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Abstract

This paper presents the willow tree algorithms for pricing variable annuities with Guaranteed Mini-

mum Withdrawal Benefits (GMWB), where the underlying fund dynamics evolves under the Merton

jump-diffusion process or constant-elasticity-of-variance (CEV) process. The GMWB rider gives the

policyholder the right to make periodic withdrawals from his policy account throughout the life of

the contract. The dynamic nature of the withdrawal policy allows the policyholder to decide how

much to withdraw on each withdrawal date, or even surrender the contract. For numerical valuation

of the GMWB rider, we use the willow tree algorithms that adopt more effective placement of the

lattice nodes based on better fitting of the underlying fund price distribution. When compared with

other numerical algorithms, like the finite difference method and fast Fourier transform method, the

willow tree algorithms compute GMWB prices with significantly less computational time to achieve

similar level of numerical accuracy. The design of our pricing algorithms also includes an efficient

search method for the optimal dynamic withdrawal policies. We perform sensitivity analysis of

various model parameters on the prices and fair participating fees of the GMWB riders. We also

examine effectiveness of delta hedging when the fund dynamics exhibits various levels of jump.

1 Introduction

Variable annuities are annuity products with equity participation that are sold by insurance com-

panies. The policyholder pay an upfront premium and the proceeds are invested in his individual
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wealth account that is made up of mutual funds and other investment instruments. Since late

1990s, insurance companies started to add various forms of guarantee riders into variable annuity

products. Since then, we have witnessed significant growth in the variable annuities markets. The

variable annuity net assets in the world amount to 1.95 trillion US dollars at the end of the first

quarter of 2018 (Source: Morningstar, Inc. and Insured Retirement Institute).

One of the most popular guarantee riders in variable annuity products is the Guaranteed Min-

imum Withdrawal Benefits (GMWB). The GMWB allows the policyholder to withdraw a fixed

percentage of the total annuity premium each year regardless of the market performance of the

asset portfolio. The withdrawal payments are guaranteed until the total premium is recovered, even

when the policyholder’s personal wealth account has depleted to zero value due to poor performance

of the asset portfolio. On the other hand, under favorable returns of investment such that the wealth

account stays positive at maturity, the policyholder is entitled to receive at maturity the remaining

balance in either the wealth account or guarantee account, whichever is higher. Under the dynamic

guarantee clause of the GMWB, the policyholder is allowed to withdraw any amount within the

limit of the wealth account, which can be either below, at or above the contractual amount. In ad-

dition, the policyholder has the right to surrender the contract prematurely, which is equivalent to

complete withdrawal of the whole wealth account. The contract usually imposes certain provisions

to discourage withdrawal above the contractual amount. Typically, a penalty charge is applied on

the withdrawal amount that is above the contractual amount. Another disincentive measure to

discourage excess withdrawal is the imposition of the reset provision, where the guarantee account

may be reset to the minimum of the prevailing guarantee account level and wealth account value.

The insurer charges a proportional participating fee per annum on the wealth account in order to

fund the GMWB rider. When selling the GMWB products, insurance companies are concerned

not to charge the participating fees too low that are not sufficient to cover the hedging costs of the

embedded guarantees.

Under the simplified assumption that the withdrawal policy is static, which means the policy-

holder always withdraws the contractual amount on each withdrawal date and never surrenders,

Milevsky and Salisbury (2006) show that the value function of the GMWB product can be de-

composed into a quanto Asian put option and a generic term certain annuity. Under the optimal

dynamic withdrawal policy, the policyholder optimally determines the withdrawal amount on each

withdrawal date so as to maximize the value function of the GMWB rider. This benchmark case of

value maximization results in the highest cost of hedging borne by the insurer (Moenig and Bauer,
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2011). In reality, the policyholder may adopt some suboptimal withdrawal policies; for example,

withdrawal and surrender decisions are made based on the moneyness of the value of the guarantee.

Under the continuous time model of optimal dynamic withdrawal, the continuous withdrawal rate

becomes a stochastic control variable. Dai et al. (2008) derive the Hamilton-Jacobi-Bellman varia-

tional inequalities formulation of the resulting singular stochastic control model. They also propose

the finite difference scheme coupled with the penalty approximation method to price GMWB prod-

ucts under both continuous withdrawal rate and discrete withdrawals. Huang and Forsyth (2012)

present the rigorous convergence proof of the penalty approximation schemes for solving the GMWB

pricing models. Other versions of the singular stochastic control models and construction of various

finite difference methods and lattice tree schemes can be found in Milevsky and Salisbury (2006),

Bauer et al. (2008), Huang et al. (2012), Yang and Dai (2013), and Forsyth and Vetzal (2014).

Under the continuous withdrawal model, Huang and Kwok (2014) perform full mathematical char-

acterization of the optimal withdrawal policies. Their bang-bang results for the optimal withdrawal

strategies fall into three choices: zero withdrawal, withdrawal at the contractual rate and complete

surrender. However, Azimzadeh and Forsyth (2015) show that the above bang-bang optimal with-

drawal policies for the GMWB pricing model become invalid under discrete withdrawals. Without

the simplification offered by the bang-bang withdrawal strategies, the design of an effective search

algorithm for the optimal withdrawal amounts under discrete withdrawals remains a challenge.

Most earlier research papers on pricing GMWB assume the geometric Brownian motion for the

underlying fund dynamics, constant interest rate and volatility. The recent works show various

extensions on the choice of fund dynamics, design of numerical schemes and implementation of

hedging strategies. Chen et al. (2008) include jump in the fund price dynamics and explore whether

typical participating fees charged on GMWB contracts are sufficient to cover the cost of hedging

the embedded guarantees. They explore the effects of various modeling assumptions on the optimal

withdrawal strategy of the policyholder and their effects on the guarantee value associated with

sub-optimal withdrawal behaviors. Peng et al. (2012) derive analytic approximation of the lower

and upper bounds for the price of GMWB under the Vasicek interest rate and static withdrawals.

For numerical pricing under the Vasicek interest rate and dynamic withdrawals, Shevchenko and

Luo (2017) develop the two-dimensional Gauss-Hermite quadrature scheme to perform expectation

calculations of the value function over consecutive withdrawal dates. Kang and Ziveyi (2018) use

the Method of Lines algorithm to analyze the policyholder surrender behavior under stochastic

interest rate and volatility. Gudkov et al. (2018) use the componentwise splitting approach in the
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multidimensional finite difference scheme to price GMWB products under stochastic interest rate,

volatility and mortality. Other numerical schemes for pricing GMWB products include the flexible

lattice tree method (Costabile, 2017) and fast Fourier transform method (Ignatieva et al., 2016).

With known analytic forms of the characteristic functions of the various choices of the Lévy processes

for the underlying fund dynamics, Bacinello et al. (2016) use the Fourier space time-stepping method

to price GMWB products under different Lévy processes and policyholder behaviors. Alonso-Garcia

et al. (2018) design more refined recursive dynamic programming procedure coupled with the

Fourier cosine transform method for pricing and hedging GMWB products. They develop a local

risk minimization approach to hedge inter-withdrawal date risks and consider various choices of risk

measures under the general Lévy framework.

Though the academic literature reveals a wide range of numerical schemes that have been de-

veloped for pricing GMWB products under a variety of fund dynamics, there remains the quest for

more efficient numerical scheme to perform the expectation calculations of the value function in the

backward induction procedure and effective search for the optimal withdrawal policies. The finite

difference and lattice tree methods normally require a large number of time steps to perform expec-

tation calculations between consecutive withdrawal dates. On the other hand, the Fourier transform

method and numerical quadrature scheme can perform numerical integration between consecutive

withdrawal dates in one time step. However, in the fast Fourier transform method, one has to

perform transformation of the value function from the Fourier domain to the real domain on each

withdrawal date in order to implement the jump conditions on the wealth account and guarantee

account to model the associated withdrawal or surrender event. For the one-step Gauss-Hermite

quadrature scheme, it requires known analytic formula of the transition density function of the

fund dynamics between consecutive withdrawal dates. Besides, it is also desirable to develop more

efficient search algorithm for optimal withdrawal strategies that goes beyond the direct iteration

search used in most existing published works.

In this paper, we propose the willow tree algorithm for performing effective expectation calcu-

lations of the value function between consecutive withdrawal dates in the GMWB pricing model

and an efficient constrained optimization algorithm that searches for optimal dynamic withdrawals.

The willow tree method was first proposed by Curran (2001), and the method is later applied by

various researchers to price various path dependent options and exotic derivatives (Xu et al., 2013;

Xu and Yin, 2014; Lu et al., 2017; Lu and Xu, 2017; Wang and Xu, 2018). Improved computational

efficiency is achieved in the willow tree algorithm via the more efficient construction of the willow
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tree nodes that better simulate the underlying fund dynamics when compared with the usual lattice

tree algorithms and Markov chain method. The knowledge of the probability distribution of the

underlying fund dynamics is used in the construction of the willow tree. Unlike the finite difference

algorithm where uniform spacing of layers of nodes is adopted, we use the first four order moments

of the fund dynamics to determine the layers of nodes in the willow tree. In Section 3, we show how

to construct the willow tree for the following two fund value processes: Merton’s jump-diffusion

process (Merton, 1976) and constant elasticity of variance (CEV) process (Cox, 1975). In fact,

the willow tree method can be extended to Kou’s jump-diffusion model, general Lévy processes

and stochastic volatility processes. For these complex stochastic fund value processes, assuming

availability of the corresponding analytic moment generating function, one can employ the fast

Fourier transform algorithm to compute the higher order moments and construct the willow tree

accordingly. Details of the procedure can be found in Yao et at. (2019). Once the corresponding

willow tree structure has been formulated, the GMWB pricing scheme proposed in this paper can

be applicable to a wide variety of fund value processes with jumps, not just limited to Merton’s

jump-diffusion process and CEV process. Unlike the finite difference schemes, the inclusion of jump

dynamics in the fund value process does not increase an extra dimension of the computation proce-

dure in the willow tree algorithms. Our GMWB pricing algorithm also includes an efficient search

procedure for the optimal withdrawal strategies, which can be formulated as an one-dimensional

constrained optimization problem.

The remaining sections of this paper are organized as follows. In the next section, we present

the pricing model formulation of the GMWB. The jump conditions on the wealth account and

guarantee account across a withdrawal date that model various reset provisions and surrender events

are discussed. In Section 3, we present the construction of the willow tree algorithm under Merton’s

jump-diffusion process and CEV process, together with the constrained optimization algorithms for

searching optimal withdrawals. In Section 4, we show comparison of performance of our willow tree

algorithm with other numerical methods and discuss the impact of penalty charges on the optimal

withdrawal policies. We perform sensitivity analysis of various model parameters on the prices and

fair participating fees of the GMWB riders. Also, we examine effectiveness of delta hedging under

jump dynamics of the fund value process. Conclusive remarks are presented in the last section.
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2 Model formulation

We consider a variable annuity with the GMWB rider expiring in T years. At the inception of

the contract, the initial upfront payment W 0 paid by the policyholder is invested into an asset

fund chosen by the policyholder. With withdrawals spread over the life of the variable annuity

contract, the GMWB rider guarantees to return the entire initial upfront payment irrespective of

the market performance of the asset fund underlying the policyholder’s wealth account. Besides

the wealth account of the policyholder’s personal portfolio, the guarantee account also keeps track

of the remaining guaranteed amount to be received by the policyholder in the remaining life of

the GMWB contract. At initiation, the guaranteed withdrawal account is W 0 since there has

not been any withdrawal. Let W (t) and A(t) denote the respective value process of the wealth

account and guaranteed withdrawal account, 0 ≤ t ≤ T . Note that W (0) = A(0) = W 0. Let G

denote the contractual withdrawal amount on each withdrawal date. Suppose we assume annual

withdrawals, then G is set to be W 0/T . The withdrawal amount is allowed to be larger than G,

but the policyholder has to pay a penalty for the amount that exceeds G. On the other hand, the

insurer charges the policyholder an annual participating fee α based on the value of the wealth

account. Suppose withdrawals are allowed on N preset dates during the contractual period [0, T ],

where the uniformly distributed withdrawal dates are tn = n∆t, n = 1, 2, . . . , N , ∆t = T
N . We

assume that surrender of the contract can only occur on a withdrawal date.

