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Abstract. We examine the early exercise policies and pricing behaviors of one-asset American
options with lookback payoff structures. The classes of option models considered include floating
strike lookback options, Russian options, fixed strike lookback options and pricing model of dynamic
protection fund. For each class of the American lookback options, we analyze the optimal stopping
region, in particular the asymptotic behavior at times close to expiration and at infinite time to
expiration. The inter-relations between the price functions of these American lookback options are
explored. The mathematical technique of analyzing the exercise boundary curves of lookback options
at infinitesimally small asset value is also applied to the American two-asset minimum put option
model.
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1. Introduction. In this paper, we consider the theoretical analysis of the op-
timal exercise policies of an American option with lookback payoff. An American
lookback option involves the combination of two exotic features: early exercise fea-
ture and lookback feature. Like other American option models, the analysis of an
American lookback option requires the solution of a free boundary value problem.
The solution procedure involves the determination of the free exercise boundary that
separates the stopping region and continuation region. The analysis is further com-
plicated by the presence of the path dependent lookback state variable. For floating
strike lookback options, the analysis is easier since the dimensionality of the pricing
model can be reduced through homogeneity of the price function. This is achieved by
taking the asset price as the numeraire. However, for American fixed strike lookback
options, the exercise boundary is a two-dimensional curve in the state space described
by the asset price and the lookback state variable.

Several earlier papers on American lookback options concentrate on the analysis
of the Russian option [7, 17, 18], which is essentially a perpetual zero-strike fixed strike
lookback call option. There have been only a few papers which analyze the optimal
exercise behaviors of finite time American lookback options. Yu et al. [22] develop
finite difference algorithms to compute the exercise boundaries of both American
fixed strike and floating strike lookback options. In a sequel of two papers [15, 16],
Lai and Lim propose the Bernoulli walk approach to compute the price functions
and optimal exercise boundaries of American fixed strike and floating strike lookback
options. They also obtain analytic price formulas for American lookback options
using a decomposition, which expresses the price as the sum of the corresponding
European value and an early exercise premium. Dai et al. [4] analyze the exercise
policies of American floating strike lookback options with quanto payoff. These quanto
options involve an underlying foreign currency asset but the payoffs are denominated
in domestic currency.
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We would like to provide a more comprehensive and thorough analysis of the
exercise behaviors of the commonly traded American lookback options. Our analysis
framework relies more on the partial differential equation approach, as opposed to
the usual stochastic approach in most earlier works (say, [14, 15]). For the sake of
completeness, we attempt to provide a comprehensive list of analytic properties of the
exercise boundaries and stopping regions of the lookback option models. The classes
of American lookback option models considered in this paper include the floating
strike and fixed strike lookback call and put options, Russian options and pricing
model of dynamic protection fund. We analyze the exercise boundary of each class of
lookback options, in particular the asymptotic behavior at times close to expiration
and at infinite time to expiration. The inter-relations between the price functions of
these American lookback options are explored. We observe that our mathematical
technique developed for analyzing the exercise boundary at infinitesimally small asset
value for lookback options can be extended to American two-asset minimum put
option model. For all types of American lookback options considered in this paper, we
performed numerical calculations to compute the corresponding exercise boundaries.
These plots of exercise boundaries serve as the verification to all results derived from
the theoretical studies of the optimal exercise policies.

2. Floating strike lookback options. In this section, we explore some analytic
properties of the price functions and optimal exercise policies of the American floating
strike lookback options. The usual assumptions of the Black-Scholes option pricing
framework are adopted in this paper. Let S denote the price of the underlying asset
of the lookback option, whose stochastic dynamics under the risk neutral measure is
governed by

dS

S
= (r − q)dt + σ dZ,(2.1)

where t is the calendar time, r is the riskless interest rate, σ and q are the volatility
and dividend yield of S, respectively, and Z is the standard Wiener process. We write
τ as the time to expiry, 0 ≤ τ < ∞. Let m and M denote the realized minimum
value and realized maximum value, respectively, of the asset price over the lookback
monitoring period (continuous monitoring is assumed) up to the current time. The
payoff functions of the American floating strike lookback call and lookback put are
taken to be

(αS − m)+ and (M − αS)+

respectively, where α is a positive parameter value, 0 < α < ∞, and x+ = max(x, 0).
When α = 1, we recover the usual lookback payoffs. While lookback options are
less attractive to investors due to their high option premium, the parameter α allows
flexible adjustment of the resulting option premium. For example, we may take α
to be less (greater) than one in the floating strike call (put) payoff so as to achieve
option premium reduction. Furthermore, the addition of the parameter α in the
pricing model facilitates our asymptotic analysis of the exercise boundary curves at
the limit of infinitesimally small asset value.

2.1. American floating strike lookback call. Let Cf`(S, m, τ ) denote the
price function of an American floating strike lookback call with payoff (αS − m)+.
The linear complementarity formulation that governs Cf`(S, m, τ ) is given by (see [12]
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and [21])

∂Cf`

∂τ
−LCf` ≥ 0, Cf` ≥ αS − m,

(2.2) (
∂Cf`

∂τ
− LCf`

)
[Cf` − (αS − m)] = 0, S > m > 0, τ > 0,

with auxiliary conditions:

∂Cf`

∂m

∣∣∣∣
S=m

= 0
(2.3)

Cf`(S, m, 0) = (αS − m)+.

The operator L is defined by

L =
σ2

2
S2 ∂2

∂S2
+ (r − q)S

∂

∂S
− r.

Note that the payoff upon early exercise is guaranteed to be positive so that we can
replace the payoff function (αS −m)+ by αS −m. However, we cannot do so for the
terminal payoff at τ = 0. The dimension of the above formulation can be reduced by
one if we define the following transformation of variables:

η =
m

S
and C̃f`(η, τ ) =

Cf`(S, m, τ )
S

.(2.4)

This is equivalent to take S as the numeraire. The new linear complementarity for-
mulation for C̃f`(η, τ ) is given by

∂C̃f`

∂τ
− L̃C̃f` ≥ 0, C̃f` ≥ α − η,

(2.5) (
∂C̃f`

∂τ
− L̃C̃f`

)
[C̃f` − (α − η)] = 0, 0 < η < 1, τ > 0,

with auxiliary conditions:

∂C̃f`

∂η

∣∣∣∣
η=1

= 0

(2.6)
C̃f`(η, 0) = (α − η)+,

where the operator L̃ is given by

L̃ =
σ2

2
η2 ∂2

∂η2
+ (q − r)η

∂

∂η
− q.

