
Lattice Tree Methods for Strongly Path De-

pendent Options

Path dependent options are options whose payoffs depend on the path de-

pendent function Ft = F (St, t) defined specifically for the given nature of

path dependence of the asset price process St. The most well known exam-

ples are the lookback options and Asian options. In a lookback option, the

payoff function is dependent on the realized maximum or minimum price of

the asset over certain period within the life of the option. The Asian options

are also called average options since the payoff depends on a preset form of

averaging of the asset price over certain period. Consider an arithmetic aver-

age Asian option that is issued at time 0 and expiring at T > 0, its terminal

payoff is dependent on the arithmetic average AT of the asset price process

St over period [0, T ]. The running average value At is defined by

At =
1

t

∫ t

0

Su du, (1)

with A0 = S0. We are interested in the correlated evolution of the path

function with the asset price process. In the above example of arithmetic

averaging, the law of evolution of At is given by

dAt =
1

t
(St − At) dt. (2)

A variant of the lattice tree methods (binomial/trinomial methods), called

the forward shooting grid (FSG) approach, has been successfully applied

to price a wide range of strong path dependent options, like the lookback
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options, Asian options, convertible bonds with reset feature and Parisian

feature, reset strike feature in shout options, etc. The FSG approach is

characterized by augmenting an auxiliary state vector at each node in the

usual lattice tree, which serves to capture the path dependent feature of the

option. Under the discrete setting of lattice tree calculations, let G denote

the function that describes the correlated evolution of F with S over the time

step ∆t, the relation of which can be expressed as

Ft+∆t = G(t, Ft, St+∆t). (3)

For example, let An denote the discretely observed arithmetic average defined

by

An =

∑n
i=0 Si

n + 1
, (4)

where Si is the observed asset price at time ti, i = 0, 1, · · · , n. The correlated

evolution of An+1 with Sn+1 is seen to be

An+1 = An +
Sn+1 − An

n + 2
. (5)

Another example is provided by the correlated evolution of the realized maxi-

mum price Mt and its underlying asset price process St. Recall Mt = max
0≤u≤t

Su

so that

Mt+∆t = max(Mt, St+∆t). (6)

In the construction of the auxiliary state vector, it is necessary to know how

many possible values that can be taken by the path dependent state variable.
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For the lookback feature, the realized maximum asset price is necessarily

one of the values taken by the asset price in the lattice tree. However, the

number of possible values for the arithmetic average grows exponentially

with the number of time steps. To circumvent the problem of dealing with

exceedingly large number of nodal values, the state vector is constructed such

that it contains a set of pre-determined nodal values which cover the range of

possible values of arithmetic averaging. Since the realized arithmetic average

does not fall on these nodal values in general, we apply interpolation between

the nodal values as an approximation.

The FSG approach is pioneered by Hull and White [4] and Ritchken et al .

[9] for pricing American and European Asian and lookback options. Theoret-

ical studies on the construction and convergence analysis of the FSG schemes

are presented by Barraquand and Pudet [2], Forsyth et al . [3] and Jiang and

Dai [5]. Below is a list of various applications of the FSG approach in lat-

tice tree algorithms for pricing strongly path dependent options / derivative

products:

• Options whose underlying asset price follows various kinds of GARCH

processes [10]

• Path dependent interest rate claims [11]

• Parisian options, alpha-quantile options and strike reset options [6]

• Soft call requirement in convertible bonds [7]

• Target redemption notes [1]

• Employee stock options with repricing features [8]
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In this article, we illustrate the application of the FSG lattice tree algo-

rithms for pricing options with path dependent lookback and Asian features,

convertible bonds with the soft call requirement (Parisian feature) and call

options with the strike reset feature.

