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Abstract

We develop a singular stochastic control model for pricing variable annuities with the guaranteed

minimum withdrawal benefit. This benefit promises to return the entire initial investment, with

withdrawals spread over the term of the contract, irrespective of the market performance of the

underlying asset portfolio. A contractual withdrawal rate is set and no penalty is imposed when the

policyholder chooses to withdraw at or below this rate. Subject to a penalty fee, the policyholder is

allowed to withdraw at a rate higher than the contractual withdrawal rate or surrender the policy

instantaneously. We explore the optimal withdrawal strategy adopted by the rational policyholder

that maximizes the expected discounted value of the cash flows generated from holding this variable

annuity policy. An efficient finite difference algorithm using the penalty approximation approach

is proposed for solving the singular stochastic control model. Optimal withdrawal policies of the

holders of the variable annuities with the guaranteed minimum withdrawal benefit are explored. We

also construct discrete pricing formulation that models withdrawals on discrete dates. Our numerical

tests show that the solution values from the discrete model converge to those of the continuous model.

Keywords: guaranteed minimum withdrawal benefit, variable annuities, singular stochastic control model,
penalty approximation, optimal withdrawal policies

1 Introduction

A variable annuities policy is a financial contract between a policyholder and an insurance company which
promises a stream of annuities cash flows. At the initiation of the contract, the policyholder pays a single
lump sum premium to the issuer. The trusted fund is then invested in a well diversified reference portfolio
of a specific class of assets. Under the policy, the insurer promises to make variable periodic payments
to the policyholder on preset future dates. The variable payments would depend on the performance
of the reference portfolio, thus the policyholders are provided with the equity participation. Variable
annuities are attractive to investors not only because of the tax-deferred feature. In addition, they
also offer different types of benefits, such as guaranteed minimum death benefit, guaranteed minimum
accumulation benefit, guaranteed minimum income benefit.

In recent years, variable annuities with the guaranteed minimum withdrawal benefits (GMWBs) have
attracted significant attention and sales. These benefits allow the policyholders to withdraw funds on an
annual or semi-annual basis. There is a contractual withdrawal rate such that the policyholder is allowed
to withdraw at or below this rate without a penalty. The GMWB promises to return the entire initial
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investment, thus the guarantee can be viewed as an insurance option. More precisely, even when the
personal account (investment net of withdrawal and proportional insurance fees) of the policyholder falls
to zero prior to the policy maturity date, the insurer continues to provide the guaranteed withdrawal
amount until the entire original premium is paid out. If the account stays positive at maturity, the whole
remaining balance in the account is paid to the policyholder at maturity. Therefore, the total sum of cash
flows received by the policyholder is guaranteed to be the same or above the original premium deposit (not
accounting for the time value of the cash flows). Under the dynamic setting of the policy, the policyholder
is allowed to withdraw at a rate higher or lower than the contractual rate or in a finite amount or even
surrender instantaneously, according to his best economic advantage. The annuity contract may include
the following clause that serves to discourage excessive withdrawal. When the policyholder withdraws
at a higher rate than the contractual withdrawal rate, the guarantee level is reset to the minimum of
the prevailing guarantee level and the account value. For example, suppose the policyholder decides to
withdraw $10, which is higher than the contractual withdrawal amount $7. Suppose the current guarantee
level is $80 while the personal account is $60, then the guarantee level drops to min($80, $60)−$10 = $50
after the withdrawal of $10. In addition, there is a percentage penalty charge applied on the excessive
portion of the withdrawal amount.

There has been much research devoted to the pricing and hedging of variable annuities and insurance
policies with various forms of embedded options. For hedging strategies, Coleman et al . (2006) suggest
risk minimization hedging for variable annuities under both equity and interest rate risks. Milevsky and
Posner (2001) use risk neutral option pricing theory to value the guaranteed minimum death benefit in
variable annuities. Chu and Kwok (2004) and Siu (2005) analyze the withdrawal and surrender options
in various equity-linked insurance products. Milevsky and Salisbury (2006) develop the pricing model
of variable annuities with GMWB under both static and dynamic withdrawal policies. Under the static
withdrawal policies, the policyholders are assumed to behave passively with withdrawal rate kept fixed
at the contractual rate and to hold the annuity to maturity. In their dynamic model, policyholders
are assumed to follow an optimal withdrawal policy seeking to maximize the annuity value by lapsing
the product at an optimal time. Since the withdrawal is allowed to be at a finite rate or in discrete
amount (infinite withdrawal rate), the pricing model leads to a singular stochastic control problem with
the withdrawal rate as the control variable.