Remark
The normal reflection condition in Eq. (2.6) plays a crucial role in distinguishing the
optimal exercise policies of American lookback options from usual American options.
The auxiliary condition is derived from the observation that the lookback option value
is insensitive to the running extremum value when the current asset value equals the
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extremum value. This is because the probability that the current extremum value
remains to be the realized extremum value at maturity is essentially zero when the
current asset value and running extremum value are equal (see [10]). In a more recent
work, Peskir [17] presents a proof on the normal reflection condition for the finite time
Russian option. A similar proof can be mimicked for an American lookback option
with more general lookback payoff.

The holder optimally exercises the lookback call whenever S reaches sufficiently
high level. In terms of η, the holder chooses to exercise when η ≤ η∗, where the
threshold η∗ has dependence on τ . The domain of the pricing model can be divided
into two regions: the stopping region S = {(η, τ ) : 0 < η ≤ η∗(τ ), 0 < τ < ∞} inside
which it is optimal to exercise the option and the continuation region SC = {(η, τ ) :
η∗(τ ) < η ≤ 1, 0 ≤ τ < ∞} inside which it is optimal to continue to hold the option.
Upon exercise, we have C̃f` = α − η so that the stopping region is defined by

S = {(η, τ ) : 0 < η ≤ 1, 0 ≤ τ < ∞ and C̃f`(η, τ ) = α − η}.

The analysis of the optimal exercise policies amounts to the analysis of the analytic
properties of η∗(τ ) that separates the continuation and stopping regions. Some of the
analytic properties of η∗(τ ) are summarized in Proposition 2.1.

Proposition 2.1
The exercise boundary η∗(τ ; α) of the American floating strike lookback call option
observes the following properties:

(i) Suppose (η, τ ) ∈ SC , then (λ1η, λ2τ ) ∈ SC for all λ1 ≥ 1, λ2 ≥ 1.
(ii) The line η = 1 always lies inside SC for finite value of α.
(iii) The behavior of η∗(τ ; α) near expiry, τ → 0+, is given by

η∗(0+; α) = min
(
1, α,

q

r
α
)

.

When q > 0, η∗(0+; α) is guaranteed to be positive so that there exists at least a
line segment: τ = 0, where 0 < η < η∗(0+; α), in the stopping region. Property (ii)
reveals that the line η = 1 lies in the continuation region. Hence, we can conclude that
both the continuation and stopping regions exist in the η-τ plane. Further, by virtue
of (i), the free boundary η∗(τ ; α) that separates the stopping and continuation regions
can be deduced to be monotonically decreasing with respect to τ . In conclusion, for
q > 0, there exists the monotonic free boundary η∗(τ ; α) such that C̃f` = α − η
for η ≤ η∗(τ ; α), τ > 0. The details of the proof of Proposition 2.1 is presented in
Appendix A. Further asymptotic properties of η∗(τ ; α) with respect to τ → ∞ and
α → ∞ are stated in Proposition 2.2

Proposition 2.2
When q > 0, the asymptotic behaviors at τ → ∞ and α → ∞ of the exercise boundary
η∗(τ ; α) of the American floating strike lookback call option are summarized as follows.

(i) Write η∗
∞(α) as limτ→∞ η∗(τ ; α); η∗

∞(α) is given by the solution of the root
inside the interval (0, 1) of the following algebraic equation

(η∗
∞)λ+−λ− =

λ+

λ−

(1 − λ−)η∗
∞ + λ−α

(1 − λ+)η∗
∞ + λ+α
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where

λ± =
r − q

σ2
+

1
2
±

√(
r − q

σ2
+

1
2

)2

+
2q

σ2
.

(ii) lim
α→∞

η∗(τ ; α) = 1 for all τ .

The proof of Proposition 2.2 is presented in Appendix B. From the monotonic
decreasing property of η∗(τ ; α) with respect to τ and the finiteness property of η∗

∞(α)
for q > 0, we infer that η∗(τ ; α) > 0 exists for all τ when q > 0. When α → ∞, the
continuation region vanishes.

When the underlying asset is non-dividend paying, q = 0, we have η∗(0+; α) = 0.
Furthermore, since η∗(τ ; α) is monotonically decreasing with respect to τ , we deduce
that η∗(τ ; α) = 0 for τ > 0. That is, the stopping region does not exist when q = 0.
Interpreted in financial sense, it is never optimal to exercise the American floating
strike lookback call at any asset price level if the underlying asset is non-dividend
paying. Such result agrees intuitively with a similar result of the usual American call.

Figure 1 shows the plot of η∗(τ ; α) against τ at varying values of α. The parameter
values used in the calculations are: r = 0.04, q = 0.02 and σ = 0.3. The monotonicity
properties of η∗(τ ; α) with respect to τ and α and the asymptotic behaviors at τ → 0+

and τ → ∞ as shown in the plots do agree with the results stated in Propositions 2.1
and 2.2. Our calculations give the following asymptotic values for η∗(τ ; α):

η∗(0+; 0.5) = 0.25, η∗(∞; 0.5) = 0.1023,
η∗(0+; 1) = 0.5, η∗(∞; 1) = 0.1988,
η∗(0+; 2) = 1, η∗(∞; 2) = 0.3617,
η∗(0+; 10) = 1, η∗(∞; 10) = 0.7947.

2.2. American floating strike lookback put. Let Pf`(S, M, τ ) denote the
price function of an American floating strike lookback put with payoff (M − αS)+.
The Russian option is the perpetual version of the American floating strike lookback
put with α = 0. In a similar manner, we use S as the numeraire and define

ξ =
M

S
and P̃f`(ξ, τ ) =

Pf`(S, M, τ )
S

.(2.7)

The linear complementarity formulation for P̃f`(ξ, τ ) is given by

∂P̃f`

∂τ
− L̃P̃f` ≥ 0, P̃f` ≥ ξ − α,

(2.8) (
∂P̃f`

∂τ
− L̃P̃f`

)
[P̃f` − (ξ − α)] = 0, 1 < ξ < ∞, τ > 0,

with auxiliary conditions:

∂P̃f`

∂ξ

∣∣∣∣
ξ=1

= 0

(2.9)
P̃f`(ξ, 0) = (ξ − α)+.

Similarly, we have the free boundary ξ∗(τ ) that separates the stopping region
{(ξ, τ ) : ξ ≥ ξ∗(τ ), 0 ≤ τ < ∞} and the continuation region {(ξ, τ ) : 1 ≤ ξ <
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ξ∗(τ ), 0 ≤ τ < ∞}. The analytic properties of ξ∗(τ ) are summarized in Proposition
2.3.