We consider two stochastic processes for the asset fund value process S(t), whose dynamics

under a risk neutral measure Q are governed by

(1) Jump-diffusion model (Merton, 1976)

dS(t)

S(t)
= (r − λk̄)dt+ σdB(t) + [Y (t)− 1] dN(t), (2.1)

where r is the constant risk free interest rate, B(t) is the standard Q-Brownian motion, k̄ =

E[Y (t) − 1], lnY (t) ∼ N(αJ , σ
2
J), and N(t) follows the Poisson process with constant intensity

λ. Here, N(µ, σ2) represents the normal distribution with mean µ and variance σ2. The Merton

jump-diffusion process reduces to the usual geometric Brownian motion when the jump component

vanishes.

(2) CEV model (Cox, 1975)

dS(t) = rS(t)dt+ σS(t)βdB(t), (2.2)

where r is the risk free interest rate, B(t) is the standard Q-Brownian motion, σ is a constant and

β is the constant elasticity of variance parameter. The parameter β controls the leverage between
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volatility and asset fund value. When 0 < β ≤ 1 (commonly observed in equity markets), we observe

the so-called leverage effect, where volatility is negatively related to fund value level. Conversely,

when β > 1, which is often observed in commodity markets (German and Shih, 2009), volatility

tends to increase as price increases (so-called negative leverage effect). In this paper, we assume

0 < β ≤ 1, though our pricing algorithm is also applicable for β > 1. The CEV model degenerates

into the geometric Brownian motion model when β = 1.

Under the GMWB rider, even when Wt hits zero before maturity of the contract, annual with-

drawals would continue until the entire guaranteed withdrawal account is depleted. Let W (t−n )

and W (t+n ) denote the wealth account value right before and after the withdrawal date tn, respec-

tively, and apply the same notational interpretation for A(t−n ) and A(t+n ). Let ξn be the withdrawal

amount at tn. The wealth account value has a downward jump of ξn right after withdrawal while

the asset fund value process S(t) remains continuous across a withdrawal date. Under the static

withdrawal clause, ξn is set to be G. On the other hand, the dynamic withdrawal clause allows ξn

to take any value between 0 and A(t−n ). Also, the policyholder may surrender the contract at tn,

corresponding to taking ξn = W (t−n ). The time evolution of the wealth account value W (t) and

guaranteed withdrawal account A(t) on the path of the fund value S(t) and the downward jump on

W (t) and A(t) across the withdrawal date tn are described as follows.

• At time t−n , the wealth account value W (t−n ) is given by

W (t−n ) = W (t+n−1)
S(tn)

S(tn−1)
e−α∆t, (2.3a)

where α is the annualized participating fee continuously charged by the insurer. Since there is

no withdrawal during (tn−1, tn), the guaranteed withdrawal account value remains the same,

so we have

A(t−n ) = A(t+n−1). (2.3b)

• Note that ξn may be larger than W (t−n ) due to the guarantee rider and the wealth account

has the zero floor value. At time t+n , right after withdrawal of amount ξn, the wealth account

value becomes

W (t+n ) = max{W (t−n )− ξn, 0}. (2.4)

• If there is no reset provision, then the guaranteed withdrawal account A(t+n ) is given by

A(t+n ) = max{A(t−n )− ξn, 0}. (2.5a)
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The downward jump on A(t) across tn is complicated by the reset provision, which is imposed

to discourage excess withdrawal beyond the contractual amount. In this paper, we use the

‘pro-rata adjustment’ reset provision as proposed in Bacinello et al. (2016), where A(t+n ) is

given by

A(t+n ) =


A(t−n )− ξn, ξn ≤ min{G,A(t−n )},

max

{
min

{
A(t−n )− ξn, A(t−n )

W (t−n )− ξn
W (t−n )

}
, 0

}
, ξn > min{G,A(t−n )}.

(2.5b)

Under excessive withdrawal beyond min{G,A(t−n )}, the guaranteed withdrawal account is

penalized by setting A(t+n ) to be the minimum of A(t−n ) − ξn and A(t−n ) multiplied by the

pro-rata factor W (t−n )−ξn
W (t−n )

.

There are some other reset provisions, like the one adopted in Alonso-Garćıa et al. (2018),

where A(t+n ) is given by

A(t+n ) =

 max{A(t−n )− ξn, 0}, ξn ≤ G,

max {min {A(t−n )− ξn,W (t−n )− ξn} , 0} , ξn > G.
(2.5c)

This reset provision discourages excess withdrawal beyond G when W (t−n ) < A(t−n ).

There is a penalty charge at the rate η on the excess amount of withdrawal above G. The cash

amount received by the policyholder on the withdrawal date tn is given by

C(tn) =

 ξn if 0 ≤ ξn ≤ G

G+ (1− η)(ξn −G) if ξn > G
. (2.6)

On maturity date T , the policyholder receives either the remaining balance in the wealth account

W (t−N ) or cash amount C(tN ), whichever is higher.

The value function V (W (t−n ), A(t−n ), t−n ) of the GMWB contract at time t−n is given by the sum of

discounted cash amounts received by the policyholder on all future withdrawal dates tn, tn+1, . . . , tN−1,

and at maturity T , subject to the optimal choices of the withdrawals ξ = (ξn, ξn+1, . . . , ξN−1). As-

suming that the policyholder survives beyond T and no surrender occurs during the life of the

contract, we have

V
(
W (t−n ), A(t−n ), t−n

)
= sup

ξ

EQ
e−r(T−tn) max

{
W (t−N ), C(tN )

}
+

N−1∑
j=n

e−r(tj−tn)C(tj)

∣∣∣∣ W (t−n ), A(t−n )

 . (2.7)
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The other two risk factors affecting the value of GMWB are the mortality risk and early sur-

render. Suppose the policyholder dies within (tn−1, tn], the contract is terminated and the wealth

account value W (t−n ) is returned to the beneficiary at tn. Under the mix withdrawals with surrender

provision, the policyholder has the option to withdraw the full wealth account value and terminate

the contract on a withdrawal date. We consider the modification of the model formulation under

inclusion of mortality risk and surrender provision in Section 3.2.

3 Construction of the willow tree and search algorithm of optimal

withdrawals

We consider the log-return of the fund unit S(t), where X(t) = lnS(t) and construct the willow tree

with respect to the underlying dynamics of X(t). On each withdrawal date tn, n = 1, 2, · · · , N ,

we sample m possible log-returns Xn
i , i = 1, 2, · · · ,m, from the distribution of the process X(t) at

tn. The probability of transition from node Xn
i to node Xn+1

j on the next withdrawal date tn+1 is

characterized by the transition probability pnij . In Figure 1, the willow tree structure is constructed

with 4 withdrawal dates and 5 possible X(t) values on each withdrawal date. At initial time t0 = 0,

taking S(0) = 1, there is only one node at t0 with X(0) = 0. On each withdrawal date, the nodes

are chosen to fit the corresponding distribution of the underlying fund dynamics. The transition

probabilities are determined to approximate the stochastic evolution of the fund dynamics between

consecutive withdrawal dates. Provided that we put enough number of nodes on each withdrawal

date, it is not necessary to assign intermediate time steps between consecutive withdrawal dates in

the willow tree lattice. Since withdrawals and updating of W (t) and A(t) occur only on withdrawal

dates, it is superfluous to compute the value function at intermediate times between consecutive

withdrawal dates as in the usual lattice tree algorithms and finite difference methods. The total

number of nodes in the willow tree lattice would be the number of space nodes on each withdrawal

date (typically 50 to 100) multiplied by the number of withdrawal dates.

3.1 Construction of the willow tree under Merton’s jump-diffusion process

We discuss the construction of the willow tree under Merton’s jump-diffusion process and calculation

of the transition probability pnij from node Xn
i to node Xn+1

j . The mean, variance, skewness and

kurtosis of the increment over ∆t time interval of Merton’s jump-diffusion process as governed by
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eq. (2.1) are found to be (Ballotta and Kyriakou, 2015):

Mean = [r − σ2

2 − λ(eαJ+σ2
J/2 − 1) + λαJ ]∆t

Variance = (σ2 + λα2
J + λσ2

J)∆t

Skewness =
λ(α3

J + 3αJσ
2
J)√

∆t(σ2 + λα2
J + λσ2

J)3/2

Kurtosis =
λ(α4

J + 6α2
Jσ

2
J + 3σ4

J)

∆t(σ2 + λα2
J + λσ2

J)2
.

(3.1)

The Johnson curve transformation (Johnson, 1949) transforms a standard normal variable into an

arbitrary random variable via matching the first four moments. The nodes are set to be

Xn
i = εg−1

(
zi − γ
δ

)
+ ν, (3.2)

where the parameters γ, δ, ν and ε can be determined by the algorithm proposed in Hill and Holder

(1976), zi are the discrete values of the standard normal distribution and the function g−1(u) is

defined by

g−1(u) =



eu for the lognormal family,

eu−e−u
2 for the unbounded family,

1
1+e−u for the bounded family,

u for the normal family.

(3.3)

The m possible log-returns Xn
i , i = 1, 2, · · · ,m, are selected to match the first four moments of

X(tn) by the Johnson curve transformation. The key consideration in sampling Xn
i is to select {zi}

from the standard normal distribution. According to Xu et al. (2013), a sequence of {(zi, qi)},

i = 1, 2, · · · ,m, is generated to approximate the standard normal distribution, where zi is some

discrete value of the standard normal distribution and qi is the corresponding probability of zi. The

generation of the sequence starts from a sequence of {q̃j}, where

q̃j = (j − 0.5)ϑ/m, and q̃m+1−j = q̃j , for j = 1, 2, · · · ,m/2, and 0 ≤ ϑ ≤ 1.

The parameter ϑ controls the distance between q̃i. When ϑ = 0, all q̃i are identical. When ϑ > 0,

the probabilities close to the tail of the standard normal distribution are small while those near the

center of the standard normal distribution are large. Similar to Xu et al. (2013), we take ϑ = 0.6

in our calculations. The sequence {qi} is then normalized by

qi = q̃i/
m∑
j=1

q̃j for i = 1, 2, · · · ,m.
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Next, we determine the sequence of {zi} by the solution of the following nonlinear least squares

problem:

min
zi

(
m∑
i=1

qiz
4
i − 3

)2

such that
∑m

i=1 qizi = 0,
∑m

i=1 qiz
2
i = 1, and Zi−1 ≤ zi ≤ Zi. Here, Zi = N−1(

∑i
j=1 qj), i =

1, 2, · · · ,m − 1, Z0 = −∞ and Zm = ∞ so that the pair {(zi, qi)} satisfy the properties of the

standard normal distribution, with mean equals zero, variance equals one and kurtosis equals three.