In this paper, we would like to study the nature of GMWB in variable annuities beyond the results
reported by Milevsky and Salisbury (2006). We provide a rigorous derivation of the singular stochastic
control model for pricing variable annuities with GMWB using the Hamilton-Jacobi-Bellman equation.
Both cases of continuous and discrete withdrawal of funds are considered. The valuation of the variable
annuities product is performed under the risk neutral framework, assuming the underlying equity portfolio
is tradeable or the holder is a risk neutral investor. Our pricing models do not include mortality factor
since mortality risk is not quite crucial in guaranteed minimum withdrawal benefit riders. Also, we have
assumed deterministic interest rate structure since interest rate plays its influence mainly on discount
factors in pricing the guaranteed minimum withdrawal benefit. This is different from equity fluctuation,
where it has much more profound impact on the optimal withdrawal policy. We assume the policyholder to
be fully rational in the sense that he chooses the optimal dynamic withdrawal strategy so as to maximize
the expected discounted value of the cash flows generated from holding the annuity policy. In our pricing
formulation, we manage to obtain a set of parabolic variational inequalities that govern the fair value of
the variable annuity policy with the GMWB. The constraint inequalities are seen to involve the gradient
of the value function. By extending the penalty method in the solution of optimal stopping problems as
proposed by Forsyth and Vetzal (2002) and Dai et al . (2007), we propose an efficient finite difference
scheme following the penalty approximation approach to solve for the fair value of the annuities. The
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numerical procedure of using the penalty approximation approach represents a nice contribution to the
family of numerical methods for solving singular stochastic control problems (Kumar and Muthuraman,
2004; Forsyth and Labahn, 2006). In addition, we design the finite difference scheme that allows for
discrete jumps across discrete withdrawal dates for solving the discrete time withdrawal model.

The paper is organized as follows. In the next section, we derive the singular stochastic control model
that incorporates the GMWB into the variable annuities pricing model. We start with the formulation
that assumes continuous withdrawal, then generalize the model to allow for a discrete withdrawal on
specified dates. We outline the numerical approach using the finite difference scheme with penalty
approximation for solving the set of variational inequalities of the pricing formulation. Numerical tests
were performed that serve to illustrate the robustness of the proposed numerical schemes for both the
continuous and discrete models. In Section 3, we analyze the optimal withdrawal behaviors of the
policyholders. We also examine the impact of various parameters in the singular stochastic control
pricing model on the fair insurance fee to be charged by the insurer for provision of the guarantee. A
summary and concluding remarks are presented in the last section.

2 Model formulation

Mathematically, it is more convenient to construct the pricing model of the annuity policy that assumes
continuous withdrawal. In actual practice, withdrawal of discrete amount occurs at discrete time instants
during the life of the policy. In this section, we start with the construction of the continuous model by
assuming continuous withdrawal. The more realistic scenario of discrete withdrawal will be considered
afterwards. In our singular stochastic control model for pricing the GMWB, the discretionary withdrawal
rate is the control variable. Some of the techniques used in the derivation of our pricing model are similar
to those used in the singular stochastic control model proposed by Davis and Norman (1990) in the
analysis of portfolio selection with transaction costs.

2.1 Continuous withdrawal model

Let St denote the value of the reference portfolio of assets underlying the variable annuity policy, before
the deduction of any proportional fees. Taking the usual assumption on the price dynamics of equity in
option pricing theory, the evolution of St under the risk neutral measure is assumed to follow

dSt = rSt dt + σSt dBt, (2.1)

where Bt represents the standard Brownian motion, σ is the volatility and r is the riskfree interest rate.
Let Ft be the natural filtration generated by the Brownian process Bt and α be the proportional annual
insurance fee paid by the policyholder. The most important feature of the GMWB is the guarantee on
the return of premium via withdrawal, where the accumulated sum of all withdrawals throughout the
policy’s life is the premium w0 paid up front (not accounting for the time value of the cash flows).

We let At denote the account balance of the guarantee, where At is right-continuous with left limit,
non-negative and non-increasing {Ft}t≥0-adaptive process. At initiation, A0 equals w0; and the with-
drawal guarantee becomes insignificant when At hits 0. As withdrawal continues, At decreases over the
life of the policy until it hits the zero value. By the maturity date T , At must become zero. To derive
the continuous time pricing model, we first consider a restricted class of withdrawal policies in which At
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is constrained to be absolutely continuous with bounded derivatives, that is

At = A0 −

∫ t

0

γs ds, 0 ≤ γs ≤ λ. (2.2)

Penalty charges are incurred when the withdrawal rate γ exceeds the contractual withdrawal rate G.
Supposing a proportional penalty charge k is applied on the portion of γ above G, then the net amount
received by the policyholder is G + (1− k)(γ −G) when γ > G. Let g denote the percentage withdrawal
rate, say, g = 7% means 7% of premium is withdrawn per annum. We then have G = gw0.

Let Wt denote the value of the personal variable annuity account, then its dynamics follows

dWt = (r − α)Wt dt + σWt dBt + dAt, for Wt > 0. (2.3)

Once Wt hits the value 0, it stays at this value thereafter. Let w0 be the initial account value of the
policy, which is the same as the premium paid up front. When the personal account value stays positive
at maturity T , the remaining balance is paid back to the policyholder at T .