Proposition 2.3
The free boundary ξ∗(τ ; α) observes the following properties:

(i) ξ∗(τ ; α) is monotonically increasing with respect to τ and α.
(ii) The behavior of ξ∗(τ ; α) near expiry, τ → 0+, is given by

ξ∗(0+; α) = max
(
1, α,

q

r
α
)

.

(iii) Write ξ∗∞(α) as limτ→∞ ξ∗(τ ; α); ξ∗∞(α) is given by the solution of the root
inside the interval (1,∞) of the following algebraic equation:

(ξ∗∞)λ+−λ− =
λ+

λ−

(1 − λ−)ξ∗∞ + λ−α

(1 − λ+)ξ∗∞ + λ+α
.

In particular, when q = 0, we have

ξ∗∞(α) = ∞.

As a remark, it is well known that it is never optimal to exercise a Russian option
when the underlying asset is non-dividend paying [18]. The above result shows that
such optimal exercise policy holds even for non-zero value of α (Russian option is the
special case of α = 0).

The ideas behind the proof of Proposition 2.3 are similar to those used in proving
Propositions 2.1 and 2.2. In Figure 2, we show the plot of ξ∗(τ ; α) against τ with
different values of α. The parameter values used in the calculations are: r = 0.02, q =
0.04 and σ = 0.3. We obtained the following asymptotic values for ξ∗(τ ; α):

ξ∗(0+; 0) = 1, ξ∗(∞; 0) = 3.4939,
ξ∗(0+; 0.5) = 1, ξ∗(∞; 0.5) = 4.8536,
ξ∗(0+; 1) = 2, ξ∗(∞; 1) = 6.6068,
ξ∗(0+; 2) = 4, ξ∗(∞; 2) = 10.7613.

The monotonic behaviors of ξ∗(τ ; α) as exhibited by the plots in Figure 2 are consistent
with the results stated in Proposition 2.3.

3. Fixed strike lookback options. We now consider the pricing behaviors and
optimal exercise policies of American fixed strike lookback options, where the payoff
involves the strike price K and either realized maximum value M or realized minimum
value m. The payoff functions of the American fixed strike lookback call and lookback
put are given by

(M − K)+ and (K − m)+,

respectively. We also consider American option model with lookback payoff of the
form

max(M, K),

which is related to the pricing model of dynamic protection fund with early with-
drawal right [7, 9]. According to the guarantee clause, the fund holder acquires more
units of the fund from the fund sponsor whenever the fund value falls below the guar-
anteed protection floor. The early withdrawal right embedded in the protection fund
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resembles the early exercise right of an American option. When we set K = 0 in the
payoff max(M, K), the option model becomes the finite-time Russian option.

It is tempting to seek possible fixed-floating symmetry relations between American
lookback call and put options, similar to those obtained by Detemple [6] for usual
American options. While it is possible to obtain symmetry relations between the
grant-date price functions of European lookback options (with no dependence on the
running extremum value), such relations do not hold for the in-progress counterparts.
We do not expect to have nice fixed-floating symmetry relations between the price
functions of in-progress American lookback options.

3.1. American fixed strike lookback call. Let Cfix(S, M, τ ; K) denote the
price function of an American fixed strike lookback call with payoff (M − K)+. The
linear complementarity formulation that governs Cfix(S, M, τ ; K) is given by

∂Cfix

∂τ
− LCfix ≥ 0, Cfix ≥ (M − K),

(3.1) (
∂Cfix

∂τ
−LCfix

)
[Cfix − (M − K)] = 0, 0 < S < M, τ > 0,

with auxiliary conditions:

∂Cfix

∂M

∣∣∣∣
S=M

= 0,

(3.2)
Cfix(S, M, 0) = (M − K)+.

Let S(K) denote the stopping region of the American fixed strike lookback call with
strike price K. Inside S(K), the price function equals the exercise payoff, that is,

S(K) = {(S, M, τ ) ∈ {0 < S ≤ M} × (0,∞) : Cfix(S, M, τ ) = (M − K)+}.

Propositions 3.1–3.2 summarize the characterization of the optimal exercise policy of
the American fixed strike lookback call and the analytic properties of the stopping
region.

Proposition 3.1
The stopping region S(K) and the price function Cfix(S, M, τ ; K) of the American
fixed strike lookback call observe the following properties:

(i) Cfix(S, M, τ ; K2) − Cfix(S, M, τ ; K1) ≤ K1 − K2 if K1 > K2,
(ii) S(K1) ⊂ S(K2) if K1 > K2,
(iii) Suppose (S, M, τ ) ∈ S(K) and 0 < λ1 ≤ 1, λ2 ≥ 1, 0 < λ3 ≤ 1, we have

(λ1S, λ2M, λ3τ ) ∈ S(K).

The proof of Proposition 3.1 is presented in Appendix C. In Figure 3, we plot the
exercise boundary that separates the stopping region and continuation region in the
S-M plane, and use M∗(S, τ ; K) to denote the exercise boundary. Such representation
reveals the dependence of the critical realized maximum value M∗ on S, τ and K. By
virtue of (iii) in Proposition 3.1, we deduce that the stopping region lies to the upper
left side of the exercise boundary in the S-M plane. Hence, we may rewrite S(K) in
the following alternative form:

S(K) = {(S, M, τ ) ∈ {0 < S ≤ M} × (0,∞) : M > M∗(S, τ )}.
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Further properties on M∗(S, τ ; K) are summarized in Proposition 3.2.

Proposition 3.2
Let M∗(S, τ ; K) denote the exercise boundary of the American fixed strike lookback
call in the S-M plane, then M∗(S, τ ; K) observes the following properties:

(i) lim
τ→0+

M∗(S, τ ; K) = K for all S,

(ii) M∗(S, τ ; K) is a monotonically increasing with respect to S and τ ,
(iii) lim

S→0+
M∗(S, τ ; K) = K for all τ ,

(iv) When K = 0, M∗(S, τ ; 0) is a linear function of S. Furthermore,
M∗(S, τ ; 0)

S
is a monotonically increasing function of τ and

lim
S→∞

M∗(S, τ ; K)
S

=
M∗(S, τ ; 0)

S
for K > 0.(3.3)

Part (i) gives the zeroth order asymptotic expansion of M∗(S, τ ; K) as τ → 0+

(see [15] for a higher order asymptotic expansion of M∗(S, τ ; K) as τ → 0+). One
can prove Part (i) by following a similar approach as that of (iii) in Proposition 2.1.
Part (ii) is a corollary of part (iii) in Proposition 3.1. The proof of parts (iii) and (iv)
in Proposition 3.2 is presented in Appendix D.