In summary, using the discrete sampling zi in the standard normal distribution, we can map zi to

Xn
i by the Johnson curve transformation via matching the first four moments of X(tn).

On the other hand, the transition probability pnij from Xn
i to Xn+1

j can be estimated by (Xu

and Yin, 2014)

pnij = P (A < Xn+1
j < B|Xn

i ) =

∫ B

A

∞∑
l=0

e−λ∆t(λ∆t)l

l!

1√
2πσl

exp

[
−(x− µl)2

2σ2
l

]
dx, (3.4)

where A = (Xn+1
j−1 + Xn+1

j )/2, B = (Xn+1
j+1 + Xn+1

j )/2, µl = Xn
i + (r − λk̄ − σ2

2 )∆t + lαJ and

σ2
l = σ2∆t+ lσ2

J .

The two-step procedure of constructing the willow tree nodes involves the determination of the

willow tree nodes and transition probabilities. These two steps can be performed in a similar manner

for other underlying fund dynamics. The extension of the above two-step procedure to the CEV

process is presented in Appendix A. Once the willow tree structure has been constructed, the same

GWMB pricing procedure can be applied to all stochastic fund value processes based on the willow

tree structure.

3.2 Numerical valuation framework with discrete withdrawals

First we determine the maximum wealth account value W (t) at t−n . Taking S0 = 1 for simplicity,

suppose S(t−n ) reaches Sni at t−n , we have

Wn
i,max = W 0Sni e

−αn∆t. (3.5)

In the willow tree lattice, we consider K discrete values of Wn
i in the interval [0,Wn

i,max], where

Wn
i,k =

k − 1

K − 1
Wn
i,max, k = 1, 2, . . . ,K. (3.6)

Denote V n
i,k ≡ V (Sni ,W

n
i,k, tn) as the numerical approximation value of the GMWB. The calculation

of the GMWB value V n
i,k is based on the following backward induction of the willow tree for the

fund value process {Sni }.
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• At maturity tN = T , for each mutual fund price SNi , the K possible wealth account values

WN
i,k are determined by (3.6). The corresponding GMWB value V N

i,k at T is calculated by

V N
i,k = max

{
WN
i,k, G

}
, for i = 1, 2, ...,m, k = 1, 2, ...,K. (3.7)

• At time tN−1 = (N − 1)∆t, for each mutual fund price SN−1
i , there are K possible account

values WN−1
i,k . Given the withdrawal amount ξN−1 and assuming that the fund price evolves

from SN−1
i to SNj with wealth account value WN−1

i,k , the corresponding wealth account value

at t−N becomes

W
N
j = max

{
WN−1
i,k − ξN−1, 0

} SNj

SN−1
i

e−α∆t. (3.8)

Since W
N
j must fall into [0,WN

j,max], so there exists an integer k∗ such that WN
j,k∗ ≤ W

N
j ≤

WN
j,k∗+1. The corresponding GMWB value with account value W

N
j can be estimated by a

linear interpolation of V N
j,k∗ and V N

j,k∗+1. We have

V
N
j = λNj V

N
j,k∗+1 +

(
1− λNj

)
V N
j,k∗ , (3.9)

where

λNj =
W

N
j −WN

j,k∗

WN
j,k∗+1 −WN

j,k∗
.

After considering all possible scenarios of the fund price evolution from SN−1
i to SNj , j =

1, 2, ...,m, and under the wealth account value WN−1
i,k , the corresponding GMWB value V N−1

i,k

can be estimated as

V N−1
i,k = e−r∆t

m∑
j=1

pN−1
ij V

N
j + ϕ(ξN−1), i = 1, ...,m, and k = 1, ...,K, (3.10)

where pN−1
ij is the transition probability from SN−1

i to SNj , and ϕ(ξN−1) is the net cash amount

received by the policyholder with respect to the withdrawal amount ξN−1. This gives

ϕ(ξN−1) =

 ξN−1, ξN−1 ≤ G,

G+ (1− η)
(

min{ξN−1, L
N−1
i,k } −G

)
, ξN−1 > G,

(3.11)

where η is the penalty charge on the portion exceeding the contractual withdrawal amount,

and LN−1
i,k = max

{
G,WN−1

i,k

}
is the maximal admissible withdrawal amount.

• Following similar procedures, we evaluate GMWB value at time tn, n = N − 1, N − 2..., 1.
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• At t = 0, the wealth account value at t1 can be estimated as

W
1
j = W 0

S1
j

S0
e−α∆t, j = 1, ...,m. (3.12)

Similarly, there also exists an integer k∗ such that W 1
j,k∗ ≤W

1
j ≤W 1

j,k∗+1. The corresponding

GMWB value at t1 is

V
1
j = λ1

jV
1
j,k∗+1 + (1− λ1

j )V
1
j,k∗ , (3.13)

where

λ1
j =

W
1
j −W 1

j,k∗

W 1
j,k∗+1 −W 1

j,k∗
.

Since there is no withdrawal at the initial time t0, the GMWB value at t0 = 0 can be calculated

as

V 0 = e−r∆t
m∑
j=1

qjV
1
j , (3.14)

where qj is the transition probability from S0 to S1
j .

The above three-step procedure of pricing GMWB based on the willow tree structure can be

summarized in the following algorithm. The inclusion of dynamic withdrawals, mortality risk and

surrender will be discussed later.

Algorithm 1 Consider a GMWB expiring in T years with initial investment W 0 and annualized

participating fee α. Given the value of the fund S(t) following Merton’s jump-diffusion model (2.1)

and withdrawal strategy {ξn}, the value of GMWB at initiation (without considering mortality risk

and surrender) can be calculated by the willow tree algorithm as follows.

1. Construct the willow tree for the fund value {Sni } with the transition probabilities [pnij ] and

{qj} from time t0 to tN = T .

2. Calculate the guaranteed withdrawal account {An = A(t−n )} as in (2.5a) or (2.5b) for n =

1, 2, · · · , N ; then compute {Wn
i,max} as in (3.5) and K possible wealth account values {Wn

i,k}

as in (3.6).

3. Calculate V N
i,k as in (3.7).

4. for n = N − 1 : −1 : 1

for i = 1 : m

for k = 1 : K

13



for j = 1 : m

− Calculate W
n+1
j as in (3.8);

− Find k∗ s.t. Wn+1
j,k∗ ≤W

n+1
j ≤Wn+1

j,k∗+1 and calculate V
n+1
j as in (3.9);

end

− Calculate V n
i,k as in (3.10);

end

end

end

5. for j = 1 : m

− Calculate W
1
j as in (3.12);

− Find k∗ such that W 1
j,k∗ ≤W

1
j ≤W 1

j,k∗+1 and calculate V
1
j as in (3.13);

end

6. Calculate V 0 as in (3.14).

Inclusion of mortality risk and mix withdrawals (with surrender provision)

Mortality is characterized by the probability that the policyholder dies during (tn−1, tn]. In order

to simplify the problem, we assume that when the policyholder dies during (tn−1, tn], the contract

will be terminated at tn and the wealth account value W (t−n ) will be returned to the beneficiary

at tn. Suppose the policyholder is x0 years old at the inception of the contract. The probability

that the policyholder survives up to time tn and dies during (tn, tn+1] is ∆tQx0+tn . In other words,

the policyholder’s survival probability during (tn−1, tn] is 1−∆t Qx0+tn . The GMWB value can be

rewritten as

V n
i,k = e−r∆t

(1 − ∆tQx0+tn)
m∑
j=1

pnijV
n+1
j + ∆tQx0+tn

m∑
j=1

pnijW
n+1
j

+ ϕ(ξn), (3.15)

where W
n+1
j is the estimated account value at withdrawal date t−n+1. The value of GMWB at initial

time t0 = 0 then can be evaluated as

V 0 = e−r∆t

(1 − ∆tQx0)

m∑
j=1

qjV
1
j + ∆tQx0

m∑
j=1

qjW
1
j

 . (3.16)

Under the mix withdrawals with surrender provision, the policyholder has the option to withdraw

the whole wealth account value and terminate the GMWB on a withdrawal date before maturity.
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A rational policyholder makes decision on surrender based on the dynamic procedure of finding

maximum of the holding value and surrender value. On the withdrawal date tn, the surrender value

V Rni,k can be calculated as

V Rni,k =

 G+ (1− η)(Wn
i,k −G), Wn

i,k > G,

Wn
i,k, Wn

i,k ≤ G,
(3.17)

where η is the penalty charge. The GMWB value V n
i,k computed by (3.15) at tn is visualized as the

GMWB holding value, V Cni,k. Based on optimality under mix withdrawal, the GMWB value V n
i,k

at tn is taken to be the maximum of the surrender value and holding value, where

V n
i,k = max

{
V Cni,k, V R

n
i,k

}
. (3.18)

3.3 Numerical valuation framework under dynamic withdrawals

The dynamic withdrawal clause allows the policyholder to choose the withdrawal amounts optimally.

In other words, the policyholder decides an optimal withdrawal strategy ξ∗ = {ξ∗1 , ξ∗2 , · · · , ξ∗N} to

maximize the present value of the GMWB V 0, where

ξ∗ = argmaxξ∈PV
0(S0,W 0, A0; ξ). (3.19)

Here, P is the set of all admissible withdrawal strategies. The contractual withdrawal amount

ξn at tn is up to min{G,An}. However, when Wn > min{G,An}, the policyholder is allowed to

withdraw more, subject to penalty charge, until the wealth account is completely exhausted. Hence,

the admissible value for the withdrawal ξn is bounded by 0 ≤ ξn ≤ max{Wn,min{G,An}}. The

optimal withdrawal ξ∗ can be found by employing dynamic programming procedure on the Bellman

recursive equation. Proceeding backward induction in time for n = N,N − 1, · · · , 1, we have

V N∗(SN ,WN , AN ) = max{AN ,WN},

V n∗(Sn,Wn, An) = maxξn∈[0, max{Wn,min{G,An}}]

E[ϕ(ξn) + e−r∆tV (Sn+1,W
n+1

(ξn), A
n+1

(ξn))|Sn, An,Wn],

V 0∗ = E[e−r∆tV (S1,W 1, A1)|S0, A0 = W 0],

where W
n+1

(ξn) and A
n+1

(ξn) are the updated wealth account value and guaranteed withdrawal

account at tn+1, conditional on withdrawal ξn at tn. The above Bellman recursive equation can be

solved efficiently by a standard dynamic programming algorithm for a discrete stochastic control

problem. Due to our simplistic willow tree structure, the discrete stochastic control problem can
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be simplified to successive one-dimensional optimization problems. The global maxima of the con-

strained optimization problem can be found by the optimization algorithm presented in Appendix

B.

The discrete states on [0, Wn
i,max] for Wn and [0, A0] for An at withdrawal date tn are defined

by

Wn
i,k =

k − 1

K − 1
Wn
i,max and Anh =

h− 1

H − 1
A0, k = 1, 2, · · · ,K and h = 1, 2, · · · , H.

The GMWB pricing under the dynamic optimization approach can be proceeded as follows:

• On maturity date tN , the value of GMWB under the dynamic optimization approach V N∗

can be evaluated as

V N∗(SNi ,W
N
i,k, A

N
h ) = max

{
WN
i,k, A

N
h

}
.