Let f(γ) denote the rate of cash flow received by the policyholder as resulted from the continuous
withdrawal process, we then have

f(γ) =

{
γ if 0 ≤ γ ≤ G
G + (1 − k)(γ − G) if γ > G

. (2.4)

The policyholder receives the continuous withdrawal cash flow f(γu) over the life of the policy and the
remaining balance of the personal account at maturity. Based on the assumption of rational behavior
of the policyholder that he chooses the optimal withdrawal policy dynamically so as to maximize the
present value of cash flows generated from holding the variable annuity policy and under the restricted
class of withdrawal policies as specified by Eq. (2.2), the no-arbitrage value V of the variable annuity
with GMWB is given by

V (W, A, t) = max
γ

Et

[
e−r(T−t) max(WT , 0) +

∫ T

t

e−r(u−t)f(γu) du

]
, (2.5)

where T is the maturity date of the policy and expectation Et is taken under the risk neutral measure
conditional on Wt = W and At = A. Here, γ is the control variable that is chosen to maximize the
expected value of discounted cash flows. Using the standard procedure of deriving the Hamilton-Jacobi-
Bellman (HJB) equation in stochastic control problems (Yong and Zhou, 1999), the governing equation
for V is found to be

∂V

∂t
+ LV + max

γ
h(γ) = 0 (2.6)

where

LV =
σ2

2
W 2 ∂2V

∂W 2
+ (r − α)W

∂V

∂W
− rV

and

h(γ) = f(γ) − γ
∂V

∂W
− γ

∂V

∂A

=






(
1 −

∂V

∂W
−

∂V

∂A

)
γ if 0 ≤ γ < G

kG +

(
1 − k −

∂V

∂W
−

∂V

∂A

)
γ if γ ≥ G

.
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The function h(γ) is piecewise linear, so its maximum value is achieved at either γ = 0, γ = G or
γ = λ. Recall that we place a sufficiently large upper bound λ for γ, namely, 0 ≤ γ ≤ λ. It is easily seen
that

max
γ

h(γ) =






kG + λ

(
1 − k −

∂V

∂W
−

∂V

∂A

)
if 1 −

∂V

∂W
−

∂V

∂A
≥ k

(
1 −

∂V

∂W
−

∂V

∂A

)
G if 0 < 1 −

∂V

∂W
−

∂V

∂A
< k

0 if 1 −
∂V

∂W
−

∂V

∂A
≤ 0

. (2.7)

Substituting into Eq. (2.6), we obtain the following equation for V :

∂V

∂t
+ LV + min

[
max

(
1 −

∂V

∂W
−

∂V

∂A
, 0

)
, k

]
G

+ λmax

(
1 − k −

∂V

∂W
−

∂V

∂A
, 0

)
= 0. (2.8)

For the general case where At is allowed to be discontinuous (instantaneous withdrawal of finite
amount), the no-arbitrage value V of the variable annuity with GMWB is given by

V (W, A, t) = max
A

Et

[
e−r(T−t) max(WT , 0) +

∫ T

t

e−r(u−t)F (−dAu)

]
, (2.9)

where

F (−dAu) =

{
−dAu if − dAu ≤ G dt
kG dt − (1 − k)dAu if − dAu > G dt

.

To obtain V (W, A, t) from V (W, A, t), we allow the upper bound λ on γ to be infinite. It is well known
that Eq. (2.8) is a penalty approximation to Eq. (2.9) (Friedman, 1982). Taking the limit λ → ∞ in Eq.
(2.8), we obtain the following linear complementarity formulation of the value function V (W, A, t):

min

[
−

∂V

∂t
− LV − max

(
1 −

∂V

∂W
−

∂V

∂A
, 0

)
G,

∂V

∂W
+

∂V

∂A
− (1 − k)

]
= 0,

W > 0, 0 < A < w0, t > 0. (2.10)

One can follow a similar argument presented in Zhu (1992) to show that the value function V (W, A, t)
defined in Eq. (2.9) is indeed the generalized solution to the HJB equation (2.10) subject to the auxiliary
conditions presented below. To complete the formulation of the pricing model, it is necessary to prescribe
the terminal condition at time T and boundary conditions along the boundaries: W = 0, W → ∞ and
A = 0. Note that it is not necessary to prescribe the boundary condition at A = w0 due to the hyperbolic
nature of the variable A in the governing equation (2.10).

• At maturity, the policyholder takes the maximum between the remaining guarantee withdrawal net
of penalty charge and the remaining balance of the personal account.