In Figure 3, we show the plot of the exercise boundaries of the American fixed
strike lookback call option with varying values of maturity τ in the S-M plane. The
parameter values used in the calculations are: K = 1, r = 0.02, q = 0.04 and σ = 0.3.
The exercise boundary corresponding to the zero-strike lookback call is a straight line,
the slope of which depends on τ . By virtue of Eq. (3.3), the exercise boundaries for
the non-zero strike lookback call options tend to those of their zero-strike counterparts
as S → ∞. Note that M∗(S, τ ; 0)/S = ξ∗(τ ; 0), where ξ∗(τ ; α) denotes the exercise
boundary in the pricing model for P̃f`(ξ, τ ) [see Eqs. (2.8, 2.9)]. Our calculations
give the following numerical values for ξ∗(τ ; 0):

ξ∗(∞; 0) = 3.4939
ξ∗(2; 0) = 2.0300

ξ∗(0.5; 0) = 1.5450.

The finite-time Russian option is seen to be identical to the zero-strike American
fixed strike lookback call. Let VRus(S, M, τ ) denote the price function of the finite-
time Russian option so that

VRus(S, M, τ ) = Cfix(S, M, τ ; 0).(3.4)

Since K does not appear in the price function VRus(S, M, τ ), the asset value S can
be used as a numeraire. We may write

ṼRus(ξ, τ ) =
VRus(S, M, τ )

S
where ξ =

M

S
.(3.5)

This explains why M∗(S, τ ; 0)/S becomes independent of S. More detailed theoretical
analysis of the price function VRus(S, M, τ ) can be found in Peskir’s paper [16].
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The exercise boundaries plotted in Figure 3 do agree with our financial intuition
about the optimal early exercise policies of the American fixed strike lookback call
options. Either S → 0+ or τ → 0+, the chance of achieving a higher realized maximum
value M becomes vanishingly small, so it becomes optimal to exercise even when M
reaches the level K. When the asset price is very high, M∗(S, τ ; K) becomes almost
insensitive to the strike price K since the value K has only small effect on the exercise
payoff. Hence, when S → ∞, the asymptotic behavior of M∗(S, τ ; K) as stated in
Eq. (3.3) is observed.

3.2. American fixed strike lookback put. Consider an American fixed strike
lookback put with payoff (K − m)+, the linear complementarity formulation that
governs its price function Pfix(S, m, τ ) is given by

∂Pfix

∂τ
− LPfix ≥ 0, Pfix ≥ (K − m),

(3.6) (
∂Pfix

∂τ
−LPfix

)
[Pfix − (K − m)] = 0, 0 < m < S, τ > 0,

with auxiliary conditions:

∂Pfix

∂m

∣∣∣∣
S=m

= 0
(3.7)

Pfix(S, m, 0) = (K − m)+ .

In a similar manner, we let m∗(S, τ ; K) denote the exercise boundary that sep-
arates the stopping region and continuation region in the S-m plane. The analytic
properties of m∗(S, τ ; K) are summarized in Proposition 3.3.

Proposition 3.3
The exercise boundary m∗(S, τ ; K) of the American fixed strike lookback put satisfies
the following properties:

(i) lim
τ→0+

m∗(S, τ ; K) = K for all S,

(ii) m∗(S, τ ; K) is monotonically increasing with respect to S,
(iii) lim

S→∞
m∗(0, τ ; K) = K for all τ ,

(iv) lim
S→0+

m∗(S, τ ; K)
S

= 1 for all τ .

Parts (i) - (iii) in Proposition 3.3 can be proven by using similar arguments
as those used in proving parts (i) - (iii) in Proposition 3.2. The proof of (iv) in
Proposition 3.3 is interesting and challenging. It relies on the asymptotic result on
η∗(τ ; α) as stated in (ii) in Proposition 2.2 (see Appendix E for details).

Figure 4 shows the plot of the exercise boundaries m∗(S, τ ; K) of the American
fixed strike lookback put with varying values of maturity τ in the S-m plane. The
parameter values used in the calculations are: K = 1, r = 0.04, q = 0.02 and σ = 0.3.
According to (iii) and (iv) in Proposition 3.3, the exercise boundaries are seen to tend
asymptotically to m = K as S → ∞ and m = S as S → 0+.

3.3. American lookback option with payoff max(M, K). Let VM (S, M, τ )
denote the price function of the American option with lookback payoff max(M, K).
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First, we argue from financial intuition that VM (S, M, τ ) should be insensitive to the
current realized maximum value of asset price M when M < K, that is,

∂VM

∂M
= 0 for M < K.(3.8)

The option payoff is given by K if the future realized maximum value of asset price
is less than or equal to K; otherwise, the payoff equals the future realized maximum
value. In either case, the current realized maximum value M does not enter into the
payoff function. Hence, VM (S, M, τ ) does have dependence on M when M < K. On
the other hand, when M ≥ K, the future realized maximum value is always greater
than or equal to K, so the payoff is simply given by M . This is the same payoff as
that of the finite-time Russian option. Hence, we have

VM (S, M, τ ) = VRus(S, M, τ ) for M ≥ K.(3.9)

By virtue of the continuity property of the price function VM (S, M, τ ) with respect
to M , we then have

VM (S, M, τ ) =
{

VRus(S, M, τ ) for M ≥ K
VRus(S, K, τ ) for M < K

.(3.10)

For M ≥ K, VM and VRus should share the same optimal exercise policy. At M =
K, the exercise boundary of the finite-time Russian option is given by S = K/ξ∗(τ ; 0).
Hence, for M < K, the American option with payoff max(M, K) will be exercised
optimally when S ≤ K/ξ∗(τ ; 0) and unexercised if otherwise.

In Figure 5, we plot the stopping region and continuation region in the S-M plane
of the American option with payoff max(M, K). The set of parameter values used
in the calculations are: K = 1, r = 0.02, q = 0.04 and σ = 0.3. When M ≥ K,
the stopping region and continuation region for fixed value of τ are separated by the
oblique line: M = Sξ∗(τ ; 0). On the other hand, when M < K, the exercise boundary
becomes the vertical line: S = K/ξ∗(τ ; 0).

