dietz (2011). In our numerical tests,
we investigate the three CR+-CBV models with 1, 2 and 3 common background variables, namely, CBV(1),
CBV(2) and CBV(3). We restrict the case where each obligor is given full weight to the sector it belongs. The
risk measures and risk contributions are given in unit of billion US dollars.

Sector Sector name Number of obligors Exposure at default Portfolio potential loss Expected loss

1 Energy 239 12 382 000 000 5 021 260 000 57 988 047

2 Materials 472 17 422 000 000 7 104 600 000 134 098 406

3 Industrials 614 14 186 000 000 5 927 880 000 80 364 896

4 Consumer discretionary 634 20 180 000 000 7 803 100 000 148 957 421

5 Consumer staples 222 3 835 000 000 1 578 860 000 17 808 856

6 Health care 103 1 049 000 000 406 480 000 5 358 676

7 Financials 312 14 277 000 000 5 853 480 000 47 012 264

8 Information technology 150 5 012 000 000 2 071 460 000 68 278 467

9 Telecommunication services 84 7 497 000 000 3 066 040 000 11 312 357

10 Utilities 170 4 160 000 000 1 719 760 000 34 078 735

Total 3000 100 000 000 000 40 552 920 000 605 258 124

Table 7: Risk parameters of the benchmark industrial credit portfolio by industry sectors.

The statistics information for these three CR+-CBV models including the mean, variance, skewness and
kurtosis are shown in Table 8. Since the mean, variance and covariance are used to calibrate the different
CR+-CBV models, the variations of mean and variance are insignificant among the three CR+-CBV models.
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When the number of common background variables increases, both the skewness and kurtosis increase since
there are more weights on the tail area under larger number of common background variables.

Model mean variance skewness kurtosis

CBV(1) 0.6053 0.3301 2.2745 11.4060

CBV(2) 0.6040 0.3353 2.3483 11.8148

CBV(3) 0.6060 0.3362 2.6634 14.8248

Table 8: Statistics information of the CR+-CBV models with varying number of common background variables.

Based on the portfolio information and model parameters, the Plain Monte Carlo simulation calculations
were performed using 10 subsamples with 100,000 simulation paths in each subsample. The two-step IS simu-
lation calculations were performed using 10 subsamples with 80,000 simulation paths in each subsample. For
each simulation calculations, risk measures and standard errors are taken to be the sample means and sample
standard deviations of the 10 corresponding subsample estimates, respectively.

7.2.1 Numerical results of risk measures

Tables 9 and 10 present the different numerical values of VaRα and ESα at three confidence levels α =
0.90, 0.95, 0.99 obtained via various numerical algorithms for the CBV(1), CBV(2) and CBV(3), respectively.
We adopt the same Johnson curve fitting algorithm, saddlepoint approximation formulas and check function
formulation as what we did in the stylized credit portfolio, only with different model parameters.

VaRα=0.90 VaRα=0.95 VaRα=0.99 CPU

CBV(1)

MC (Plain) 1.3144 (0.0054) 1.7297 (0.0108) 2.7586 (0.0223) 1414

MC (IS) 1.3119 (0.0066) 1.7221 (0.0064) 2.7573 (0.0088) 1144

Johnson curve (4.6) 1.3115 1.7229 2.7553 0.8032

VaR-1st order (5.5) 1.3030 1.7267 2.7643 9.727

VaR-2nd order (5.7) 1.2925 1.7079 2.7322 12.26

check function (3.4) 1.2913 1.7092 2.7414 34.28

CBV(2)

MC (Plain) 1.3153 (0.0097) 1.7438 (0.0133) 2.7864 (0.0196) 2258

MC (IS) 1.3147 (0.0085 ) 1.7417 (0.0081) 2.7942 (0.0061) 1264

Johnson curve (4.6) 1.3112 1.7333 2.7969 1.267

VaR-1st order (5.5) 1.3092 1.7399 2.7873 11.97

VaR-2nd order (5.7) 1.3064 1.7366 2.7892 14.93

check function (3.4) 1.3092 1.7296 2.7713 58.17

CBV(3)