• When either A = 0 or W → ∞, the withdrawal guarantee becomes insignificant. The value of the
annuity becomes We−α(T−t). The discount factor e−α(T−t) arises due to discounting at the rate α
as a proportional fee at the rate α is paid during the remaining life of the annuity.
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• When W = 0, the equity participation of the policy vanishes. The pricing formulation reduces to
a simplier optimal control model with no dependence on W . Let V0(A, t) be the value function of
the annuity when W = 0, which is the solution to the following linear complementarity formulation
[considered as a reduced version of Eq. (2.10) with no dependence on W ]:

min

[
−

∂V0

∂t
+ rV0 − max

(
1 −

∂V0

∂A
, 0

)
G,

∂V0

∂A
− (1 − k)

]
= 0,

0 < A < A0, 0 < t < T,

V0(A, T ) = (1 − k)A and V0(0, t) = 0. (2.11)

In summary, the auxiliary conditions of the linear complementarity formulation (2.10) are given by

V (W, A, T ) = max(W, (1 − k)A)

V (W, 0, t) = e−α(T−t)W, V (0, A, t) = V0(A, t),

V (W, A, t) → e−α(T−t)W as W → ∞. (2.12)

Interestingly, a closed form solution to V0(A, t) can be found. Defining

τ∗ = min

(
−

ln(1 − k)

r
, T − t

)
,

it can be shown that

V0(A, t) = (1 − k)max(A − Gτ∗, 0) +
G

r

[
1 − e−r min(A/G,τ∗)

]
. (2.13)

The analytic derivation of V0(A, t) and its financial interpretation are presented in the Appendix.
As a remark, Milevsky and Salisbury (2006) have derived a similar dynamic control model that

allows for dynamic withdrawal rate adopted by the policyholder. However, their formulation is not
quite complete since it does not contain time dependency in the value function. Also, there is no full
prescription of the auxiliary conditions associated with their pricing formulation.

Construction of finite difference scheme

The numerical solution of the singular stochastic control formulation in Eqs. (2.10) and (2.12) poses
a difficult computational problem. Instead of solving the singular stochastic control model directly,
we solve for the penalty approximation model (2.8) in which the allowable control is bounded. In our
numerical procedure to solve for V (W, A, t), we apply the standard finite difference approach to discretize
the penalty approximation formulation (2.8). Since the governing equation (2.8) is a degenerate diffusion
equation with only the first order derivative of A appearing, upwind discretization must be used to deal
with the first order derivative terms in the differential equation. This technique serves to avoid excessive
numerical oscillations in the calculations when the penalty parameter λ assumes a large value.

We employ the two-level implicit finite difference scheme and use time to expiry τ = T − t as the
time variable. Let V

n

j,k denote the numerical approximation to V (j△W, k△A, n△τ), where △W and △A

are the spatial step sizes and △τ is the time step. Let LhV
n

j,k denote the spatial discretization of the
differential term LV , where

LhV
n

j,k =
σ2

2
W 2

j

V
n

j+1,k − V
n

j,k + V
n

j−1,k

△W 2
+ (r − α)Wj

V
n

j+1,k − V
n

j−1,k

2△W
− rV

n

j,k.
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The general family of two-level implicit schemes for solving Eq. (2.8) is given by

V
n+1

j,k − V
n

j,k

△τ
= θLhV

n+1

j,k + (1 − θ)LhV
n

j,k

+ min
(
max

(
1 −

V
n+1

j,k − V
n+1

j−1,k

△W
−

V
n+1

j,k − V
n+1

j,k−1

△A
, 0

)
, k

)
G

+ λ max
(
1 − k −

V
n+1

j,k − V
n+1

j−1,k

△W
−

V
n+1

j,k − V
n+1

j,k−1

△A
, 0

)
, (2.14)

where θ is a weighting factor, 0 < θ ≤ 1. When θ = 1, we have the fully implicit scheme; while θ = 1
2

corresponds to the Crank-Nicholson scheme. Due to the presence of the mildly non-linear penalty term
in the differential equation, a non-linear algebraic system of equations has to be solved at each time step.
Newton type iterations are applied to solve the non-linear algebraic equations.

When we apply the above numerical scheme (2.14) to obtain the numerical approximation solution to
the singular stochastic control model (2.10), there are two sources of errors. One source is the analytic
approximation error that arises from the penalty approximation of the singular stochastic control model.
This error can be controlled by choosing the penalty parameter to be sufficiently large. The other source
of error comes from the numerical discretization of the penalty approximation model (2.8). Since the
solution to Eq. (2.8) is expected to have a linear growth at infinity, the strong comparison principle
holds in the sense of viscosity solution [Crandal et al . (1992); Barles et al . (1995)]. As a consequence,
by virtue of the result established by Barles and Souganidis (1991), one can establish the convergence
of the fully implicit scheme (corresponding to θ = 1) to the viscosity solution of Eq. (2.8) when the
penalty parameter λ is taken to be sufficiently large and the step sizes in the numerical schemes become
vanishingly small. Due to the lack of monotonicity property, the analytic proof of convergence of the
Crank-Nicholson scheme cannot be established in a similar manner. We resort to numerical experiments
to test for convergence of the Crank-Nicholson scheme.