3.4. A related two-asset American option model. As a slight departure
from the option models with lookback payoff structures, we consider the optimal
exercise policies of a two-asset American option with a put payoff on the minimum of
two asset values. There have been several comprehensive papers that analyze the early
exercise policies of two-asset American options [2, 5, 9, 13, 14, 19, 20]. We would like
to demonstrate that the mathematical technique of analyzing the exercise boundaries
of the American fixed strike lookback put option at S → 0+ can be adopted to resolve
the mystery on the asymptotic behaviors of the exercise boundaries of the two-asset
American minimum put option at infinitesimally small asset values.

Let S1 and S2 denote the prices of the two underlying assets, whose dynamics
under the risk neutral measure are governed by

dSi

Si
= (r − qi)dt + σi dZi i = 1, 2,(3.11)

where dZ1 dZ2 = ρ dt, ρ is the correlation coefficient between the two Wiener processes
dZ1 and dZ2. The exercise payoff is given by (K−min(S1, S2))+, where K is the strike
price. Let Pmin(S1, S2, τ ; K) denote the price function of this two-asset American
minimum put option. Let S2(K) denote the continuation region in the S1-S2 plane,
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with dependence on K. The linear complementarity formulation for Pmin(S1, S2, τ ; K)
is given by

∂Pmin

∂τ
− L2Pmin ≥ 0, Pmin ≥ (K − min(S1, S2))+,

(3.12) [
∂Pmin

∂τ
−L2Pmin

]
[Pmin − (K − min(S1, S2))+] = 0,

0 < S1 < ∞, 0 < S2 < ∞, τ > 0.

The operator L2 is defined by

L2 =
σ2

1

2
S2

1

∂2

∂S2
1

+ ρσ1σ2S1S2
∂2

∂S1∂S2
+

σ2
2

2
S2

2

∂2

∂S2
2(3.13)

+ (r − q1)S1
∂

∂S1
+ (r − q2)S2

∂

∂S2
− r.

In Figure 6, we show the plot of the exercise boundaries of the two-asset American
minimum put option in the S1-S2 plane. The following set of parameter values are used
in the calculations: K = 1, r = 0.02, q1 = 0, q2 = 0.03, σ1 = σ2 = 0.3 and ρ = 0.5.
The whole line S1 = S2 always lie in the continuation region. The continuation
region is bounded by the two branches of the exercise boundaries. In the region
S1 > S2, we let S∗

2 (S1, τ ) denote the exercise boundary at time to expiry τ . We
observe that the curve S∗

2 (S1, τ ) tends to the line S1 = S2 as S1 → 0+ and tends to
some asymptotic limit as S1 → ∞. Similar phenomena occur in the region S2 > S1,
where the exercise boundary at time to expiry τ is represented by S∗

1 (S2, τ ). For the
above set of parameter values chosen for the option model, we obtain

lim
S1→∞

S∗
2 (S1, 0.1) = 0.6277, lim

S1→∞
S∗

2(S1, 1) = 0.4855, lim
S1→∞

S∗
2 (S1,∞) = 0.2268,

lim
S2→∞

S∗
1 (S2, 0.1) = 0.8118, lim

S2→∞
S∗

1(S2, 1) = 0.6100, lim
S2→∞

S∗
1 (S2,∞) = 0.3077.

Some of the analytic properties of the exercise boundaries S∗
1 (S2, τ ) and S∗

2 (S1, τ ) are
summarized in Proposition 3.4.

Proposition 3.4
Let S∗

1 (S2, τ ) and S∗
2 (S1, τ ) denote the exercise boundaries at time to expiry τ in the

two respective regions, S2 > S1 and S1 > S2, in the S1-S2 plane of the two-asset
American minimum put option. The exercise boundaries and the continuation region
observe the following properties:

(i) Let S∗
1,P (τ ) and S∗

2,P (τ ) denote the exercise boundary of the one-asset Amer-
ican put option with the underlying asset S1 and S2, respectively. We have

lim
S2→∞

S∗
1 (S2, τ ) = S∗

1,P (τ ) and lim
S1→∞

S∗
2 (S1, τ ) = S∗

2,P (τ ).

(ii) Both S∗
1 (S2, τ ) and S∗

2 (S1, τ ) are monotonically decreasing with respect to
time to expiry and monotonically increasing with respect to the asset price
level.

(iii) The whole line S1 = S2 is contained completely inside the continuation region.
(iv) At infinitesimally small asset values, we have



12 MIN DAI AND YUE KUEN KWOK

lim
S1→0+

S∗
2 (S1, τ )

S1
= 1 and lim

S2→0+

S∗
1 (S2, τ )

S2
= 1 for all τ.(3.14)

All exercise boundaries tend asymptotically to the line S1 = S2 as S1 and S2

both tend to zero.

The intuition behind the asymptotic properties stated in part (i) of Proposi-
tion 3.4 is quite obvious. When S1 → ∞, Pmin(S1, S2, τ ; K) −→ P (S2, τ ; K), where
P (S2, τ ; K) denotes the price function of the one-asset American put option with un-
derlying asset S2. We would expect that both option models follow the same optimal
exercise strategy, thus leading to the asymptotic properties stated in (i). The proof
of these asymptotic properties can be pursued by following similar arguments used
in the proof of Proposition 4.8 in Villeneuve’s paper [20]. Also, the monotonicity
properties of S∗

1 (S2, τ ) and S∗
2 (S1, τ ) have been discussed in other papers (say [2] and

[20]). Property (iii) states that when S1 = S2, it is never optimal to exercise the
two-asset American minimum put option. This optimal exercise policy is similar to
that of the two-asset American maximum call option. The proof of (iii) can follow
a similar argument presented by Detemple et al . [5] on the American maximum call
option. The proof of the asymptotic behavior of the exercise boundaries at S1 → 0
and S2 → 0 requires specifically the technique developed in the proof of property (iii)
in Proposition 3.3. The proof of part (iv) of Proposition 3.4 is presented in Appendix
F.