MC (Plain) 1.2864 (0.0080) 1.7253 (0.0117) 2.8487 (0.0180) 1618

MC (IS) 1.2862 (0.0037) 1.7270 (0.0072) 2.8515 (0.0047) 1069

Johnson curve (4.6) 1.2885 1.7191 2.8521 1.843

VaR-1st order (5.5) 1.2345 1.6678 2.7898 11.64

VaR-2nd order (5.7) 1.2761 1.7098 2.7694 15.27

check function (3.4) 1.2255 1.6524 2.7446 30.84

Table 9: The numerical values of VaRα at different confidence levels α for the three CR+-CBV models on
the benchmark industrial credit portfolio are obtained via various numerical algorithms. The equations used in
the calculations are shown in brackets besides the method types. The numbers inside the brackets besides the
Monte Carlo simulation results are the standard errors. The last column shows the average CPU time used for
each numerical method.

The small amount of CPU time required for the Johnson curve fitting method indicates high computational
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efficiency in finding the four parameters of the Johnson SB distribution by the two-dimensional Newton-Raphson
iterative scheme. In the saddlepoint approximation method, it requires more significant computational efforts to
find the saddlepoint t̂ under the more complex industrial credit portfolio. The same increase in computational
complexity appears when we employ the check function formula. In terms of accuracy, the two-step IS algorithm
again outperforms the Plain Monte Carlo simulation with smaller standard errors in most cases. The results
from other numerical methods agree with those obtained from the two-step IS simulation very well, especially the
Johnson curve fitting approach [see the good agreement of numerical results under CBV(1) and CBV(2)]. The
check function formula and the second order saddlepoint approximation formula serve to cross check each other
in calculating ESα. The slightly larger difference in VaRα between these two methods may be caused by the
fact that the optimization process for the check function formula tends to terminate at the close neighborhood
of the correct value of VaRα. Furthermore, the number of common background variables is a crucial factor that
affects accuracy of these numerical methods. The agreement of numerical results among different numerical
methods worsens with an increase of common background variables [see CBV(3)]. The second order saddlepoint
approximation method is likely to underestimate VaRα and ESα when the benchmark industrial credit portfolio
has a larger number of common background variables. The Johnson curve fitting approach gives better estimates
on VaRα but overestimates ESα. This may be caused by the fat tail of the estimated Johnson SB distribution.

ESα=0.90 ESα=0.95 ESα=0.99 CPU

CBV(1)

MC (Plain) 1.9333 (0.0119) 2.3704 (0.0192) 3.4264 (0.0524) 1414

MC (IS) 1.9373 (0.0026) 2.3564 (0.0024) 3.4113 (0.0030) 1144

Johnson curve (4.7) 1.9481 2.3548 3.3960 0.8536

ES-2nd order (5.10) 1.9134 2.3524 3.4123 9.643

measure change (5.11) 1.9620 2.3905 3.4084 12.13

check function (3.4) 1.9133 2.3522 3.4119 34.28

CBV(2)

MC (Plain) 1.9487 (0.0119) 2.3942 (0.0157) 3.4727 (0.0361) 2258

MC (IS) 1.9487 (0.0014) 2.3962 (0.0032) 3.4636 (0.0028) 1264

Johnson curve (4.7) 1.9494 2.3757 3.5281 1.269

ES-2nd order (5.10) 1.9356 2.3785 3.4454 17.32

measure change (5.11) 1.9798 2.4261 3.5066 19.91

check function (3.4) 1.9355 2.3784 3.4452 58.17

CBV(3)