In Table 1, we list the numerical results obtained from the Crank-Nicholson scheme using varying
number of time steps and spatial steps. The values of the model parameters used in the calculations are:
G = 7, σ = 0.2, α = 0.036, k = 0.1, r = 0.05, T = 14.28, w0 = 100 and λ = 106. Let Nt, NW and NA

denote the number of time steps and number of spatial steps in W and A, respectively. The apparent
convergence of the numerical solution is revealed in Table 1. We expect to have a quadratic rate of
convergence of the numerical solution using the Crank-Nicholson scheme such that the numerical error is
reduced by a factor of 1/4 when the number of time steps and number of spatial steps are doubled. Our
numerical results show that the actual rate of convergence is slightly slower than the expected rate. This
may be attributed to the upwind treatment of the first order derivative terms in the numerical scheme.
We also examine the convergence of the numerical solution to the penalty approximation model (2.8)
with varying values of λ to the annuity value of the continuous model. The numerical results shown in
Table 2 were obtained using the Crank-Nicholson scheme with Nt = 512, NW = 1024, NA = 1024. We
choose two different values of k and all the other model parameters are taken to be the same as those
used to generate the numerical results in Table 1. The apparent convergence of the numerical solution to
the penalty approximation model is revealed when the penalty parameter increases to a sufficiently high
value.
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2.2 Discrete withdrawal model

Consider the real life situation where discrete withdrawal amount is only allowed at time ti, i = 1, 2, · · · , N .
Here, t0 denotes the time of initiation and the last withdrawal date tN is the maturity date T . Let the
discrete withdrawal amount at time ti be denoted by γi. Since the account balance of the withdrawal
guarantee At remains unchanged within the interval (ti−1, ti), i = 1, 2, · · · , N , the annuity value function
V (W, A, t) satisfies the following differential equation which has no dependence on A:

∂V

∂t
+ LV = 0, t ∈ (ti−1, ti), i = 1, 2, · · · , N. (2.15)

The updating of At only occurs at the withdrawal dates. Upon withdrawing an amount γi at ti, the
annuity account drops from Wt to max(Wt −γi, 0), while the guarantee balance drops from At to At −γi.
The jump condition of V (W, A, t) across ti is given by

V (W, A, t−i ) = max
0≤γi≤A

{V (max(W − γi, 0), A − γi, t
+
i ) + f̂(γi)}. (2.16)

Here, f̂(γi) represents the actual cash amount received by the policyholder subject to a penalty charge
under excessive withdrawal, which can be defined in a similar manner as that for f(γ) in Eq. (2.4).
The auxiliary conditions for V (W, A, t) remain the same as those stated in Eq. (2.12), except that the
boundary value function V0(A, t) under discrete withdrawal is governed by

∂V0

∂t
− rV = 0, t 6= ti, i = 1, 2, · · · , N,

V0(A, t−) = max
0≤γi≤A

{V0(A − γi, t
+) + f̂(γi)}, t = ti, i = 1, 2, · · · , N,

V0(A, T ) = f̂(A) and V0(0, t) = 0. (2.17)

The above formulation resembles that of the pricing models of discretely monitored path dependent
options. Here, A serves the role as the path dependent variable, which is updated whenever the calendar
time sweeps across a fixing date. To solve for V (W, A, t) under the discrete withdrawal model, we apply
standard finite difference technique to discretize Eq. (2.15). The guarantee balance A is updated on
those time steps that correspond to fixing dates. In our numerical calculations, we assume a finite set
of discrete values that can be taken by γi at fixing date ti. According to Eq. (2.16), we choose γi such
that V (max(W − γi, 0), A − γi, ti) is maximized. This is plausible since we know the values of V at all
discrete points of (W, A) in the computational domain.

Reset provision on the guarantee level

The GMWB annuity may contain the reset provision on the guarantee level that serves as a disincentive
to excessive withdrawals beyond G. After the guarantee balance At and account Wt are debited by the
withdrawal amount γi at time ti, the guarantee balance is reset to min(At, Wt) − γi if γi > G. While
it is not straightforward to incorporate this reset provision into the continuous withdrawal model, it is
relatively easy to modify the jump condition (2.16) to include the provision in the discrete withdrawal
model. With the reset provision, the new jump condition becomes

V (W, A, t−i ) = max
0≤γi≤A

{
V (max(W − γi, 0), B, t+i ) + f̂(γi)

}
, (2.18)
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where

B =

{
min(A − γi, max(W − γi, 0)) if γi > G
A − γi if γi ≤ G

. (2.19)

The auxiliary conditions remain the same as those of the non-reset case, except that the jump condition
used in the calculation of V0(A, t) has to be modified as follows:

V0(A, t−) = max
0≤γi≤A

{
V0((A − γi)1{γi≤G}, t

+) + f̂(γi)
}

, (2.20)

where

1{γi≤G} =

{
1 if γi ≤ G
0 otherwise

.

We would like to check for consistency between the continuous and discrete withdrawal models. We
compute the fair value of the GMWB annuity without the reset provision on the guarantee level under
varying values of withdrawal frequency per year. In Table 3, we tabulate the numerical results of annuity
values obtained from numerical calculations using the finite difference schemes, where discrete withdrawals
can be done monthly (frequency = 12), bimonthly (frequency = 6), etc. The model parameters used in
our calculations are the same as those used in Tables 1 and 2. Consistent with obvious financial intuition,
the tabulated results reveal that the annuity value increases with higher frequency of withdrawal per year.
Also, the annuity value obtained from the continuous withdrawal model using the penalty approximation
is seen to be very close to that obtained from the discrete withdrawal model with monthly withdrawal
(comparing 93.419 with 93.346). The apparent agreement of annuity values serves to verify the consistency
between the continuous and discrete models. The differences in annuity values with and without the reset
provision are seen to be small (see Table 3).