4. Conclusion. This paper demonstrates the richness of the optimal exercise be-
haviors adopted by holders of the American options with payoff structures involving
lookback state variables. The analysis of the optimal exercise policies of an Ameri-
can lookback option is complicated by the presence of an additional lookback state
variable. For fixed strike lookback options, we characterize the exercise behaviors by
analyzing the analytic properties of the stopping region and continuation region in
the two-dimensional state space (asset price and lookback state variable). For floating
strike lookback options, the dimension of the pricing model can be reduced by one
if the asset price is used as the numeraire. We reveal the close relationship between
the price functions of the finite-time Russian option and the dynamic protection fund
with withdrawal right. For the American put option on the minimum value of two
assets, the exercise region consists of two branches of exercise surfaces. Compared to
earlier works, our analyses provide more comprehensive understanding of the optimal
exercise policies of commonly traded American lookback options. In particular, we
provide more precise description of the asymptotic behaviors of the exercise bound-
aries. All the optimal exercise policies of American lookback options derived from our
theoretical studies have been verified by plots of the exercise boundaries obtained via
numerical calculations.
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APPENDIX A — Proof of Proposition 2.1
(i) First, we show that if (η, τ ) ∈ SC , then (η, λ2τ ) ∈ SC for λ2 ≥ 1. By applying

the comparison principle, one can show that
∂C̃f`

∂τ
> 0. This is consistent

with the financial intuition that the price function of any American option is
an increasing function of τ . Suppose (η, τ ) lies in the continuation region, then

C̃f`(η, τ ) > α−η. By virtue of
∂C̃f`

∂τ
> 0, we deduce that C̃f`(η, λ2τ ) > α−η

for λ2 ≥ 1. Hence, (η, λ2τ ) also lies in the continuation region.
Next, we show that if (η, τ ) ∈ SC , then (λ1η, τ ) ∈ SC for λ1 ≥ 1. If suffices

to show that

(A.1)
∂

∂η
[C̃f`(η, τ )− (α − η)] ≥ 0.

We write U (η, τ ) = C̃f`(η, τ ) − (α − η), then the linear complementarity
formulation for U (η, τ ) is given by

∂U

∂τ
− L̃U ≥ rη − qα, U ≥ 0,

(
∂U

∂τ
− L̃U

)
U = 0, 0 < η < 1, τ > 0,

with auxiliary conditions:

∂U

∂η

∣∣∣∣
η=1

= 1 and U (η, 0) = (η − α)+.

Both the initial condition (η − α)+ and the non-homogeneous term rη − qα

are increasing functions of η, and
∂U

∂η

∣∣∣∣
η=1

> 0. By virtue of the comparison

principle, we deduce that
∂U

∂η
≥ 0.

(ii) We prove by contradiction. Suppose there exists τ0 > 0 such that (1, τ0) ∈ S,
by applying Eq. (A.1), we can show that (η, τ0) ∈ S for η < 1. We then have

C̃f`(η, τ0) = α − η, η < 1.

This implies

∂C̃f`

∂η
= −1 at (1, τ0),

which contradicts the Neumann boundary condition stated in Eq. (2.6).
(iii) A necessary condition for (η, τ ) lying inside S is given by

(
∂

∂τ
− L̃

)
(α − η) = αq − rη ≥ 0,

that is, η ≤ q

r
α. Hence, we should have η∗(0+) ≤ q

r
α. Since the exercise

payoff must be non-negative, so another necessary condition is given by η ≤ α.
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Lastly, the feasible region for η is {η : η ≤ 1}. Combining all three necessary
conditions, we should have

η∗(0+) ≤ min
(
1, α,

q

r
α
)

.

Suppose η∗(0+) < min
(
1, α,

q

r
α
)
, then for η ∈

(
η∗(0+), min

(
1, α,

q

r
α
))

, we
have

∂C̃f`

∂τ

∣∣∣∣
τ=0

= L̃C̃f`

∣∣∣∣
τ=0

= L̃(α − η) = rη − αq < 0.

This contradicts with
∂C̃f`

∂τ
≥ 0 for all τ . Hence, we obtain

η∗(0+) = min
(
1, α,

q

r
α
)

.

APPENDIX B — Proof of Proposition 2.2
(i) Write η∗

∞(α) = lim
τ→∞

η∗(τ ; α) and C̃∞
f` (η) = lim

τ→∞
C̃f`(η, τ ), then C̃∞

f` (η) satis-
fies the following differential equation:

L̃ C̃∞
f` = 0, η∗

∞ < η < 1,

subject to the auxiliary conditions:

C̃∞
f`(η

∗
∞) = α − η∗

∞,
∂C̃f`

∂η
(η∗

∞) = −1,
∂C̃f`

∂η
(1) = 0.

The general solution to C̃∞
f` (η) is given by

C̃∞
f`(η) = A1η

λ+ + A2η
λ− , η∗

∞ < η < 1.

Applying the auxiliary conditions, we obtain

A1 =
(1 − λ−)η∗

∞ + λ−α

(λ− − λ+)(η∗
∞)λ+

and A2 =
(1 − λ+)η∗

∞ + λ+α

(λ+ − λ−)(η∗
∞)λ−

,

and η∗
∞ satisfies the non-linear algebraic equation

(B.1) (η∗
∞)λ+−λ− =

λ+

λ−

(1 − λ−)η∗
∞ + λ−α

(1 − λ+)η∗
∞ + λ+α

.

The above algebraic equation has two roots, one lies in (0, 1) and the other
lies in (1,∞) (the proof of these properties can be found in [3]). Here, η∗

∞
corresponds to the root in (0, 1). Hence, the results in part (i) are established.

(ii) When α → ∞, the non-linear algebraic equation (B.1) reduces to

(η∗
∞)λ+−λ− = 1

so that the solution for η∗
∞ becomes 1. Also, η∗(0+) = 1 when α becomes

sufficiently large. Since η∗(τ ) is monotonically decreasing with respect to τ ,
and η∗(0+) = η∗(∞) = 1 as α → ∞, we can deduce that

lim
α→∞

η∗(τ ; α) = 1 for all τ.
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APPENDIX C — Proof of Proposition 3.1
(i) Define the function V (S, M, τ ; K) = Cfix(S, M, τ ; K) + K. Similar to Eqs.

(3.1–3.2), the linear complementarity formulation for V (S, M, τ ; K) is given
by

∂V

∂τ
−LV ≥ rK, V ≥ max(M, K)

[
∂V

∂τ
−LV − rK

]
[V − max(M, K)] = 0,

with auxiliary conditions:

∂V

∂M

∣∣∣∣
S=M

= 0 and V (S, M, 0; K) = max(M, K).

By virtue of the comparison principle, we have

V (S, M, τ ; K1) ≥ V (S, M, τ ; K2) if K1 > K2,

and hence the result.
(ii) From (i), for K1 > K2, we have

(C.1) Cfix(S, M, τ ; K1) − (M − K1) ≥ Cfix(S, M, τ ; K2) − (M − K2).