MC (Plain) 1.9547 (0.0083) 2.4317 (0.0102) 3.6281 (0.0306) 1618

MC (IS) 1.9554 (0.0025) 2.4345 (0.0034) 3.6249 (0.0033) 1069

Johnson curve (4.7) 2.0733 2.5687 3.8812 1.947

ES-2nd order (5.10) 1.8754 2.3382 3.5041 11.76

measure change (5.11) 2.0633 2.5935 3.9201 16.32

check function (3.4) 1.8753 2.3381 3.5027 30.84

Table 10: The numerical values of ESα at different confidence levels α for the three CR+-CBV models on
the benchmark industrial credit portfolio are obtained via various numerical algorithms. The equations used in
the calculations are shown in brackets besides the method types. The numbers inside the brackets besides the
Monte Carlo simulation results are the standard errors. The last column shows the average CPU time used for
each numerical method.

7.2.2 Numerical plots of risk contributions

In Figures 2-4, we plot the VaR and ES contributions for the major 15 obligors at confidence level α = 0.99
for the three CR+-CBV models. When compared with the Plain Monte Carlo simulation, the numerical risk
contribution results obtained from the two-step IS simulation provides better agreement with those obtained
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(a) VaR contribution of CBV(1) at VaRα=0.99
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Figure 1: Plots of VaR contribution and ES contribution for the major 15 obligors of the benchmark industrial
credit portfolio for the CBV(1) model at confidence level α = 0.99 obtained via various numerical algorithms.
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(a) VaR contribution of CBV(2) at VaRα=0.99
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Figure 2: Plots of VaR contribution and ES contribution for the major 15 obligors of the benchmark industrial
credit portfolio for the CBV(2) model at confidence level α = 0.99 obtained via various numerical algorithms.
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Figure 3: Plots of VaR contribution and ES contribution for the major 15 obligors of the benchmark industrial
credit portfolio for the CBV(3) model at confidence level α = 0.99 obtained via various numerical algorithms.

using marginal risk contribution formulas (3.9a,b) and one-term saddlepoint approximation formula (5.16). The
calculations by using the Johnson curve fitting method to estimate the expectations and tail probabilities in
(3.9a,b) give the most consistent numerical risk contribution results among all numerical algorithms. Also, the
CPU time required for the Johnson curve fitting method is much less compared with those of the Monte Carlo
simulation and saddlepoint approximation calculations in (3.9a,b) due to the use of an efficient iteration algo-
rithm. The saddlepoint approximation calculations of the expectations and tail probabilities in (3.9a,b) become
more time consuming since one has to solve for the saddlepoint t̂ for each obligor and each loss distribution.
The performance worsens slightly when the number of common background variables becomes larger. The same
phenomenon appears when we implement the one-term saddlepoint approximation formula.

8 Conclusion

We have developed and implemented various numerical algorithms for calculating risk measures (VaR and ES)
and risk contributions from risky obligors in credit portfolios under the enhanced common background vector
framework in the CreditRisk+ model. Besides the established saddlepoint approximation approach and two-
step importance sampling algorithm, we also presented the detailed implementation of the less popularly known
Johnson curve fitting algorithm and check function formulation. We have compared the performance of these
numerical algorithms for calculating risk measures and risk contributions using both stylized credit portfolios
and complex industrial credit portfolios.

In most of our VaR and ES calculations, the Johnson curve fitting algorithm and saddlepoint approximation
methods perform very well in terms of accuracy, efficiency and reliability. In many cases, these two numerical
methods show very good agreement of numerical results up to 3 significant figures and reveal no reported
cases of numerical failure even for complex industrial credit portfolios. The numerical calculations of risk
contributions by using the Monte Carlo simulation may pose challenges due to rare events of extreme losses,
in particular at high confidence level in VaR and ES. On the other hand, the Johnson curve fitting algorithm
delivers accurate results on risk contributions in most cases. The saddlepoint approach works well in calculating
risk contributions for most credit portfolios, given that we implement the systematic procedure of finding the
saddlepoint that lies within an appropriate domain. In terms of computational efficiency, the Johnson curve
fitting algorithm only requires around one second in CPU time, which is typically less than 0.1% of that required
by the Monte Carlo simulation method. The efficient implementation of the Johnson curve fitting algorithm
and saddlepoint approximation method relies on the analytic expressions of the first four order moments of the
credit loss distribution. Fortunately, these analytic requirements are satisfied in the CR+-CBV model.