3 Pricing behaviors and optimal withdrawal policies

Insurance companies charge proportional insurance fee (denoted by α in our pricing model) to compensate
for the provision of the GMWB rider. There have been concerns in the insurance industry that the fee
rate has been charged too low due to sales competition. Milevsky and Salisbury (2006) warn that current
pricing of products sold in the market is not sustainable. They claim that the GMWB fees will eventually
have to increase or product design will have to change. In Table 4, we present the numerical results that
show how various model parameters, like GMWB rate g, penalty charge k and equity volatility σ of
the account affect the required insurance fee. We chose r = 0.05 and used the continuous model in our
calculations. The insurance fee α is determined so that the upfront amount invested in the annuity w0 is
set equal to the present value of the future cash flows generated from the annuity contract. We observe
that α is an increasing function of the equity volatility σ and the GMWB contractual withdrawal rate
g, but a decreasing function of the penalty charge k. Comparing to similar results based on the static
withdrawal model as reported in Milevsky and Salisbury (2006), the issuer should charge a substantially
higher insurance fee when the policyholder has the flexibility of dynamic withdrawal. For example, the
GMWB annuity under the static withdrawal policy which guarantees a 7% withdrawal rate and equity
volatility of 20% would demand a fair insurance fee of 73 basis points. However, the fair insurance fee
increases to 165 basis points under the dynamic withdrawal policy even a relatively high penalty charge
of 5% is imposed.

Also, we would like to examine the optimal dynamic withdrawal policies adopted by the policyholder.
Since h(γ) apparently achieves its maximum value at either γ = 0, G or infinite value ∞, the policyholder
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chooses either to withdraw a finite amount (infinite rate of withdrawal), at the contractual rate G or not
to withdraw at all. Here, we postulate that the case γ = 0 should be ruled out. That is, it is always
non-optimal not to withdraw. To understand this phenomenon using financial intuition, we note that the
non-withdrawal amount is subject to a proportional insurance fee α. Under the risk neutral valuation
framework, the drift rate of Wt is r −α, which is always less than r for α > 0. As a result, withdrawal is
more preferable since the withdrawal amount will have a higher return at the rate r as priced under the
risk neutral valuation. A mathematical argument is presented as follows. Obviously, we have

V (W + δ, A + δ, t) ≤ V (W, A, t) + δ (3.1)

for any finite amount δ > 0; and from which we infer that

∂V

∂W
+

∂V

∂A
= lim

δ→0

V (W + δ, A + δ, t) − V (W, A, t)

δ
≤ 1. (3.2)

With the positivity of 1 −
∂V

∂W
−

∂V

∂A
, Eq. (2.10) is reduced to

max

[
−

∂V

∂t
− LV −

(
1 −

∂V

∂W
−

∂V

∂A

)
G,

∂V

∂W
+

∂V

∂A
− (1 − k)

]
= 0, (3.3)

further confirming that withdrawal always occurs under optimal dynamic withdrawal strategy. These
claims on optimal withdrawal policies are verified in our numerical calculations. In Figure 1, we plot
the optimal withdrawal boundary that separates the “γ = G” region and “γ = ∞” region. The model
parameters used in the calculations are: G = 7, r = 0.05, α = 0.01, w0 = 100, k = 0.1, σ = 0.2 and T =
14.28. We can identify two different regions under optimal withdrawal policies in the (W, A)-plane. For a
given value of W , we move from the “γ = ∞” region to the “γ = G” region as the value of A is decreasing
gradually. When (Wt, At) lies within the “γ = ∞” region, the holder should withdraw instantaneously a
finite amount until (Wt, At) falls to a point on the separating boundary. Corresponding to W = 0, the
optimal withdrawal boundary in Figure 1 is seen to start from the left end at

A = −
G

r
ln(1 − k) = −

7

0.05
ln(1 − 0.1) = 14.75,

agreeing with the result deduced from the closed form solution of V0(A, t) [see Appendix].

4 Conclusion

As baby boomers are now getting close to retirement, sales of variable annuities have become great success
in the life insurance industry in the last decade. Investors like to have the possibility of upside equity
participation but they are also concerned about the downside risk. The various forms of guarantees
embedded in variable annuities provide competing edge over other investment instruments. These guar-
anteed minimum benefit riders on variable annuities have complex option like characteristics. The sources
of risk associated with these guarantee riders include insurance risk (mortality), market risk (equity and
interest rate) and policyholder’s behaviors (exercise policies of embedded rights).

Following the well known Hamilton-Jacobi-Bellman approach in stochastic control problems, we have
managed to construct singular stochastic control models for pricing variable annuities with guaranteed
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minimum withdrawal benefit under both continuous and discrete framework. Here, the withdrawal rate
is considered as a control variable.