• On the withdrawal date tn, n = N − 1, N − 2, · · · , 1, given the withdrawal amount ξn at the

fund price Sni , the wealth account value Wn
i,k and guaranteed withdrawal account Anh, the

GMWB value can be computed as

V n
(
Sni ,W

n
i,k, A

n
h, ξn

)
= e−r∆t

m∑
j=1

pnij V
(n+1)∗

(
Sn+1
j ,W

n+1
j , A

n+1
)

+ ϕ (ξn) , (3.20)

where

W
n+1
j = max

{
Wn
i,k − ξn, 0

} Sn+1
j

Sni
e−α∆t,

A
n+1

=


Anh − ξn ξn ≤ Enh

max

{
min

{
Anh − ξn, Anh

Wn
i,k − ξn
Wn
i,k

}
, 0

}
ξn > Enh ,

and

ϕ(ξn) =

 ξn ξn ≤ Enh
Enh + (1− η)(ξn − Enh ) ξn > Enh ,

with Enh = min{G, Anh}. The GMWB value V (n+1)∗
(
Sn+1
j ,W

n+1
j , A

n+1
)

can be evaluated

by the two-dimensional linear interpolation with respect to W
n+1
j and A

n+1
, where

V (n+1)∗
(
Sn+1
j ,W

n+1
j , A

n+1
)

= (1− y)
[
xV

(n+1)∗
j,k∗+1,h∗ + (1− x)V

(n+1)∗
j,k∗,h∗

]
+ y

[
xV

(n+1)∗
j,k∗+1,h∗+1 + (1− x)V

(n+1)∗
j,k∗,h∗+1

]
.

The two integers k∗ and h∗ can be determined as Wn+1
j,k∗ ≤ W

n+1
j ≤ Wn+1

j,k∗+1 and An+1
h∗ ≤

A
n+1 ≤ An+1

h∗+1, V n∗
j,k∗,h∗ = V n∗

(
Snj ,W

n
j,k∗ , A

n
h∗

)
, and

x =
W

n+1
j −Wn+1

j,k∗

Wn+1
j,k∗+1 −W

n+1
j,k∗

, and y =
A
n+1 −An+1

h∗

An+1
h∗+1 −A

n+1
h∗

.

16



The value of k∗ is given by

k∗ =

⌈
(Wn

i,k − ξn)(K − 1)

W 0Sni e
−αn∆t

⌉
,

independent of Sn+1
j . Lastly, we obtain the GMWB value under dynamic withdrawals via

V n∗(Sni ,W
n
i,k, A

n
h) = max

ξn∈[0,Lni,k,h]
V n(Sni ,W

n
i,k, A

n
h, ξn), (3.21)

where Lni,k,h = max{Wn
i,k, min{Anh, G}}. Due to simplicity of the objective function V n(Sni ,W

n
i,k, A

n
h, ξn)

in (3.20), the global maximum of (3.21) can be found efficiently by the dynamic optimization

algorithm presented in Appendix B. When the mortality risk is included into consideration,

the objective function can be modified as

V n
(
Sni ,W

n
i,k, A

n
h, ξn

)
= e−r∆t

[
(1 − ∆tQx0+tn)

m∑
j=1

pnijV
(n+1)∗

(
Sn+1
j ,W

n+1
j , A

n+1
)

+ ∆tQx0+tn

m∑
j=1

pnijW
n+1
j

]
+ ϕ(ξn).

• At the initial time t0 = 0, the GMWB price under dynamic withdrawals can be written as

V 0∗ = e−r∆t
n∑
j=1

qjV
1∗(S1

j ,W
1
j , A

1
),

since no withdrawal has taken place at the initial time.

4 Numerical studies on pricing behaviors and hedging performance

In this section, we present the numerical studies on numerical accuracy and efficiency of the wil-

low tree algorithm for pricing GMWB under the CEV model, Merton’s jump-diffusion model and

geometric Brownian motion (nested within the two earlier processes) under static, mix and dy-

namic withdrawals. The mortality risk is also taken in consideration in our numerical experiments.

We compare the performance of our willow tree method (WTM) with other established pricing

algorithms, like the bino-trinomial tree method (YDT) (Yang and Dai, 2013), numerical integration

method (BMM) (Bacinello et al., 2016), Gauss-Hermite quadrature on cubic spline (GHQC) method

(Luo and Shevchenko, 2015), Fourier-cosine (COS) method (Alonso-Garćıa et al., 2018) and Monte

Carlo (MC) method (Bauer et al., 2008). All experiments were performed on the computer with

Intel(R) Core(TM) i7-5600U CPU 2.60GHz processor and 8GB RAM running MATLAB R2016b

under Windows 10 Professional.
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4.1 Sensitivity analysis of model parameters and comparison of numerical ac-

curacy

First, we investigate the impact of the number of nodes m in the willow tree and number of discrete

values K of the wealth account on the values of GMWBs under the geometric Brownian motion

(GBM). Figure 2(a) plots the numerical values of the GMWB maturing in 20 years against 1/m

under variying values of volatility. The risk free interest rate is r = 3.25% and participating fee is

α = 50bp. The plots reveal nice convergence of the numerical results with increasing value of m

(equivalently, 1/m tends to zero). Similarly, Figure 2(b) reveals the almost linear rate of convergence

of the numerical GMWB values with respect to the stepwidth in the wealth account (equivalent

to linear rate of convergence in 1/K). Based on these numerical studies on convergence, we use

m = 100 and K = 20 in our later numerical tests under GBM, unless otherwise stated.

Geometric Brownian motion

There are abundance of numerical results on pricing GMWB in earlier papers that choose the

underlying fund dynamics to be the geometric Brownian motion. We compare the performance of

our willow tree method (WTM) with YDT (Yang and Dai, 2013), BMM (Bacinello et al., 2016)

and Monte Carlo (MC) simulation method on pricing GMWB with various maturities and fund

volatilities under static withdrawals. The number of simulation paths used in our Monte Carlo

calculations is 105. Figure 3 shows the plot of the GMWB value against varying levels of the

participating fee. The parameter values used in the calculations are T = 20, r = 3.25% and

σ = 0.2. The GMWB value decreases by about 10% when we change from zero participating fee to

charging participating fee at 100bp. Apparently, the numerical values of GMWB agree reasonably

well among the four pricing algorithms. Table 1 records in details the computed GMWB values and

the corresponding computing times of these four methods when the participating fee is 50bp. The

number of time steps between consecutive withdrawal dates in the YDT method is set to be 50 and

100, respectively. In the BMM method, we let K denote the number of nodes in the discretization

of the wealth account, which is set to be K = 200 or 300 in our calculations. Numerical tests

illustrate that K has to be larger than 200 in order to achieve sufficient numerical accuracy in the

BMM method. We also record the average relative errors (RE) of the results using the WTM with

m = 100 and those from the MC method in Table 1. All computed values obtained from the WTM

fall within the 99% confidence interval (CI) of the Monte Carlo simulation results. The willow tree

method gives highly accurate results of GMWB values, while requires less computing time when
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compared with the YDT, BMM and MC methods, especially for long-maturity GMWB contracts.

We also examine the impact of mortality risk and surrender provision on the fair participating fee

to be charged by the issuer of the GMWB. Since mortality risk is not considered in the BMM method,

only the YDT method and the willow tree method are compared under the geometric Brownian

motion. The policyholder is taken to be a 40-year old male 1. Table 2 records the computed

participating fee α using the willow tree method and YDT method with/without mortality risk

and with/without surrender provision. The differences between the numerical values of the fair fees

computed by the willow tree method and YDT method are typically small under varying values of

maturity and volatility. The willow tree method requires less computing time, especially for long

maturity GMWB contracts. The numerical results reveal that the surrender provision plays an

important role in determining the fair fee, especially when the underlying fund volatility is high. In

our numerical experiments, the penalty charge is set to be η = 10%, which is considered to be rather

high. When σ = 0.2, the fair fee with and without surrender provision are almost the same since

the surrender provision is not exercised due to high penalty charge. However, the difference in fair

fees with and without surrender provision becomes significant when σ = 0.3. Therefore, managing

the risk associated with the surrender provision under more volatile fund dynamics becomes more

important, especially for short-maturity GMWB contracts. The mortality risk is another risk factor

to be considered in pricing and hedging GMWB. As revealed in Table 2, the mortality risk lowers

the fair fee for GMWB, but its influence is negligible when no surrender provision is embedded in

the contract. In other words, the surrender provision increases the impact of mortality risk on the

fair fee of GMWB, especially when the fund becomes more volatile.

Figure 4 shows the sensitivity of the fair fees under static, mix and dynamic withdrawals with

respect to varying levels of penalty charge and maturity when the volatility of the fund dynamics is

set at high level of σ = 0.4. Figure 4(a) shows that the fair fee for the mix and dynamic cases come

close to each other under all levels of penalty charge. This implies that the policyholder may focus

on the choice of either full surrender or no surrender of the GMWB, rather than making decision on

choosing excessive withdrawal beyond G under the dynamic withdrawal case. On the other hand,

the difference in fair fees under static and mix withdrawals becomes smaller when η increases. We

can deduce that setting high penalty charge is an effective way to hedge against the risk associated

with early surrender. Figure 4(b) illustrates that the value of the surrender provision decreases with

1We adopt the 1994 Group Annuitant Mortality (GAM) Static Table and 1994 Mortality Improvement Projection

Scale from the Society of Actuaries Group to estimate the mortality.
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longer maturity of the GMWB contract.

Table 3 records the sensitivity of the fair fees with respect to maturity and interest rate computed

by the WTM and BMM method under different types of withdrawals. Since the YDT method is

not effective to handle the dynamic case, it is excluded in the comparison. Our results show that

the fair fee for dynamic withdrawals is higher than the other two types of withdrawals. The fair

fees decrease with increasing interest rate r and maturity T . The computation of the fair fee under

dynamic withdrawals is quite demanding in the BMM method since a brute force search of the

optimal withdrawal amount on each withdrawal date is performed. The willow tree method is

more computationally efficient, which only takes a few seconds to compute the fair fee since the

algorithm involves an effective optimization method to search for the optimal withdrawal. The two

sets of numerical results from the BMM method and WTM do not agree well under the dynamic

withdrawal case. However, we believe that the WTM results are more trustworthy than those of

the BMM method. To illustrate numerical accuracy of the WTM, we compare the WTM results

with those of the GHQC (Luo and Shevchenko, 2015) method and COS (Alonso-Garćıa et al., 2018)

method. The contractual terms in the GMWB contracts discussed in GHQC (Luo and Shevchenko,

2015) and COS (Alonso-Garćıa et al., 2018) method show some small differences from ours. The

details of these differences are listed in Table 4.

Tables 5 and 6 show the computed fair fees for the GMWB contracts as specified in Alonso-

Garćıa et al. (2018) by the WTM, GHQC and COS methods. These numerical results reveal

good accuracy of the willow tree method when compared with the GHQC and COS methods. The

BMM method is not included in both tables since numerical results using the BMM method are

not available under these GMWB contractual terms. The fair fees increase with higher frequency

of withdrawals per year and decreasing penalty charge η.

Finally, Table 7 records the computed GMWB values and the computational times for static

withdrawals with respect to the number of nodes in the willow tree m and number of discrete values

of the wealth account K. The benchmark value of the GMWB is 100. The computational time

increases approximately superlinear in m and K.

CEV model

Since available numerical algorithms reported in the literature have not been applied to the CEV

model, we compare the numerical results using our willow tree method with those from the MC

method under static withdrawal and participating fee of 50bp. Table 8 records the GMWB values
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computed by the WTM and MC method. All computed values from the WTM fall within 99%

confidence level of the MC method, which reveal good accuracy of our willow tree method. We

also check the impact of the surrender provision and mortality risk on the fair fees (see Table 9).