This paper shows the successes and limitations of various numerical algorithms in calculating risk measures
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and risk contributions for the CR+-CBV model. Practitioners are advised to use different numerical algorithms
to cross check accuracy and reliability of the numerical results on risk measures and risk contributions of credit
portfolios.
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Appendix A Proof of marginal risk contribution formulas (3.9a,b)

This proof represents a refinement and nontrivial extension of the proof in Tasche (2004). Equation (3.8a)
reveals that the VaR contribution of obligor A at confidence level α can be expressed as

VaRCA
α = εA

E[DA1{L=VaRα}]

E[1{L=VaRα}]
= εA

E[λA1{L=VaRα−εA}]

E[1{L=VaRα}]
.

To evaluate the expectation in the numerator, we consider the expansion of εAE[DAe
tL], where εADA is the

individual random loss of obligor A and L =
∑

A εADA is the total random portfolio loss. Here, εA is the
exposure of obligor A and DA is the default indicator that is assumed to be a mixture Poisson random variable
in the CR+-CBV model. Note that L is a discrete non-negative random variable, whose value can be written
as L1, L2, ..., LN . The expansion of εAE[DAe

tL] admits the following form

εAE[DAe
tL] =

N∑
i=1

εAE[DAe
tLi1{L=Li}] =

N∑
i=1

εAe
tLiE[λA1{L=Li−εA)}]. (A.1)

The expansion in (A.1) involves the expectation E[λAI{L=Li−εA)}], which has the same form as the numerator
in the VaR contribution formula when VaRα is set to be Li. Alternatively, we consider another representation
of εAE[DAe

tL]; that is

εAE[DAe
tL] = εAE[λAe

t(L+εA)] = εAe
tεAE[λAe

tL]. (A.2)

We then compute E[λAe
tL] with reference to the CR+-CBV model, where λA is defined in (2.4). Conditional

on the realization of the random variables S = (S1, ..., SK , T1, ..., TM ), we deduce from (2.8) that

E[λAe
tL] = E[λAE[etL|S]] = E[λAML(t|S)]

= pAwA0ML(t) + pA

K∑
k=1

wAkE[δkSke
δkSkPk(t)]E

exp

P0(t) +
K∑
j=1
j 6=k

δjSjPj(t)) +
M∑
n=1

TnPK+n(t)




+ pA

M∑
m=1

wA,K+mE[Tme
TmPK+m(t)]E

exp

P0(t) +

K∑
j=1

δjSjPj(t)) +

M∑
n=1
n6=m

TnPK+n(t)


 .

Performing the expectation calculations similar with those in (2.10), we obtain

E

exp

P0(t) +

K∑
j=1
j 6=k

δjSjPj(t)) +

M∑
n=1

TnPK+n(t)


 = exp(P0(t))

K∏
j=1
j 6=k

[1− δjPj(t)]−θj
M∏
n=1

[1− PK+n(t)]−θ̂n ,

E

exp

P0(t) +
K∑
j=1

δjSjPj(t)) +
M∑
n=1
n6=m

TnPK+n(t)


 = exp(P0(t))

K∏
j=1

[1− δjPj(t)]−θj
M∏
n=1
n6=m

[1− PK+n(t)]−θ̂n .
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Using the property of the Gamma function: Γ̂(x+ 1) = xΓ̂(x), we establish

E[δkSke
δkSkPk(t)] =

1

Γ̂(θk)

∫ ∞
0

δks
θkes[δkPk(t)−1] ds = δk[1− δkPk(t)]−(θk+1) 1

Γ̂(θk)

∫ ∞
0

yθk+1−1e−y dy

= δkθk[1− δkPk(t)]−(θk+1), k = 1, 2, ...,K,

E[Tme
TmPK+m(t)] =

1

Γ̂(θ̂m)

∫ ∞
0

sθ̂mes[PK+m(t)−1] ds = [1− PK+m(t)]−(θ̂m+1) 1

Γ̂(θ̂m)

∫ ∞
0

yθ̂m+1−1e−y dy

= θ̂m[1− PK+m(t)]−(θ̂m+1), m = 1, 2, ...,M.