In our derivation of the continuous model, we apply the penalty approach where an upper bound is
placed on the withdrawal rate. We then take the bound to tend to infinity subsequently so as to relax
the constraint on the withdrawal rate. Interestingly, this penalty approach leads to an effective numerical
approximation methods using the finite difference scheme. On the other hand, we have also constructed
the numerical scheme for solving the discrete model, following the standard numerical schemes for pricing
discretely monitored path dependent options. Since the discrete and continuous versions of the pricing
model are derived using quite different approaches, the apparent agreement of the numerical results from
both versions serves to check for consistency of the two pricing approaches.

We have analyzed the impact of various model parameters on the fair insurance fee to be charged by the
insurer for the provision of the GMWB. The insurance fee increases with increasing equity volatility level
and contractual withdrawal rate but decreases with a higher penalty charge. The insurer should charge
a substantially higher insurance fee when the policyholder has the flexibility of dynamic withdrawal.
Also, we have explored the optimal withdrawal policies of the policyholders. When there is a penalty
on withdrawal above the contractual rate, the policyholder either withdraws a finite amount (infinite
withdrawal rate) or withdraws at the contractual rate. When it is optimal for the policyholder to choose
“withdrawal in a finite amount”, he chooses to withdraw an appropriate finite amount instantaneously
making the equity value of the personal account and guarantee balance to fall to the level that it becomes
optimal for him to withdraw at the contractual rate.
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Appendix - Derivation of closed form formula of V0(A, t)

First, we consider the solution of V0(A, t) without the inequality constraint: ∂V0

∂A − (1− k) ≥ 0. Together

with the observation that ∂V0

∂A ≤ 1 [see Eq. (3.2)], the governing equation for V0(A, t) is given by

∂V0

∂t
− G

∂V0

∂A
− rV0 + G = 0, 0 ≤ t ≤ T, 0 ≤ A ≤ A0, (A.1)

with auxiliary conditions: V0(A, T ) = (1 − k)A and V0(0, t) = 0. If we define

W0(A, t) = V0(A, t)er(T−t) −
G

r

[
er(T−t) − 1

]
, (A.2)

then W0(A, t) satisfies the prototype hyperbolic equation:

∂W0

∂t
− G

∂W0

∂A
= 0 (A.3)
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with auxiliary conditions: W0(A, T ) = (1 − k)A and W0(0, t) = −G
r

[
er(T−t) − 1

]
. The general solution

to W0(A, t) is of the form

W0(A, t) = F (ξ), ξ = t +
A

G
, (A.4)

where F is some function to be determined by the auxiliary conditions. The characteristics of the
hyperbolic equation (A.3) are given by the lines: ξ = t + A

G = ξ0, for varying values of ξ0 (see Figure 2).

(a) For ξ0 ≥ T , given W0(A, T ) = (1 − k)A, we have

W0(A, T ) = F (T +
A

G
) = (1 − k)A for t +

A

G
≥ T.

We deduce that
F (ξ) = (1 − k)G(ξ − T )

so that
V0(A, t) = e−r(T−t)(1 − k)[A − G(T − t)] + G

r [1 − e−r(T−t)],
A ≥ G(T − t).

(A.5a)

(b) For ξ0 < T , given W0(0, t) = −G
r [e−r(T−t) − 1], we have

W0(0, t) = F (t) = −
G

r

[
er(T−t) − 1

]
for t < T −

A

G
.

We deduce that

W0(A, t) = F (t +
A

G
) = −

G

r

[
er(T−t)− r

G
A − 1

]
,

so that

V0(A, t) =
G

r
(1 − e−

r

G
A), A < G(T − t). (A.5b)

In the continuation region, V0(A, t) satisfies Eq. (A.1) together with the inequality:

∂A0

∂A
> 1 − k. (A.6)

The solution of the form given in Eq.(A.5a) is ruled out since the inequality constraint (A.6) is not
satisfied. The solution given in Eq.(A.5b) is feasible only if

e−
r

G A > 1 − k, that is, A < −
G

r
ln(1 − k).

Hence, the continuation region is limited to the region:

{(A, t) : A < −
G

r
ln(1 − k) and A < G(T − t)}

as shown in the shaded region in Figure 3. Define

τ∗ = min
(
−

ln(1 − k)

r
, T − t

)
,
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then the solution of V0(A, t) in the continuation region is given by

V0(A, t) =
G

r

(
1 − e−

r

G
A
)

if A < Gτ∗. (A.7)

In the stopping region, V0(A, t) satisfies ∂V0

∂A = 1 − k. The solution takes the form:

V0(A, t) = (1 − k)A + C(t),

where C(t) is some arbitrary function. The solution in the stopping region is given by

V0(A, t) = (1 − k)A +
G

r
(1 − e−rτ∗

) − (1 − k)Gτ∗, A ≥ Gτ∗. (A.8)