Similar to the geometric Brownian motion case, the surrender provision is seen to play a key role in

determining the fair fee, especially under high volatility of the fund dynamics. We observe that the

fair fees are not quite sensitive to the constant elasticity of variance parameter β under all types of

withdrawals (see Table 10).

Merton’s jump-diffusion model

We compare the performance of the willow tree method with the BMM method under Merton’s

jump-diffusion model. First, we verify numerical accuracy of the willow tree method by comparing

the computed fair fee of GMWB under the jump-diffusion model with the method in Huang et al.

(2012). Table 11 illustrates that the fair fees of GMWB computed by the two methods are very close

to each other. Next, we show the fair fees of GMWB computed by the WTM and BMM method

under static, mix and dynamic withdrawals in Tables 12 and 13. Similarly, the fair fee decreases

as the interest rate increases, so interest rate is an important risk factor for GMWB contracts with

long maturities. As observed from Table 13, when the penalty charge increases, both the fair fees

for the mix and dynamic withdrawals converge to those under the static case. In other words, the

policyholder is reluctant to surrender at a high penalty charge. This shows that the penalty charge

is an important factor for the insurer to mitigate the risk associated with the surrender provision

in GMWB. Since the BMM method computes the fair fees under dynamic withdrawals without

implementing effective search algorithm for finding optimal withdrawals, the reported numerical

results do not exhibit reasonable level of accuracy.

In a typical GMWB contract, the penalty charge η is time-dependent and decreases as time

progresses during the life of the contract. Table 14 shows a typical specification for the penalty

charge, which starts at the level of 3.0% in the first 5 years then decreases in steps and down to

1.5% in the last 5 years. The corresponding GMWB fair fees for the static, mix and dynamic

withdrawals are recorded in Table 14. Compared with the fair fees with a constant penalty η = 3%

shown in Table 13, the GMWB fair fee with a decreasing penalty increase insignificantly. This is in

agreement with the findings in Chen et al. (2008).

Figure 5 shows the sensitivity of the GMWB value with respective to varying levels of the par-

ticipating fee under static, mix and dynamic withdrawals. When the participating fee is small, the
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GMWB values under the static and mix withdrawals are almost same, implying that the policy-

holder tends not to exercise the surrender provision even when the penalty is only 2%. On the other

hand, when a high participating fee is charged, the GMWB values decrease slowly with increasing

fee, implying that the policyholder has higher potential to exercise the surrender provision.

4.2 Delta hedging efficiency

We consider delta hedging efficiency under Merton’s jump-diffusion model. The delta hedging

portfolio consists of long position of the underlying fund, bank account and short position of the

GMWB contract. The portfolio value Π(t) is given by

Π(t) = ∆S(t)S(t) + ∆B(t)B(t)− V (t). (4.1)

Here, ∆S(t) and ∆B(t) are the holding position of underlying asset fund and the value in bank

account, respectively. The delta for the GMWB contract on the withdrawal date tn is defined by

∆S(tn) =
W (tn)

S(tn)

∂V

∂W
,

which is computed numerically using the finite difference approximation in our numerical calcula-

tions. In our numerical tests, we execute delta hedging only on the withdrawal dates. Figures 6

and 7 show the histograms of the relative realized profit and loss distribution with and without

executing the delta hedging strategies under various levels of jump risks computed using Monte

Carlo simulation using 1000 simulation paths. Figure 6 illustrates effectiveness of delta hedging on

various levels of jump intensity λ. When the intensity is small, such as λ = 0.5282, 1 or 2, delta

hedging works well in reducing the risk. The relative realized profit and loss is sufficiently close to

zero. When the jump intensity becomes larger, like λ = 5, the relative profit and loss distribution

is clustered around −0.3%. When the jump risk is significant, delta hedging procedure is not suffi-

cient. Other derivatives, like options on the asset fund, may be added into the portfolio to improve

the hedging performance. Figure 7 illustrates the hedging performance on various σJ ’s with a fixed

λ. As σJ increases, effectiveness of delta hedging declines quite slowly. In other words, σJ has less

influence on the hedging performance when compared with that of λ.

5 Conclusion

Pricing and hedging of the GMWB rider in variable annuities are challenging due to the sophis-

ticated structural features associated with dynamic withdrawals, reset provisions upon excessive
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withdrawal, surrender provision and mortality. We propose the willow tree algorithms for pricing

GMWB when the underlying fund process follows Merton’s jump-diffusion model or CEV model.

Unlike the usual lattice tree algorithm and finite difference method, the willow tree algorithm adopts

more effective placement of the lattice nodes based on better fitting of the underlying fund price

distribution. The willow tree construction can be performed under different choices of the fund price

dynamics, and it can be separated from the part of the algorithm that deals with dynamic with-

drawals, reset and surrender event on withdrawal dates. We also propose an effective optimization

algorithm for the determination of optimal withdrawals. Extensive numerical tests were conducted

to examine numerical performance of the willow tree algorithm when compared with other nu-

merical algorithms, like the binomial tree method, finite difference method, numerical quadrature

and Fourier transform algorithm. These tests reveal high accuracy, efficiency and reliability of the

willow tree algorithm, together with significant savings on computational time. We performed com-

prehensive sensitivity analysis of various model parameters on the fair participating fees and values

of GMWB products, like maturity of the contract, volatility of the fund dynamics, participating

fee, penalty charge, etc. We also examine the impact of the jump intensity and magnitude on

the terminal profit and loss distribution of the GMWB product with and without delta hedging.

The potential losses under strong jumps can be significant under no delta hedging of the GMWB

product.
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withdrawal benefits under a general Lévy framework using the COS method. Quantitative Finance,

18(6), 1049-1075.

Azimzadeh, P. and Forsyth, P.A. (2015). The existence of optimal bang-bang controls for GMxB

contracts. SIAM Journal on Financial Mathematics, 6(1), 117-139.

Bacinello, A.R., Millossovich, P. and Montealegre, A. (2016). The valuation of GMWB variable

annuities under alternative fund distributions and policyholder behaviours. Scandinavian Actuarial

Journal, 446-465.

Ballotta, L. and Kyriakou, I. (2015). Convertible bond valuation in a jump diffusion setting with

stochastic interest rates. Quantitative Finance, 15, 115-129.

Bauer, D., Kling, A. and Russ, J. (2008). A universal pricing framework for guaranteed minimum

benefits in variable annuities. Astin Bulletin, 38, 621-651.

Chen, Z., Vetzal, K. and Forsyth, P. (2008). The effect of modeling parameters on the value of

GMWB guarantees. Insurance: Mathematics and Economics, 43, 165-173.

Costabile, M. (2017). A lattice-based model to evaluate variable annuities with guaranteed minimum

withdrawal benefits under a regime-switching model. Scandinavian Actuarial Journal, 231-244.

Cox, J. (1975). Notes on option pricing I: Constant elasticity of diffusions. Working paper of

Stanford University.

Cox, J., Ingersoll, J. and Ross, S. (1985). A theory of the term structure of interest rates. Econo-

metrica, 53(2), 385-407.

Curran, M. (2001). Willow power: optimizing derivative pricing trees. Algo Research Quarterly, 4,

15-24.

Dai, M., Kwok, Y.K. and Zong, J. (2008). Guaranteed minimum withdrawal benefit in variable

annuities. Mathematical Finance, 18, 595-611.

Forsyth, P. and Vetzal, K. (2014). An optimal stochastic control framework for determining the

cost of hedging of variable annuities. Journal of Economic Dynamics and Control, 44, 29-53.

Geman, H. and Shih, Y.F. (2009). Modeling commodity prices under the CEV model. Journal of

Alternative Investments, 11, 65-84.

24



Gudkov, N., Ignatieva, K. and Ziveyi, J. (2018). Pricing of GMWB options in variable annuities

under stochastic volatility, stochastic interest rates and stochastic mortality via the componentwise

splitting method. To appear in Quantitative Finance.

Hill, I. and Holder, R. (1976). Algorithm as 99: Fitting Johnson curves by moments. Applied

Statistics, 25, 180-189.

Huang, Y.Q., Forsyth, P.A. and Labahn, G. (2012). Iterative methods for the solution of a singular

control formulation of a GMWB pricing problem. Numerische Mathematik, 122, 133-167.

Huang, Y.Q. and Forsyth, P.A. (2012). Analysis of a penalty method for pricing a guaranteed

minimum withdrawal benefit (GMWB). Journal of Numerical Analysis, 32, 320-351.

Huang, Y.T. and Kwok, Y.K. (2014). Analysis of optimal withdrawal policies in withdrawal guar-

antee products. Journal of Economic Dynamics and Control, 45, 320-351.

Ignatieva, K., Song, A. and Ziveyi, J. (2016). Pricing and hedging of guaranteed minimum benefits

under regime-switching and stochastic mortality. Insurance: Mathematics and Economics, 70, 286-

300.

Johnson, N. (1949). System of frequency curves generated by methods of translation. Biometrika,

36, 149-176.

Kang, B. and Ziveyi, J. (2018). Optimal surrender of guaranteed minimum maturing benefits under

stochastic volatility and interest rates. Insurance: Mathematics and Economics, 79, 43-56.

Lu, L. and Xu, W. (2017). A simple and efficient two-factor willow tree method for convertible

bond pricing with stochastic interest rate and default risk. Journal of Derivatives, 25, 37-54.

Lu, L., Xu, W. and Qian, Z. (2017). Efficient convergent lattice method for Asian options pricing

with superlinear complexity. Journal of Computational Finance, 20, 1-38.

Luo, X. and Shevchenko, P.V. (2015). Valuation of variable annuities with guaranteed minimum

withdrawal and death benefits via stochastic control optimization. Insurance: Mathematics and

Economics, 62, 5-15.

Merton, R.C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of

Financial Economics, 3, 125-144.

Milevsky, M. and Salisbury, T. (2006). Financial valuation of guaranteed minimum withdrawal

benefits. Insurance: Mathematics and Economics, 38, 21-38.

25



Moenig, T. and Bauer, D. (2011). Revisiting the risk-neutral approach to optimal policyholder

behavior: A study of withdrawal guarantees in variable annuities. Working paper in the 12th

Symposium on Finance, Banking, and Insurance, Germany.

Peng, J.J., Leung, K.S. and Kwok, Y.K. (2012). Pricing guaranteed minimum withdrawal benefits

under stochastic interest rates. Quantitative Finance, 12(6), 933-941.

Shevchenko, P.V. and Luo, X.L. (2017). Valuation of variable annuities with guaranteed minimum

withdrawal benefit under stochastic interest rate. Working paper of Macquarie University.

Wang, G. and Xu, W. (2018). A unified willow tree framework for one-factor short rate models.

The Journal of Derivatives, 25, 33-54.

Xu, W., Hong, Z. and Qin, C. (2013). A new sampling strategy willow tree method with application

to path-dependent option pricing. Quantitative Finance, 13, 861-872.

Xu, W. and Yin, Y. (2014). Pricing American options by willow tree method under jump-diffusion

process. Journal of Derivatives, 22, 1-9.

Yang, S.S. and Dai, T.S. (2013). A flexible tree for evaluating guaranteed minimum withdrawal

benefits under deferred life annuity contracts with various provisions. Insurance: Mathematics and

Economics, 52, 231-242.