For notational convenience, we let ML1(k)(t), k = 1, 2, ...,K, and ML2(m)(t),m = 1, 2, ...,M, denote the moment
generating functions of L1(k) and L2(m), respectively. Here, L1(k) and L2(m) correspond to loss variables
modified from L. By virtue of (2.5), for L1(k), k = 1, 2, ...,K, the Gamma distribution for the kth sector variable
δkSk is changed from δkΓ(θk, 1) to δkΓ(θk + 1, 1); while for L2(m),m = 1, 2, ...,M, the Gamma distribution for
the mth common background variable Tm is changed from Γ(θm, 1) to Γ(θm + 1, 1). All other sector variables
and common background variables remain unchanged. Combining all the above results together, we have

E[λAe
tL] = pAwA0ML(t) + pA

K∑
k=1

wAkδkθk[1− δkPk(t)]−(θk+1) exp(P0(t))
K∏
j=1
j 6=k

[1− δjPj(t)]−θj
M∏
n=1

[1− PK+n(t)]−θ̂n

+ pA

M∑
m=1

wA,K+mθ̂m[1− PK+m(t)]−(θ̂m+1) exp(P0(t))
K∏
j=1

[1− δjPj(t)]−θj
M∏
n=1
n6=m

[1− PK+n(t)]−θ̂n

= pAwA0ML(t) + pA

K∑
k=1

wAkδkθkML1(k)(t) + pA

M∑
m=1

wA,K+mθ̂mML2(m)(t). (A.3)

Recall that ML1(k)(t) = EL1(k)[e
tL1(k)], k = 1, 2, ...,K, and ML2(m)(t) = EL2(m)[e

tL2(m)],m = 1, 2, ...,M , where
EL1(k), k = 1, 2, ...,K, and EL2(m),m = 1, 2, ...,M, represent the expectation under the modified loss distribution
L1(k) and L2(m), respectively. Substituting (A.3) into (A.2), we obtain

εAE[DAe
tL] = εAE[λAe

t(L+εA)]

= εApA

[
wA0E[et(L+εA)] +

K∑
k=1

wAkδkθkEL1(k)[e
t[L1(k)+εA]] +

M∑
m=1

wA,K+mθ̂mEL2(m)[e
t[L2(m)+εA]]

]

=

N∑
i=1

εApAe
tLi

[
wA0E[1{L=Li−εA}]+

K∑
k=1

wAkδkθkEL1(k)[1{L=Li−εA}]+

M∑
m=1

wA,K+mθ̂mEL2(m)[1{L=Li−εA}]

]
.

(A.4)

By comparing the coefficient of εAe
tLi in the two expansions in (A.1) and (A.4), we deduce that

E[λA1{L=Li−εA)}]

= pA

[
wA0E[1{L=Li−εA}] +

K∑
k=1

wAkδkθkEL1(k)[1{L=Li−εA}] +

M∑
m=1

wA,K+mθ̂mEL2(m)[1{L=Li−εA}]

]
. (A.5)

In terms of VaRα, we may replace the dummy value Li in (A.5) by VaRα. We finally obtain the marginal risk
contribution formula for VaRCA

α [see (3.8a)] as follows:

VaRCA
α

= εApA
wA0E[1{L=VaRα−εA}]+

∑K
k=1wAkδkθkEL1(k)[1{L=VaRα−εA}]+

∑M
m=1wA,K+mθ̂mEL2(m)[1{L=VaRα−εA}]

E[1{L=VaRα}]
.
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By following a similar procedure, we also obtain

ESCA
α

= εApA
wA0P[L≥VaRα−εA]+

∑K
k=1wAkδkθkPL1(k)[L≥VaRα−εA]+

∑M
m=1wA,K+mθ̂mPL2(m)[L≥VaRα−εA]

P[L ≥ VaRα]
.