Combining the results, the solution is found to be

V0(A, t) = (1 − k)max(A − Gτ∗, 0) +
G

r

[
1 − e−rmin(τ∗, A

G
)
]
. (A.9)

The above price formula can be interpreted using the following financial argument. To minimize the
penalty charge, the policyholder either withdraws at the rate G or infinite rate (instantaneous withdrawal
of finite amount). When the guarantee balance A(t) is sufficiently high, the optimal strategy is to
withdraw a certain part of A(t) instantaneously, followed by withdrawing the remaining balance at the
rate G. To decide on the optimal withdrawal policy, the policyholder strikes the balance between the
penalty charge and the time value of the cash flows. The present value of the sum of cash flows received
at the rate G from time t to T0, where t < T0 ≤ T , is given by

∫ T0

t

e−r(u−t)G du =
G

r

[
1 − e−r(T0−t)

]
.

If the policyholder chooses to receive the lump sum G(T0−t) instantaneously at time t, the actual account
net of penalty charge to be received is only (1− k)G(T0 − t). We define the difference of these two values
by

D(T0) =
G

r

[
1 − e−r(T0−t)

]
−(1 − k)G(T0 − t), t < T0 ≤ T.

The function D(T0) is concave in T0, strictly increasing on T0 ∈ (t, T ∗
0 ) and strictly decreasing on

T0 ∈ (T ∗
0 , T ). The critical point T ∗

0 is given by

T ∗
0 = t + min

(
−

ln(1 − k)

r
, T − t

)
.

The optimal withdrawal policies can be deduced as follows. For t < T ∗
0 [or t ≥ T ∗

0 ], when A(t) ≤
G(T − T ∗

0 ) [or A(t) ≤ G(T − t)], the policyholder withdraws at the constant rate G throughout the
remaining life. Otherwise, when A(t) > G(T − T ∗

0 ) [or A(t) > G(T − t)], the policyholder withdraws the
discrete amount A(t) − G(T − T ∗

0 ) [or A(t) − G(T − t)] instantaneously, then followed by withdrawing
at the rate G throughout the remaining life. The present value of the sum of cash flows received by the
policyholder following the above optimal withdrawal policies is then equal to the price formula (A.9).
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Nt NW NA annuity value change in value ratio of change
32 64 64 96.241
64 128 128 94.720 -1.521

128 256 256 93.788 -0.932 1.6
256 512 512 93.506 -0.282 3.3
512 1024 1024 93.419 -0.087 3.3

Table 1: Examination of the rate of convergence of the Crank-Nicholson scheme for solving the penalty
approximation model.

penalty k = 1% k = 10%
parameter λ annuity value annuity value
101 89.515 87.187
102 99.924 92.720
103 101.884 93.327
104 101.028 93.410
105 101.043 93.418
106 101.045 93.419
107 101.045 93.419
108 101.045 93.419

Table 2: Test of convergence of the numerical approximation solution to the annuity value with varying
values of the penalty parameter λ and penalty charge k.

k = 10%
frequency no reset provision reset provision

1 92.172 92.168
2 92.800 92.785
3 92.980 92.955
4 93.111 93.088
5 93.163 93.133
6 93.186 93.159

12 93.346 93.299
∞ 93.419 —

Table 3: The dependence of the fair value of the GMWB annuity on the withdrawal frequency per year.
The annuity value obtained using the continuous withdrawal model (frequency becomes ∞) is close to
that corresponding to monthly withdrawal (frequency equal 12). The differences in annuity values with
and without the reset provision are seen to be small.

15



k = 5% k = 10%
contractual rate, g maturity, T = 1/g σ = 20% σ = 30% σ = 20% σ = 30%

4% 25.00 103 bp 213 bp 56 bp 133 bp
5% 20.00 125 bp 260 bp 69 bp 162 bp
6% 16.67 145 bp 305 bp 83 bp 192 bp
7% 14.29 165 bp 348 bp 97 bp 221 bp
8% 12.50 185 bp 390 bp 111 bp 251 bp
9% 11.11 202 bp 429 bp 124 bp 277 bp
10% 10.00 219 bp 466 bp 137 bp 304 bp
15% 6.67 296 bp 639 bp 198 bp 434 bp

Table 4: Impact of the GMWB contractual rate g, penalty charge k and equity volatility σ of the account
on the required insurance fee α (in basis points).
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Figure 1: Plot of the optimal withdrawal boundary in the (W, A)-plane, separating the “γ = ∞” region
at the top from the “γ = G” region at the bottom. The boundary intersects the A-axis at
A = −G

r ln(1 − k).
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Figure 2: The characteristic lines are given by t +
A

G
= ξ0 for varying values of ξ0. For ξ0 > T ,

the characteristic lines intersect the right vertical boundary: t = T ; and for ξ0 ≤ T , the
characteristics lines intersect the bottom horizontal boundary: A = 0.

Figure 3: The continuation region lies in the region (shaded part) {(t, A) : A ≤ −
G

r
ln(1 − k) and A −

G(T − t) ≤ 0}, with V0(t, A) =
G

r
(1 − e−

r

G
A).
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