Yao, Y., Xu, W. and Kwok, Y.K. (2019). Willow tree algorithms for pricing exotic derivatives on

discrete realized variance under time-changed Lévy process. Working paper of Tongji University.
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Appendix A - Construction of the willow tree under the CEV process

The asset fund dynamics S(t) that follows the CEV process under a risk neutral measure Q is

governed by

dS(t) = rS(t)dt+ σS(t)βdB(t), (A.1)

where r is the risk free interest rate, B(t) is the standard Brownian motion under Q, σ is a constant

and β (β > 0, β 6= 1) is the constant elasticity of variance parameter. To construct the willow tree

for the CEV model, we introduce a new variable X(t) defined by

X(t) = S(t)θ. (A.2)

From the Itô lemma, we can rewrite eq. (A.1) as

dX(t) = θ

[
rX(t) +

θ − 1

2
σ2X(t)

θ−2(1−β)
θ

]
dt+ θσX(t)

θ−(1−β)
θ dB(t).

When θ = 2(1− β), we have

dX(t) = θ

[
θ − 1

2
σ2 + rX(t)

]
dt+ θσ

√
X(t)dB(t), (A.3)

which reveals that X(t) follows a Cox-Ingersoll-Ross (CIR) process (Cox et al., 1985). Based on the

procedure discussed in Wang and Xu (2018), we can construct a willow tree of X(t) governed by

the CIR process in eq. (A.3). Given the first four moments of X(tn) on the withdrawal date tn, its

m possible values Xn
i , i = 1, 2, ...,m, can be estimated by the Johnson curve transformation. The

corresponding m asset fund values Sni are then given by

Sni = (Xn
i )

1
θ , for i = 1, 2, ...,m, and n = 1, 2, ..., N.

The transition probability pnij from Sni to Sn+1
j can be calculated by

pnij = P (Sn+1
j |Sni ) =

1√
2π[σ(Sni )β]2∆t

∫ B

A
exp

(
−(x− Sni − rSni ∆t)2

2[σ(Sni )β]2∆t

)
dx,

where A = (Sn+1
j−1 + Sn+1

j )/2 and B = (Sn+1
j+1 + Sn+1

j )/2. Given the values {Sni } for i = 1, 2, · · · ,m

and n = 1, 2, · · · , N , and the transition probability matrix [pnij ], a willow tree can be constructed

to approximate the CEV process in eq. (A.1).

Geometric Brownian motion

When β = 1, the CEV model reduces to the usual geometric Brownian motion. The underlying

dynamics of S(tn) has the explicit analytic form:

S(tn) = S(0)e(r−σ
2

2
)tn+σB(tn).
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The discrete unit value Sni on the willow tree nodes can be estimated as

Sni = S0e(r−σ
2

2
)tn+σ

√
tnzi , for i = 1, 2, ...,m,

where zi is the discrete value chosen from the standard normal distribution. Furthermore, the

transition probability pnij from Sni to Sn+1
j can be simplified as

pnij = P (Y n+1
j |Y n

i ) =

∫ b

a
f(y|Y n

i ) dy, for i, j = 1, 2, ...,m,

where Y n
i =

√
tnzi, a = (Y n+1

j + Y n+1
j−1 )/2, b = (Y n+1

j+1 + Y n+1
j )/2. Also, f(y|Y n

i ) is the conditional

probability density function given Y n
i , where

f(y|Y n
i ) =

1√
2π∆t

exp

(
−(y − Y n

i )2

2∆t

)
, n = 1, 2, . . . , N − 1.

In the first step of the willow tree construction, the transition probability qi from S0 to S1
j can be

determined by

qj = P (Y 1
j |Y 0) =

∫ b

a
f(y) dy,

where Y 1
j =
√

∆tzj , a = (Y 1
j + Y 1

j−1)/2, b = (Y 1
j+1 + Y 1

j )/2 and f(y) = 1√
2π∆t

exp(− y2

2∆t).

Appendix B - Dynamic optimization algorithm in search for optimal withdrawals

In order to solve the optimization problem of finding the optimal withdrawal, the partial derivative

of V n(Sni ,W
n
i,k, A

n
h, ξn) with respect to ξn can be computed as

∂V n

∂ξn
= e−r∆t

m∑
j=1

pnij

(
∂V (n+1)∗

∂W
n+1
j

∂W
n+1
j

∂ξn
+
∂V (n+1)∗

∂A
n+1

∂A
n+1

∂ξn

)
+
∂ϕ

∂ξn
. (B.1)

Since V (n+1)∗
(
Sn+1
j ,W

n+1
j , A

n+1
)

is calculated by the two-dimensional linear interpolation, the

corresponding partial derivatives with respect to W
n+1
j and A

n+1
are given by

∂V (n+1)∗

∂W
n+1
j

=
y
(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗,h∗+1

)
+ (1− y)

(
V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗

)
Wn+1
j,k∗+1 −W

n+1
j,k∗

=
K − 1

W 0Sn+1
j e−(n+1)α∆t

[
y
(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗,h∗+1

)
+ (1− y)

(
V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗

)]
and

∂V (n+1)∗

∂A
n+1 =

x
(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗+1,h∗

)
+ (1− x)

(
V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗,h∗

)
An+1
h∗+1 −A

n+1
h∗

=
H − 1

A0

[
x
(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗+1,h∗

)
+ (1− x)

(
V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗,h∗

)]
,
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respectively. Putting the results together,
∂V n

∂ξn
in eq. (B.1) on the withdrawal date tn and at the

level of the account value Wn
i,k and guaranteed withdrawal account Anh, becomes

∂V n

∂ξn
= − e−r∆t

m∑
j=1

pnij

{
a(K − 1)

W 0Sni e
−nα∆t

[(
V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗

)

+

(
(H − 1)A

n+1

A0
− h∗ + 1

)(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ + V

(n+1)∗
j,k∗,h∗

)]
+

b(H − 1)

A0

[(
V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗,h∗

)
+

(
(K − 1)W

n+1
j

W 0Sn+1
j e−(n+1)α∆t

− k∗ + 1

)(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗+1 + V

(n+1)∗
j,k∗,h∗

)]}
+ c, (B.2)

where

a =

 1 ξn < Wn
i,k

0 ξn > Wn
i,k

, b =


Anh
Wn
i,k

G < ξn < Wn
i,k < Anh

0 ξn > Anh

1 otherwise

, and c =

 1 ξn ≤ Enh
1− η ξn > Enh

.

It is seen that
∂V n

∂ξn
in eq. (B.2) is a piecewise linear function of ξn. We consider the set of

admissible withdrawals ξn, which reduce the wealth account value Wn
i,k to Wn+1

j,k′ , and the guaranteed

withdrawal account Anh to An+1
h′ , k′ = 1, 2, ...,K and h′ = 1, 2, ...,H. By observing

ξn = Wn
i,k −

Wn+1
j,k′ S

n
i

Sn+1
j e−α∆t

= Wn
i,k −

(k′ − 1)Wn+1
j,maxS

n
i

(K − 1)Sn+1
j e−α∆t

= Wn
i,k −

(k′ − 1)Wn
i,max

(K − 1)
= Wn

i,k −Wn
i,k′

and Anh′ is same as An+1
h′ , these two sets of ξn are defined by

Σ1 =
{
ξn|ξn = Wn

i,k −Wn
i,k′ , k

′ = 1, 2, ...,K
}
,

and

Σ2 =
{
ξn|ξn = Anh −Anh′ , h′ = 1, 2, ...,H

}
.

Thus,
∂V n

∂ξn
is a linear function with respect to ξn in each interval [ξln, ξ

l+1
n ], where ξln ∈ Φ, Φ ≡

Σ1 ∪ Σ2 and ξ1
n < ξ2

n < · · · < ξdn (d ≤ K +H).

Given the triplet (G,Wn
i,k, A

n
h) and the admissible withdrawal range for ξn, we can find the local

maximal withdrawal ξl∗n in each interval [ξln, ξ
l+1
n ] as

ξl∗n =


|yl| ξl+1

n + |yl+1| ξln
|yl|+ |yl+1|

yl > 0 and yl+1 < 0

ξln or ξl+1
n otherwise

, (B.3)
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where

yl =
∂V n

∂ξn

∣∣∣
ξn=ξln

and yl+1 =
∂V n

∂ξn

∣∣∣
ξn=ξl+1

n

.

Among these local maxima, we can find the global maximal withdrawal ξ∗n for V n(Sni ,W
n
i,k, A

n
h, ξn).

Since the GMWB value V n(Sni ,W
n
i,k, A

n
h, ξn) can be evaluated by (3.20), the whole searching pro-

cedure is very efficient. In fact, given the value of Wn
i,k and Anh, only a small number of intervals in

Φ are required to search for the local minima. In other words, we just need to set up a subset of Φ,

denoted by Φ̃, to determine the searching intervals, given Anh, W
n
i,k and the admissible withdrawal

range of ξn. Based on our numerical experiments, we normally use about 8 intervals to determine

the optimal withdrawal ξ∗n.

Next, we show how to set up the subset Φ̃ for Wn
i,k ≤ Anh and otherwise. Given Wn

i,k ≤ Anh, the

admissible withdrawal range of ξn is [0, Lni,k,h], where

Lni,k,h = max
{
Wn
i,k, min{Anh, G}

}
.

There are three cases to be considered in constructing the subset Φ̃. First, for ξn ∈ [0,min{G,Wn
i,k}],

we have

∂V n

∂ξn
= −e−r∆t

∑m
j=1 p

n
ij

{
(K − 1)

W 0Sni e
−nα∆t

[ (
V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗

)
+
(

(H−1)(An
h∗−ξn)

A0
− h∗ + 1

)(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ + V

(n+1)∗
j,k∗,h∗

)]
+

(H − 1)

A0

[(
V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗,h∗

)
+
(

(K−1)(Wn
i,k∗−ξn)

W 0Sni e
−nα∆t − k∗ + 1

)(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗+1 + V

(n+1)∗
j,k∗,h∗

) ]}
+ 1.

The subset of Φ can be determined as Φ̃ = Φ ∪ {min{G,Wn
i,k}} ∩ [0,min{G,Wn

i,k}].

Second, if ξn ∈ (Wn
i,k, E

n
h ] and G ≥Wn

i,k, we have

∂V n

∂ξn
= −e−r∆t

m∑
j=1

pnij

(
∂V (n+1)∗

∂A
n+1

)
+ 1.

It is easy to show that ∂V (n+1)∗

∂A
n+1 ≤ 1. Thus, we have

∂V n

∂ξn

∣∣∣
ξn∈(Wn

i,k,E
n
h ]
≥ 0 since

m∑
j=1

pnij = 1. In

other words, V n is a monotonic increasing function with respect to ξn in (Wn
i,k, E

n
h ]. The optimal

withdrawal strategy in (Wn
i,k, E

n
h ] can be determined directly as ξ∗n = Enh . As a result, no searching

is required.
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Finally, if ξn ∈ (G,Wn
i,k], we have

∂V n

∂ξn
= −e−r∆t

∑m
j=1 p

n
ij

{
(K − 1)

W 0Sni e
−nα∆t

[ (
V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗

)
+
(

(H−1)(Wn
i,k−ξn)Anh

A0Wn
i,k

− h∗ + 1
)(

V
(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ + V

(n+1)∗
j,k∗,h∗

)]
+
Anh(H − 1)

Wn
i,kA0

[(
V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗,h∗

)
+
(

(K−1)(Wn
i,k−ξn)

W 0Sni e
−nα∆t − k∗ + 1

)(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗+1 + V

(n+1)∗
j,k∗,h∗

) ]}
+ 1− η.

In this case, since the reset provision is triggered on updating the guaranteed withdrawal amount

A
n+1

, the set Σ2 should be replaced by Σ3 as follows:

Σ3 =

{
ξn|ξn = Wn

i,k −
Wn
i,kA

n
h′

Anh
, h′ = 1, 2, ...,H

}
.