Here, P is the probability measure under the loss distribution L, PL1(k), k = 1, 2, ...,K, and PL2(m),m =
1, 2, ...,M, are the probability measures under the loss distribution L1(k) and L2(m), respectively.

Appendix B Johnson SB distribution algorithm

To estimate the parameters of the Johnson SB distribution, the algorithm proposed by Hill et al. (1976) matches
the first four order moments (mean µ, variance σ2, skewness κ3 and kurtosis κ4) of the target distribution with
those of the Johnson SB distribution. The moments of the Johnson SB distribution are evaluated by using
Goodwin’s integral (Goodwin, 1949). The shape parameters a and b are estimated by a two-dimensional
Newton-Raphson iterative scheme. Once these two shape parameters are determined, the location parameter c
and scale parameter d are available by using the first two order moments of the Johnson SB distribution.

Recall that Y is defined as the transform of the random variable X via (4.1) and the random variable X
can be changed into the standard normal variable Z via (4.2). By Goodwin’s integral, the rth order moment
E(Y r) of Y about zero can be written in terms of a and b as follows:

Mr(a, b) =
1√
2π

∫ ∞
−∞

e−
1
2
z2 [1 + e(a−z)/b]−r dz

=
h√
π

∞∑
n=−∞

[
1 + e(a−

√
2nh)/b

]−r
e−n

2h2 +Or(h), (B.1)

where h is the length of small intervals when using the numerical integration, and Or(h) is the error term for
the rth moment. The error term can be expressed explicitly as

Or(h) ≈ −e−π2/h2
{[

1 + e(ah−
√

2iπ)/bh
]−r

+
[
1 + e(ah+

√
2iπ)/bh

]−r}
.

Note that the error term tends rapidly to zero with the length h. A sufficiently small value in the length h is
chosen in order to achieve the required accuracy. Given the first four order moments of Y obtained via (B.1),
the mean, variance, skewness and kurtosis of Y are obtained by:

f1(a, b) = E(a, b) = M1(a, b),

f2(a, b) = var(a, b) = M2(a, b)−M2
1 (a, b),

f3(a, b) = skew(a, b) =
M3(a, b)− 3M1(a, b)M2(a, b) + 2M3

1 (a, b)

[M2(a, b)−M2
1 (a, b)]3/2

,

f4(a, b) = kurt(a, b) =
M4(a, b)− 4M1(a, b)M3(a, b) + 6M2

1 (a, b)M2(a, b)− 3M4
1 (a, b)

[M2(a, b)−M2
1 (a, b)]2

.

To estimate the shape parameters a and b, Hill et al. (1976) consider the two-dimensional Newton-Raphson
iterative scheme using the skewness f3(a, b) and kurtosis f4(a, b). Assuming that the estimator of the parameters
in the ith iterative step is (ai, bi), the (i+ 1)th iterate is obtained by ai+1

bi+1

 =

 ai

bi

+ J(ai, bi)
−1

 f3(ai+1, bi+1)− f3(ai, bi)

f4(ai+1, bi+1)− f4(ai, bi)

 , (B.2)

30



where the Jacobian matrix J(ai, bi) and its inversion are given by

J(ai, bi) =

 ∂f3
∂a (ai, bi)

∂f3
∂b (ai, bi)

∂f4
∂a (ai, bi)

∂f4
∂b (ai, bi)

 , J(ai, bi)
−1 =

1

|J(ai, bi)|

 ∂f4
∂b (ai, bi) −∂f3

∂b (ai, bi)

−∂f4
∂a (ai, bi)

∂f3
∂a (ai, bi)

 . (B.3)

The determinant of the Jacobian matrix is defined as

|J(ai, bi)| =
∂f3

∂a
(ai, bi)

∂f4

∂b
(ai, bi)−

∂f3

∂b
(ai, bi)

∂f4

∂a
(ai, bi).