Suppose (S, M, τ ) ∈ SC(K2), where SC(K2) denotes the continuation region.
In the continuation region, the option value is strictly greater than the exercise
payoff so that

Cfix(S, M, τ ; K2) > M − K2.

Combining with Inequality (C.1), we can deduce

Cfix(S, M, τ ; K1) > M − K1,

so that (S, M, τ ) ∈ SC(K1). Hence, we establish SC(K2) ⊂ SC(K1); and so
S(K1) ⊂ S(K2).

(iii) Since Cfix(S, M, τ ) is monotonically increasing with respect to both S and τ ,
and the exercise payoff is independent of S and τ , we deduce that if (S, M, τ ) ∈
S(K), then

(λ1S, M, λ3τ ) ∈ S(K) for all 0 < λ1 ≤ 1 and 0 < λ3 ≤ 1.

Next, we would like to show that (S, M, τ ) ∈ S(K) would imply (S, λ2M, τ ) ∈
S(K), for all λ2 ≥ 1. Suppose (S, M, τ ) ∈ S(K), then (S/λ2, M, τ ) ∈ S(K)
for λ2 ≥ 1. Furthermore, by virtue of the linear homogeneity property of the
price function and the price function and the result in (i), we obtain

Cfix(S, λ2M, τ ; K) = λ2Cfix

(
S

λ2
, M, τ ;

K

λ2

)

≤ λ2

[
Cfix

(
S

λ2
, M, τ ; K

)
+
(

1 − 1
λ2

)
K

]

= λ2

[
M − K +

(
1 − 1

λ2

)
K

]
= λ2M − K.
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On the other hand, the option value Cfix(S, λ2M, τ ; K) cannot fall below the
exercise payoff λ2M − K. Combining the results, we then have

Cfix(S, λ2M, τ ; K) = λ2M − K,

that is, (S, λ2M, τ ) ∈ S(K). Hence, we obtain the desired result.

APPENDIX D — Proof of Proposition 3.2
(iii) It is clear that M∗(0+, τ ; K) ≥ K. From the monotonic increasing property

of M∗(S, τ ; K) with respect to S, suppose we can show that the line M = M0

lies in the stopping region in the S-M plane for any M0 > K, then one can
deduce that M∗(S, τ ; K) → K as S → 0+. This is because the minimum
value of M∗(S, τ ; K) is achieved when S is approaching zero from above, and
this minimum value is K. We write Ufix(S, τ ) = Cfix(S, M0, τ )− (M0 − K).
The linear complementarity formulation of Ufix(S, τ ) is given by

(
∂

∂τ
−L

)
Ufix ≥ −r(M0 − K), Ufix ≥ 0,

[(
∂

∂τ
−L

)
Ufix

]
Ufix = 0

with initial condition: Ufix(S, 0) = 0. Since the right-hand term −r(M0−K)
is always negative and the initial value has compact support, we apply the
theorem by Brezis and Friedman [1] that the solution Ufix(S, τ ) has compact
support too. The stopping region is non-empty, that is, there exists (S, τ )
such that Cfix(S, M0, τ ) = M0 − K for any M0 > K. Hence, the line M =
M0 ∈ S(K) for any M0 > K.

(iv) When K = 0, the American fixed strike lookback call is the same as the
American floating strike lookback put [with α = 0 in Eq. (2.8)]. The mono-
tonically increasing property of ξ∗(τ ) = M∗(S, τ ; 0)/S follows directly from
Proposition 2.3(i).

For K > 0, by virtue of the linear homogeneity property of M∗(S, τ ; K),
we obtain

lim
S→∞

M∗(S, τ ; K)
S

= lim
S→∞

M∗( S
K

, τ ; 1
)

S
K

= lim
K→0

M∗( S
K

, τ ; 1
)

S
K

= lim
K→0

M∗(S, τ ; K)
S

=
M∗(S, τ ; 0)

S
.

APPENDIX E — Proof of Proposition 3.3
(iv) First, we consider the proof with q > 0, whose arguments rely on the existence

of η∗(τ ; α). Since η∗(τ ; α) does not exist when q = 0, we will deal with the
special case of zero dividend separately later. For α ≥ 1, we observe that

(K − m)+ ≤ (K − αS)+ + αS − m

so that

(E.1) Pfix(S, m, τ ; K) ≤ αP

(
S, τ ;

K

α

)
+ Cf`(S, m, τ ; α),
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where P

(
S, τ ;

K

α

)
denotes the price function of the American vanilla put

option with strike price
K

α
. Let S∗

P

(
τ ;

K

α

)
be the critical asset price of the

American vanilla put with payoff
(

K

α
− S

)+

. Consider the point (Ŝ, m̂) in

the S-m plane which lies inside the region

Rα =
{

(S, m) : m ≤ Sη∗(τ ; α) and S ≤ S∗
P

(
τ ;

K

α

)}
,

(Ŝ, m̂) lies in the corresponding stopping region of both the American floating
strike call and American vanilla put. We then have

(E.2) P

(
Ŝ, τ ;

K

α

)
=

K

α
− Ŝ and Cf`(Ŝ, m̂, τ ; α) = αŜ − m̂.

Now, we argue that (Ŝ, m̂) also lies in the stopping region of the American
fixed strike put. To establish the claim, it suffices to show that

(E.3) Pfix(Ŝ, m̂, τ ; K) = K − m̂.

Combining the results in Eqs. (E.1) and (E.2), we obtain Pfix(Ŝ, m̂, τ ; K) ≤
K − m̂. Since the option value of the American fixed strike put cannot fall
below its exercise payoff, the result in Eq. (E.3) is then established.

Lastly, we take the limit α → ∞ and observe that

lim
α→∞

η∗(τ ; α) = 1 and lim
α→∞

S∗
P

(
τ ;

K

α

)
= 0

for all τ . As α → ∞, Rα shrinks to an infinitesimally small triangular wedge
with the oblique side: S = m. Hence, we can deduce that as S → 0+ and
for all values of τ , all the exercise boundaries m∗(S, τ ; K) tend to the oblique
asymptotic line: S = m.

Lastly, we consider the case where q = 0. We add the parameter q in
the price function Pfix(S, m, τ ; K, q) and exercise boundary m∗(S, τ ; q), and
write the corresponding stopping region as S(q) with dependence on q. From
the pricing property

Pfix(S, m, τ ; K, 0) ≤ Pfix(S, m, τ ; K, q),

we deduce that

S(q) ⊂ S(0), q > 0.