Thus, the subset Φ̃ can be defined as

Φ̃ = Σ1 ∪ Σ3 ∪ {Wn
i,k} ∩ (G,Wn

i,k].

Given Wn
i,k > Anh, the admissible withdrawal range is [0,Wn

i,k]. There are two cases to be considered

for setting up the subset Φ̃, namely, ξn ∈ [0, Anh] and ξn ∈ (Anh,W
n
i,k]. When ξn ∈ [0, Anh], we have

∂V n

∂ξn
= −e−r∆t

∑m
j=1 p

n
ij

{
(K − 1)

W 0Sni e
−nα∆t

[ (
V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗

)
+
(

(H−1)(An
h∗−ξn)

A0
− h∗ + 1

)(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ + V

(n+1)∗
j,k∗,h∗

)]
+

(H − 1)

A0

[(
V

(n+1)∗
j,k∗,h∗+1 − V

(n+1)∗
j,k∗,h∗

)
+
(

(K−1)(Wn
i,k∗−ξn)

W 0Sni e
−nα∆t − k∗ + 1

)(
V

(n+1)∗
j,k∗+1,h∗+1 − V

(n+1)∗
j,k∗+1,h∗ − V

(n+1)∗
j,k∗,h∗+1 + V

(n+1)∗
j,k∗,h∗

) ]}
+ c,

where

c =

 1, G ≥ Anh,

1 · 1{ξn≤G} + (1− η) · 1{ξn>G}, G < Anh.

The subset Φ̃ can be determined as

Φ̃ =

 Φ ∪ {Anh} ∩ [0, Anh] G ≥ Anh
Φ ∪ {G,Anh} ∩ [0, Anh], otherwise.

When ξn ∈ (Anh,W
n
i,k], we have

∂V n

∂ξn
= −e−r∆t

∑m
j=1 p

n
ij

(
e−α∆t

Sn+1
j

Sni

∂V (n+1)∗

∂W
n+1
j

)
+ 1− η,
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where

∂V (n+1)∗

∂W
n+1
j

=
V

(n+1)∗
j,k∗+1,1 − V

(n+1)∗
j,k∗,1

Wn+1
j,k∗+1 −W

n+1
j,k∗

=
(K − 1)

(
V

(n+1)∗
j,k∗+1,1 − V

(n+1)∗
j,k∗,1

)
W 0Sn+1

j e−(n+1)α∆t
.

The subset of Φ is

Φ̃ = Σ1 ∪ {Wn
i,k} ∩ (Anh,W

n
i,k].

In summary, the subset Φ̃ can be constructed as the subset of Φ on the admissible withdrawal

range of ξn, including the two end points of the admissible range. Once the subset Φ̃ is determined,

the local minima on [ξln, ξ
l+1
n ] can be estimated by eq. (B.3). The global optimal withdrawal ξ∗n is

then selected among these local minima.
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Figure 1: Graphical depiction of the willow tree lattice with 5 space nodes and 4 withdrawal dates.
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(a) Plot of V 0 against 1/m with K = 20 and varying

levels of volatility σ.
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(b) Plot of V 0 against 1/K with m = 100 and varying
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Figure 2: Convergence of numerical values of the GMWB price under the geometric Brownian

motion with respect to the number of nodes m in the willow tree and the number of discrete values

of the wealth account value K.
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Figure 3: Plot of the GMWB value against varying levels of the participating fee under the geometric

Brownian motion and static withdrawal. Good agreement of numerical results is revealed among

the four pricing algorithms, WTM, YDT, BMM and MC methods.
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(a) Fair fees with respect to penalty η with T = 20.
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(b) Fair fees with respect to maturity T with η = 5%.

Figure 4: Plots of the fair fees of GMWB (in bp) with respect to penalty η and maturity T under

the geometric Brownian motion at high volatility level σ = 0.4 and r = 3%.
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Figure 5: Sensitivity of GMWB value with respect to the participating fee (in bp) under static, mix

and dynamic withdrawals. The underlying fund dynamics follows Merton’s jump-diffusion models,

with T = 20, r = 5%, σs = 0.1114, αJ = −0.1825, σJ = 0.1094, λ = 0.5282, η = 2%.
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(a) λ = 0.5282.
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(b) λ = 1.
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(c) λ = 2.
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Figure 6: Histogram plots of the profit and loss with and without delta hedging under Merton’s

jump-diffusion model with varying values of the jump intensity λ. Delta hedging is executed on

the withdrawal dates. Parameter values used in the calculations are T = 20, r = 3%, α = 68bp,

σ = 0.1114, αJ = −0.1825, σJ = 0.1094.
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(a) σJ = 0.1094.
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(b) σJ = 0.2.
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(c) σJ = 0.3.
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(d) σJ = 0.4.

Figure 7: Histogram plots of the profit and loss with and without delta hedging under Merton’s

jump-diffusion model using varying values of σJ . Delta hedging is executed on the withdrawal

dates. Parameter values used in the calculations are T = 20, r = 3%, α = 68bp, σ = 0.1114,

αJ = −0.1825, λ = 0.5282.
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T = 10 G = 10

σ = 0.2 σ = 0.3

V 0 Time(s) V 0 Time(s)

WTM m=50 105.174 0.09 111.273 0.09

WTM m=100 105.269 0.44 111.461 0.42

WTM m=150 105.264 0.94 111.476 0.91

YDT N=50T 105.009 0.11 111.183 0.08

YDT N=100T 105.007 1.02 111.182 0.84

BMM K=200 105.032 0.70 111.215 0.77

BMM K=300 105.014 1.25 111.191 1.14

MC 105 paths 105.066 6.70 111.142 6.64

CI (99%) (104.743, 105.389) (110.554, 111.730)

RE 0.19% 0.29%

T = 20 G = 5

σ = 0.2 σ = 0.3

V 0 Time(s) V 0 Time(s)

WTM m=50 101.730 0.23 108.190 0.23

WTM m=100 101.818 1.16 108.471 0.92

WTM m=150 101.748 2.06 108.411 1.95

YDT N=50T 101.536 0.98 108.276 0.72

YDT N=100T 101.535 7.53 108.275 7.28

BMM K=200 101.600 3.58 108.593 3.39

BMM K=300 101.556 4.31 108.437 4.95

MC 105 paths 101.616 11.97 108.420 11.92

CI (99%) (101.314, 101.918) (107.978, 108.863)

RE 0.20% 0.05%

T = 25 G = 4

σ = 0.2 σ = 0.3

V 0 Time(s) V 0 Time(s)

WTM m=50 99.758 0.42 105.937 0.31

WTM m=100 99.857 1.36 106.340 1.39

WTM m=150 99.782 2.88 106.298 3.39

YDT N=50T 99.524 1.91 106.229 1.58

YDT N=100T 99.524 14.83 106.226 13.30

BMM K=200 99.649 4.95 106.801 4.625

BMM K=300 99.569 7.14 106.591 6.578

MC 105 paths 99.606 16.17 106.474 14.77

CI (99%) (98.754, 100.459) (105.725, 107.223)

RE 0.25% 0.13%

Table 1: Comparison of numerical accuracy of computing GMWB values and required CPU times (in

seconds) using four different numerical algorithms under the geometric Brownian motion (without

mortality risk and surrender provision). The parameter values used in the calculations are α = 50bp

and r = 3.25%. Here, m is the number of nodes in the willow tree, N is the total number of time

steps in YDT and K is the number of nodes in the wealth account.
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T = 20 G = 5 σ = 0.2 σ = 0.3

No Surrender

Provision

No Mortality Risk

WTM m=50 69 141

WTM m=100 69 144

WTM m=150 69 144

YDT N=50T 66 142

YDT N=100T 66 142

With Mortality

Risk

WTM m=50 67 139

WTM m=100 68 142

WTM m=150 67 141

YDT N=50T 65 140

YDT N=100T 65 140

With Surrender

Provision

No Mortality Risk

WTM m=50 69 230

WTM m=100 69 232

WTM m=150 69 228

YDT N=50T 66 224

YDT N=100T 66 224

With Mortality

Risk

WTM m=50 67 220

WTM m=100 68 222

WTM m=150 67 218

YDT N=50T 65 215

YDT N=100T 65 215

T = 25 G = 4 σ = 0.2 σ = 0.3

No Surrender

Provision

No Mortality Risk

WTM m=50 48 100

WTM m=100 49 103

WTM m=150 48 103

YDT N=50T 46 102

YDT N=100T 46 102

With Mortality

Risk

WTM m=50 47 97

WTM m=100 47 101

WTM m=150 47 100

YDT N=50T 45 100

YDT N=100T 45 100

With Surrender

Provision

No Mortality Risk

WTM m=50 48 164

WTM m=100 49 166

WTM m=150 48 162

YDT N=50T 46 158

YDT N=100T 46 158

With Mortality

Risk

WTM m=50 47 152

WTM m=100 47 154

WTM m=150 47 151

YDT N=50T 45 150

YDT N=100T 45 150

T = 30 G = 10/3 σ = 0.2 σ = 0.3

No Surrender

Provision

No Mortality Risk

WTM m=50 35 73

WTM m=100 36 77

WTM m=150 36 77

YDT N=50T 34 77

YDT N=100T 34 77

With Mortality

Risk

WTM m=50 34 70

WTM m=100 35 74

WTM m=150 34 74

YDT N=50T 33 76

YDT N=100T 33 76

With Surrender

Provision

No Mortality Risk

WTM m=50 35 119

WTM m=100 36 121

WTM m=150 36 118

YDT N=50T 34 114

YDT N=100T 34 114

With Mortality

Risk

WTM m=50 34 106

WTM m=100 35 108

WTM m=150 34 105

YDT N=50T 33 106

YDT N=100T 33 105

Table 2: Computation of the fair participating fees (in bp) of GMWB under the geometric Brownian

motion using the willow tree method (WTM) and lattice tree method (YDT) with/without mortality

risk and with/without surrender provision. The differences between the numerical values of the fair

fees computed by the two methods are typically small under varying values of maturity and volatility.

Parameter values used in the calculations are r = 3.25% and penalty charge η = 10%.
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T = 20 r 0.03 0.04 0.05

Static

WTM Fee (bp) 33 16 8

Time (s) 3.0 2.7 2.8

BMM Fee (bp) 31 15 7

Time (s) 30.0 32.0 30.1

Mix

WTM Fee (bp) 33 16 8

Time (s) 3.5 2.7 2.9

BMM Fee (bp) 31 15 8

Time (s) 33.3 34.3 34.2

Dynamic WTM Fee (bp) 81 38 22

BMM Fee (bp) 78 27 12

r = 5% T 10 15 20

Static

WTM Fee (bp) 35 16 8

Time (s) 1.5 1.6 2.6

BMM Fee (bp) 32 14 7

Time (s) 9.2 17.5 30.5

Mix

WTM Fee (bp) 35 16 8

Time (s) 1.3 1.7 2.8

BMM Fee (bp) 33 15 8

Time (s) 8.8 18.9 32.2

Dynamic WTM Fee (bp) 49 35 22

BMM Fee (bp) 50 24 12

Table 3: Comparison of the fair fees of GMWBs (in bp) and computational times computed by

the WTM and BMM method under the geometric Brownian motion with volatility σ = 0.1361 and

penalty charge η = 5%. The fair fees decrease with increasing interest rate r and maturity T .