The iteration is continued until the skewness f3(ai+1, bi+1) and the kurtosis f4(ai+1, bi+1) are sufficiently close
to those of the input data κ3 and κ4. The estimated parameters are then given as

â =

{
ai+1, κ3 > 0,

−ai+1, κ3 < 0,

b̂ = bi+1,

d̂ =
σ√

M2(ai+1, bi+1)−M2
1 (ai+1, bi+1)

,

ĉ =

{
µ− d̂ ∗M1(ai+1, bi+1), κ3 > 0,

µ− d̂ ∗ [1−M1(ai+1, bi+1)], κ3 < 0.

Additional details on the implementation of the algorithm are presented below:

• Initialization of the shape parameters a and b

To initiate the two-dimensional Newton-Raphson iterative scheme, the initial estimates of the parameters
a and b are obtained as follows:
Let β2 = ω4 + 2ω3 + 3ω2 − 3 with

w =

(
1 + 0.5κ2

3 + κ3

√
1 + 0.25κ2

3

)1/3

+

(
1 + 0.5κ2

3 + κ3

√
1 + 0.25κ2

3

)−1/3

− 1.

The initial estimate of the shape parameter b is found by interpolating between 0 and (lnw)−
1
2 as

b0 =

{
0.626β2−0.408
(3.0−β2)0.479

, β2 ≥ 1.8,

0.8(β2 − 1), otherwise.
(B.4)

As suggested by Draper (1952), the initial estimate of the shape parameter a is given by

|a0| =
√

1− 2b20 − 2b20 tanh−1
√

1− 2b20
b0

. (B.5)

• Partial derivatives of Mr(a, b)

As required in the two-dimensional Newton-Raphson iteration, the partial derivatives of Mr(a, b) with
respect to a and b are derived as follows:

∂Mr(a, b)

∂a
= −r

b

h√
π

∞∑
n=−∞

e−n
2h2e(a−

√
2nh)/b

[
1 + e(a−

√
2nh)/b

]−r−1

=
r

b

h√
π

∞∑
n=−∞

e−n
2h2
{[

1 + e(a−
√

2nh)/b
]−r−1

−
[
1 + e(a−

√
2nh)/b

]−r}
=
r

b
[Mr+1(a, b)−Mr(a, b)],
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∂Mr(a, b)

∂b
=

r

b2
h√
π

∞∑
n=−∞

e−n
2h2e(a−

√
2nh)/b(a−

√
2nh)

[
1 + e(a−

√
2nh)/b

]−r−1

=
ar

b2
[Mr(a, b)−Mr+1(a, b)]− r

b2
h√
π

∞∑
n=−∞

e−n
2h2e(a−

√
2nh)/b

√
2nh

[
1 + e(a−

√
2nh)/b

]−r−1
.

Due to the appearance of
√

2nh in the second term, we cannot express the second term as the difference of
two moments as in the first term. The algorithm of Hill et al. (1976) adopts the following approximation
formula:

∂Mr(a, b)

∂b
≈ r

b3
{(ab− r)[Mr(a, b)−Mr+1(a, b)] + (r + 1)[Mr+1(a, b)−Mr+2(a, b)]} . (B.6)

Since the partial derivative of Mr(a, b) with respect to b requires the (r + 2)th moments in (B.6), the
Jacobian matrix in (B.3) involves the first six order moments of the Johnson SB distribution.