Hence, we have m∗(S, τ ; 0) ≥ m∗(S, τ ; q) so that

m∗(S, τ ; q)
S

≤ m∗(S, τ ; 0)
S

≤ 1, q > 0.

Since we have established
m∗(S, τ ; q)

S
→ 1 as S → 0, so lim

S→0+

m∗(S, τ ; 0)
S

=

1.
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APPENDIX F — Proof of Proposition 3.4
(iii) We only show the proof of

lim
S1→0+

S∗
2 (S1, τ )

S1
= 1.

The proof of the other limiting property in Eq. (3.14) can be pursued in a
similar manner. Following a similar approach in Appendix E, we employ the
following inequality

(F.1) (K − min(S1, S2))+ ≤ (K − αS2)+ + (αS2 − min(S1, S2))+,

and examine the stopping region Ŝα of the American two-asset option with
payoff (αS2 − min(S1, S2))+. Also, we let S∗

2,P be the critical asset price of

the American put with payoff
(

K

α
− S2

)+

. By applying inequality (F.1) and

following a similar argument presented in Appendix E, one can show that the
stopping region of the two-asset American minimum put option is contained
inside

Rα =
{

(S1, S2) : (S1, S2) ∈ Ŝα and S2 ≤ S∗
2,P

(
τ ;

K

α

)}
.

The asymptotic behavior of S∗
2 (S1, τ ) at infinitesimally small value of S1 is

established once we can show that the boundaries of Rα are bounded by the
line S1 = S2 as α → ∞.

Let Vα denote the price function of the American two-asset option with
payoff (αS2 − min(S1, S2))+, α ≥ 1. We let x = S1/S2 and define Wα =
Vα/S2. The exercise boundary of the American option model Wα(x, τ ) has
two branches, and let them be denoted by x∗

h(τ ) and x∗
` (τ ). The continuation

region is represented by {(x, τ ) : x∗
` (τ ) < x < x∗

h(τ ), 0 ≤ τ < ∞}. The linear
complementarity formulation of Wα(x, τ ) is given by

∂Wα

∂τ
− 1

2
(σ2

1 − 2ρσ1σ2 + σ2
2)x

2∂2Wα

∂x2
− (q2 − q1)x

∂Wα

∂x
+ q2Wα = 0,

x∗
` (τ ) < x < x∗

h(τ ), τ > 0,

with auxiliary conditions:

Wα(x∗
` , τ ) = α − x∗

` ,
∂Wα

∂x
(x∗

` , τ ) = −1,

Wα(x∗
h, τ ) = α − 1,

∂Wα

∂x
(x∗

h, τ ) = 0,

Wα(x, 0) =
{

α − x if x ≤ 1
α − 1 if x > 1 .

For q2 > 0, one can show that x∗
`(τ ) and x∗

h(τ ) are monotonic functions of
τ . Also, x∗

` (0
+) = x∗

h(0+) = 1 when α >
q1

q2
. Similar to Property (ii) in

Proposition 2.2, we would like to establish the following asymptotic results

(F.2) lim
α→∞

x∗
` (τ ; α) = 1 and lim

α→∞
x∗

h(τ ; α) = 1
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so that the boundary of Rα will be bounded by S1 = S2 as α → ∞. By
virtue of the monotonicity properties of x∗

` (τ ) and x∗
h(τ ) with respect to τ ,

the asymptotic properties in (F.2) are valid if we can show

(F.3) lim
α→∞

x∗
` (∞; α) = 1 and lim

α→∞
x∗

h(∞; α) = 1.

When q2 = 0, x∗
`(τ ) does not exist but lim

α→∞
x∗

h(τ ; α) = 1 remains valid. The
arguments in the proof presented below have to be modified slightly for this
degenerate case.

The proof of Eq. (F.3) requires the solution of W∞
α (x), the perpetual limit

of Wα(x, τ ). The governing equation for W∞
α (x) is given by

1
2
(σ2

1 − 2ρσ1σ2 + σ2
2)x

2d2W∞
α

dx2
+ (q2 − q1)x

dW∞
α

dx
− q2W

∞
α = 0,

x∗
`(∞) < x < x∗

h(∞),

with auxiliary conditions:

W∞
α (x∗

` (∞)) = α − x∗
` (∞),

dW∞
α

dx
(x∗

` (∞)) = −1,

W∞
α (x∗

h(∞)) = α − 1,
dW∞

α

dx
(x∗

h(∞)) = 0.

By following a similar approach in Appendix B, we can show that

lim
α→∞

x∗
h(∞; α)

x∗
` (∞; α)

= 1,

and hence the relations in Eq. (F.3) are established.
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FIG 1. The critical threshold η∗(τ ; α) of the American floating strike lookback
call option is plotted against τ for different values of α. The parameter values of the
pricing model are: r = 0.04, q = 0.02 and σ = 0.3.
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FIG 2. The critical threshold ξ∗(τ ; α) of the American floating strike lookback
put option is plotted against τ for different values of α. The parameter values of the
pricing model are: r = 0.02, q = 0.04 and σ = 0.3.
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FIG 3. The exercise boundaries (solid curves) of the American fixed strike look-
back call option with varying values of maturity τ are plotted in the S-M plane. At
a given τ , the stopping region is lying to the left and above of the corresponding
exercise boundary. The dotted lines are asymptotic lines of the exercise boundaries,
corresponding to the exercise boundaries of the zero-strike counterparts. The stop-
ping region of the Russian option lies to the left of the dotted line: M = Sξ∗(∞; 0).
The parameter values used in the calculations are: K = 1, r = 0.02, q = 0.04 and
σ = 0.3.
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FIG 4. The exercise boundaries of the American fixed strike lookback put option
with varying values of maturity τ are plotted in the S-m plane. All exercise boundaries
tend to the oblique asymptotic line: m = S as S → 0+, and the horizontal asymptotic
line: m = K as S → ∞. The parameter values used in the calculations are: K =
1, r = 0.04, q = 0.02 and σ = 0.3.
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FIG 5. The exercise boundaries of the American option with payoff function
max(M, K) with varying values of maturity τ are plotted in the S-M plane. The
parameter values used in the calculations are: K = 1, r = 0.02, q = 0.04 and σ = 0.3.
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FIG 6. The exercise boundaries of the two-asset American minimum put option
with varying values of maturity τ are plotted in the S1-S2 plane. The continuation
region is bounded between the two branches of the exercise boundaries. The parameter
values used in the calculations are: K = 1, r = 0.02, q1 = 0, q2 = 0.03, σ1 = σ2 = 0.3
and ρ = 0.5.