41



Reset provision of An Payoff at maturity Admissible withdrawal at tn

WTM reset as in (2.5b) max{WN , AN} ξn ∈ [0,max{Wn,min{G,An}}]

BMM reset as in (2.5b) max{WN , AN} ξn ∈ [0,max{Wn,min{G,An}}]

GHQC no reset max{WN , ϕ(AN )} ξn ∈ [0, An]

COS no reset/reset as in (2.5c) max{WN , ϕ(AN )} ξn ∈ [0, An]

Table 4: Differences of the GMWB contractual terms between the willow tree method (WTM),

BMM (Bacinello et al., 2016), GHQC (Luo and Shevchenko, 2015) and COS (Alonso-Garćıa et al.,

2018) under dynamic withdrawals.

T = 10 σ = 0.2 σ = 0.3

yearly withdrawals
WTM 130 293

GHQC 129 293

half-yearly withdrawals
WTM 137 303

GHQC 134 303

Table 5: Comparison of the fair participating fee (bp) computed using the WTM and GHQC with

dynamic withdrawals under the geometric Brownian motion. Parameter values are T = 10, r = 5%,

η = 10%. The fair fees increase with higher frequency of withdrawals per year.

η = 5% η = 10%

T WTM COS GHQC WTM COS GHQC

10 219 217 217 138 136 136

20 124 123 124 72 70 70

25 102 102 102 56 55 56

Table 6: Comparison of the fair participating fee (bp) computed using the WTM, GHQC and COS

methods with quarterly dynamic withdrawals under the geometric Brownian motion. Parameter

values are σ = 0.2, r = 5%. The fair fees decrease with increasing penalty charge η.
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(a) Geometric Brownian motion (b) Jump-diffusion model

m

K
10 20 40 80

m

K
10 20 40 80

10 100.71 99.64 99.52 99.49 10 101.06 100.10 100.00 99.98

(0.012) (0.018) (0.025) (0.065) (0.019) (0.027) (0.030) (0.084)

20 100.98 99.91 99.80 99.77 20 100.97 99.99 99.90 99.87

(0.028) (0.040) (0.100) (0.256) (0.063) (0.072) (0.130) (0.327)

40 101.10 100.03 99.92 99.89 40 100.95 99.98 99.88 99.86

(0.090) (0.143) (0.341) (1.010) (0.141) (0.219) (0.425) (1.133)

80 101.18 100.11 100.00 99.97 80 100.95 99.98 99.89 99.86

(0.253) (0.485) (1.295) (3.933) (0.386) (0.670) (1.511) (4.342)

160 101.12 100.06 99.94 99.91 160 100.97 100.00 99.90 99.88

(0.893) (2.208) (5.332) (16.156) (1.270) (2.417) (6.052) (18.043)

320 101.06 100.00 99.88 99.86 320 100.98 100.01 99.91 99.89

(3.912) (8.618) (23.936) (71.096) (5.238) (10.167) (25.410) (78.340)

Table 7: Computational times (in seconds) and computed GMWB values under the static with-

drawal with varying values of the number of nodes m and discretisation of the investment account

K. The computational times are shown in brackets. The GMWB contract matures in 20 years

with annual withdrawal. The risk free interest rate r is 5% while the volatility σ = 0.2 for the

geometric Brownian motion. The parameter values for Merton’s jump-diffusion model are set to be

σ = 0.1114, αJ = −0.1825, σJ = 0.1094 and λ = 0.5282.
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T = 10 G = 10 σ = 0.2 σ = 0.3 σ = 0.4

β = 0.3
WTM m=100 104.761 110.940 117.208

MC n=50000 (104.542, 105.202) (110.778, 111.770) (116.596, 117.952)

β = 0.5
WTM m=100 104.779 111.026 117.442

MC n=50000 (104.643, 105.352) (110.513, 111.621) (116.257, 117.772)

β = 0.7
WTM m=100 104.809 111.154 117.785

MC n=50000 (104.492, 105.257) (110.425, 111.662) (116.357, 118.173)

T = 20 G = 5 σ = 0.2 σ = 0.3 σ = 0.4

β = 0.3
WTM m=100 101.066 107.831 114.638

MC n=50000 (100.727, 101.615) (107.602, 108.919) (114.500, 116.290)

β = 0.5
WTM m=100 101.031 107.813 114.712

MC n=50000 (101.129, 102.117) (107.136, 108.656) (113.625, 115.732)

β = 0.7
WTM m=100 100.990 107.765 114.736

MC n=50000 (100.697, 101.803) (106.781, 108.587) (113.374, 116.151)

T = 25 G = 4 σ = 0.2 σ = 0.3 σ = 0.4

β = 0.3
WTM m=100 98.986 105.691 112.437

MC n=50000 (98.933, 99.893) (105.667, 107.105) (112.214, 114.147)

β = 0.5
WTM m=100 98.914 105.594 112.380

MC n=50000 (98.840, 99.917) (105.403, 107.075) (110.412, 112.700)

β = 0.7
WTM m=100 98.814 105.398 112.124

MC n=50000 (98.582, 99.815) (104.381, 106.413) (111.421, 114.506)

Table 8: Computed values of GMWB under the CEV model without mortality risk and surrender

provision computed using the willow tree method (WTM). Here, m is the number of nodes in the

willow tree and n is the number of Monte Carlo simulation paths. The corresponding 99% confidence

level is obtained from the Monte Carlo calculations.
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T = 10 G = 10 σ = 0.2 σ = 0.3 σ = 0.4

β = 0.3

No Surrender Provision No Mortality Risk 161 310 456

With Mortality Risk 159 308 453

With Surrender Provision No Mortality Risk 161 430 853

With Mortality Risk 159 422 838

β = 0.5

No Surrender Provision No Mortality Risk 163 318 472

With Mortality Risk 161 315 468

With Surrender Provision No Mortality Risk 163 439 866

With Mortality Risk 162 431 851

β = 0.7

No Surrender Provision No Mortality Risk 167 333 504

With Mortality Risk 164 325 488

With Surrender Provision No Mortality Risk 165 450 886

With Mortality Risk 164 443 871

T = 20 G = 5 σ = 0.2 σ = 0.3 σ = 0.4

β = 0.3

No Surrender Provision No Mortality Risk 61 130 198

With Mortality Risk 60 129 196

With Surrender Provision No Mortality Risk 61 205 476

With Mortality Risk 60 196 460

β = 0.5

No Surrender Provision No Mortality Risk 61 132 202

With Mortality Risk 60 130 200

With Surrender Provision No Mortality Risk 61 206 478

With Mortality Risk 60 198 461

β = 0.7

No Surrender Provision No Mortality Risk 60 133 207

With Mortality Risk 59 131 204

With Surrender Provision No Mortality Risk 61 211 487

With Mortality Risk 60 202 469

T = 25 G = 4 σ = 0.2 σ = 0.3 σ = 0.4

β = 0.3

No Surrender Provision No Mortality Risk 42 94 146

With Mortality Risk 41 93 144

With Surrender Provision No Mortality Risk 42 151 380

With Mortality Risk 41 142 362

β = 0.5

No Surrender Provision No Mortality Risk 41 95 147

With Mortality Risk 40 93 145

With Surrender Provision No Mortality Risk 42 151 378

With Mortality Risk 40 142 359

β = 0.7

No Surrender Provision No Mortality Risk 40 92 145

With Mortality Risk 39 92 146

With Surrender Provision No Mortality Risk 41 154 382

With Mortality Risk 40 144 362

Table 9: Fair fees (in bp) of GMWBs under the CEV model computed using the willow tree method.

Parameter values are m = 100, r = 3.25% and η = 10%.
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T = 20 r 0.03 0.04 0.05

β = 0.3

Static 69 37 16

Mix 113 43 18

Dynamic 165 77 26

β = 0.5

Static 69 37 16

Mix 112 42 16

Dynamic 162 74 25

β = 0.7

Static 69 37 15

Mix 110 42 15

Dynamic 159 73 23

r = 5% T 20 25 30

β = 0.3

Static 69 49 36

Mix 113 81 60

Dynamic 165 123 92

β = 0.5

Static 69 48 35

Mix 112 80 58

Dynamic 162 119 88

β = 0.7

Static 69 48 34

Mix 110 79 56

Dynamic 159 117 86

Table 10: Fair fees (in bp) of GMWBs under the CEV model computed using the willow tree method

under static, mix and dynamic withdrawals. The underlying fund volatility is σ = 0.2 and penalty

is η = 5%.

Fee (bp)

Huang et al. (2012) 454.52

WTM 453.44

Table 11: Fair fees (in bp) of GMWB under Merton’s jump-diffusion model computed using the

WTM and the method in Huang et al. (2012) with dynamic withdrawals. The parameter values

are T = 10, r = 5%, σ = 0.3, αJ = −0.9 , σJ = 0.45, λ = 0.1 and penalty η = 10%.
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T = 20 r (%) 3 4 5 6 7

Static
WTM Fee (bp) 68 41 25 16 10

BMM Fee (bp) 66 41 25 16 10

Mix
WTM Fee (bp) 87 42 25 16 10

BMM Fee (bp) 83 40 25 16 10

Dynamic WTM Fee (bp) 138 69 37 23 15

BMM(bang-bang) Fee (bp) 88 44 29 19 15

BMM(brute search) Fee (bp) 469 129 46 27 16

r = 5% T 10 15 20 25 30

Static
WTM Fee (bp) 84 44 25 16 11

BMM Fee (bp) 82 43 25 16 12

Mix
WTM Fee (bp) 84 44 25 16 11

BMM Fee (bp) 82 43 25 16 12

Dynamic WTM Fee (bp) 99 61 37 23 15

BMM(bang-bang) Fee (bp) 88 46 29 22 18

BMM(brute search) Fee (bp) 201 95 46 28 18

Table 12: Fair fees (in bp) of GMWB under Merton’s jump-diffusion model computed using the

WTM and BMM method with static, mix and dynamic approaches where the parameters for the

jump-diffusion model are σ = 0.1114, αJ = −0.1825, σJ = 0.1094, λ = 0.5282 and penalty η = 5%.

T = 20 r = 5% η (%) 0 1 2 3 4 5

Static
WTM Fee (bp) 25 25 25 25 25 25

BMM Fee (bp) 25 25 25 25 25 25

Mix
WTM Fee (bp) 97 58 36 26 25 25

BMM Fee (bp) 94 55 34 25 25 25

Dynamic WTM Fee (bp) 234 167 111 71 45 37

BMM(bang-bang) Fee (bp) 96 58 37 29 29 29

BMM(brute search) Fee (bp) 195 142 103 75 57 46

Table 13: Sensitivity of fair fees (in bp) with respect to the penalty charge η computed using the

willow tree method (WTM) and BMM method under Merton’s jump-diffusion model. Parameter

values are σ = 0.1114, αJ = −0.1825, σJ = 0.1094, and λ = 0.5282.
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Panel A: Typical specification of the time-dependent penalty charge η,

which decreases as the calendar time progresses.

Year 0 ≤ t ≤ 5 5 < t ≤ 10 10 < t ≤ 15 15 < t ≤ 20

η (%) 3.0 2.5 2.0 1.5

Panel B: Computed fair fees for GMWB.

Static Mix Dynamic

Fee (bp) 25 28 73

Table 14: The fair fees (in bp) for a 20-year GMWB are computed based on the given decreasing

time-dependent penalty charge (see Panel A) under the static, mix and dynamic withdrawals.

The underlying fund dynamics follows Merton’s jump-diffusion process with r = 5%, σ = 0.1114,

αJ = −0.1825, σJ = 0.1094 and λ = 0.5282.
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