Appendix C Existence of saddlepoint

This proof is a refinement of the proof in Gordy (2002) and represents an extension from the standard
CreditRisk+ model to the CR+-CBV model. Let t̂ be the solution of the saddlepoint equation κ′L(t̂) =
x [see (5.2)]. We would like to show that for x > E[L], the solution t̂ lies within (0, t∗), where t∗ =
min{t∗1, ..., t∗K , t∗K+1, ..., t

∗
K+M}. Here, t∗k, k = 1, 2, ...,K, and t∗K+m,m = 1, 2, ...,M, are the roots of the equations

obtained by setting the individual logarithmic terms in κL(t) [see (2.11)] to be zero. That is,

1− δkPk(t∗k) = 1− δk
∑
A

pAwAk(e
εAt
∗
k − 1) = 0, k = 1, 2, ...,K,

1− PK+m(t∗K+m) = 1−
∑
A

pAwA,K+m(eεAt
∗
K+m − 1) = 0, m = 1, 2, ...,M.

(C.1)

We first establish the upper bounds on t∗k, k = 1, 2, ...,K, and t∗K+m,m = 1, 2, ...,M, then derive the correspond-

ing upper bound t∗ for the saddlepoint t̂. From (C.1), we observe that

Pk(t
∗
k) = 1/δk, k = 1, 2, ...,K,

PK+m(t∗K+m) = 1, m = 1, 2, ...,M.
(C.2)

We deduce from (2.9a,b) that each of Pk(t), k = 1, 2, ...,K, and PK+m(t),m = 1, 2, ...,M, is an increasing and
convex function over t. Since Pk(0) = 0 and PK+m(0) = 0, we conclude that t∗k > 0 and t∗K+m > 0. Let
µk =

∑
A pAwAk, k = 1, 2, ...,K, by virtue of Jensen’s inequality, we then have

Pk(t
∗
k) =

∑
A

pAwAke
εAt
∗
k − µk ≥ exp(t∗k

∑
A

pAwAkεA)− µk, k = 1, 2, ...,K,

PK+m(t∗K+m) =
K∑
k=1

γmk
∑
A

pAwAke
εAt
∗
K+m −

K∑
k=1

γmkµk ≥
K∑
k=1

γmk exp(t∗K+m

∑
A

pAwAkεA)−
K∑
k=1

γmkµk

≥ exp(t∗K+m

K∑
k=1

γmk
∑
A

pAwAkεA)−
K∑
k=1

γmkµk, m = 1, 2, ...,M. (C.3)

Substituting (C.2) into (C.3) and observing t∗k > 0 and t∗K+m > 0, the bounds of t∗k and t∗K+m are given by

0 < t∗k ≤ ln(
1

δk
+ µk)

/∑
A

pAwAkεA, k = 1, 2, ...,K,

0 < t∗K+m ≤ ln(1 +

K∑
k=1

γmkµk)
/ K∑
k=1

γmk
∑
A

pAwAkεA, m = 1, 2, ...,M.

(C.4)
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Let t∗ = min{t∗1, ..., t∗K , t∗K+1, ..., t
∗
K+M}, which observes t∗ > 0. The convergence strip of κL(t) as t ∈

(−∞, t∗) contains the origin. Also, κL(t) is strictly convex which implies κ′′L(t) > 0. On the other hand, when
t → t∗, one of the terms in the denominator in κ′L(t), either 1 − δkPk(t) or 1 − PK+m(t), tends to zero, which
dictates that limt→t∗ κ

′
L(t) = ∞. The mapping κ′L(t) : (−∞, t∗) → (0,∞) is one-to-one and onto (bijection).

Since κ′L(t) is increasing for all t ∈ (−∞, t∗), the solution t̂ of the saddlepoint equation κ′L(t̂) = x should be
less than t∗. When x > E[L], the property κ′L(0) = E[L] implies that the solution t̂ lies within (0, t∗). Other
solutions of the saddlepoint equation may exist outside the range of (−∞, t∗), but these solutions are erroneous.
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