Lookback options

Let the risk neutral probabilities of upward, zero and downward jump in a

trinomial tree be represented by pu, p0 and pd, respectively. In the FSG ap-

proach for capturing the path dependence of the discrete asset price process,

we append an augmented state vector at each node in the trinomial tree and

determine the appropriate grid function that models the discrete correlated

evolution of the path dependence. Let V n
j,k denote the numerical option value

of the path dependent option at the nth-time level and j upward jumps from

the initial asset value S0. Here, k denotes the numbering index for the values

assumed by the augmented state vector at the (n, j)th node in the trinomial

tree. Let u and d denote the proportional upward and downward jump of

the asset price over one time step ∆t, with ud = 1. Let g(k, j) denote the

grid function that characterizes the discrete correlated evolution of the path

dependent state variable Ft and asset price process St. When applied to the

trinomial tree calculations, the FSG scheme takes the form:

V n
j,k = e−r∆t

[

puV
n+1
j+1,g(k,j+1) + p0V

n+1
j,g(k,j) + pdV

n+1
j−1,g(k,j−1)

]

, (7)

where e−r∆t denote the discount factor over one time step.
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Figure 1. The discrete correlated evolution of the path dependent state

variable Ft and asset price process St is characterized by the grid function

g(k, j).

We consider the floating strike lookback option whose terminal payoff

depends on the realized maximum of the asset price, namely, V (ST , MT , T ) =

MT − ST . The corresponding discrete analogy of the correlated evolution of

Mt and St is given by the following grid function [see equation (6)]:

g(k, j) = max(k, j). (8)

As in usual trinomial calculations, we apply the backward induction proce-

dure, starting with the lattice nodes at maturity. Suppose there are a total

N time steps in the trinomial tree so that the maximum value of the discrete

asset price process is S0u
N , corresponding to N successive jumps from the

initial value S0. The possible range for realized maximum asset price would
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be {S0, S0u, · · · , S0u
N}. When these possible values of the path dependent

state variable are indexed by k, then k assumes values from 0, 1, · · · , to N .

The terminal option value at the (N, j)th node and kth value in the state

vector is given by

V N
j,k = S0u

k − S0u
j, (9)

j = −N,−N + 1, · · · , N and k = max(j, 0), max(j, 0) + 1, · · · , N.

Applying backward induction over one time step from expiry, the option

values at the (N − 1)th time level are given by

V N−1
j,k = e−r∆t

[

puV
N
j+1,max(k,j+1) + p0V

N
j,max(k,j) + pdV

N
j−1,max(k,j−1)

]

, (10)

j = −N + 1,−N + 2, · · · , N − 1, k = max(j, 0) + 1, · · · , N − 1,

where the terminal option values are defined in equation (9). The backward

induction procedure is then repeated to obtain numerical option values at

the lattice nodes at earlier time levels. Note that the range of the possible

values assumed by the path dependent state variable narrows as we proceed

backward in a stepwise manner until we reach the tip of the trinomial tree.

Asian options

Recall that the asset price Sn
j at the (n, j)th node in the trinomial tree is

given by

Sn
j = S0u

j = S0e
j∆W , j = −n,−n + 1, · · · , n,

where u = e∆W with ∆W = σ
√

∆t. Here, σ is the volatility of the asset price.
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The average asset price at the nth time level must lie between {S0u
−n, S0u

n}.

We take ρ < 1 and let ∆Y = ρ∆W . Let floor(x) denote the largest integer

less than or equal to x and ceil(x) = floor(x) + 1. We set the possible values

to be taken by the average asset price to be

An
k = S0e

k∆Y , k = floor

(

−n

ρ

)

, · · · , ceil

(

n

p

)

.

The earlier FSG schemes choose ρ to be a sufficiently small number that is

independent of ∆t. The larger value chosen for 1/ρ, the finer the quantifi-

cation of the average asset price. In view of numerical convergence of the

FSG schemes, Forsyth et al . [3] propose to choose ρ to depend on
√

∆t (say,

ρ = λ
√

∆t where λ is independent of ∆t) though this would result in an

excessive amount of computation in actual implementation. Further details

on numerical convergence of various versions of the FSG schemes will be

presented below.

Suppose the average is An
k and the asset price moves upwards from Sn

j to

Sn+1
j+1 , then the new average is given by [see equation (5)]

An+1
k+(j) = An

k +
Sn+1

j+1 − An
k

n + 2
. (11)

Next, we set An+1
k+(j) to be S0e

k+(y)∆Y for some value k+(j), that is,

k+(j) =
ln An+1

k+(j)/S0

∆Y
.

Note that k+(j) is not an integer in general, so An+1
k+(j) does not fall onto one

of the pre-set values for the average. Recall that floor(k+(j)) is the largest
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integer less than or equal to k+(j) and ceil(k+(j)) = floor(k+(j))+1. By the

above construction, An+1
floor(k+(j)) and An+1

ceil(k+(j)) now fall onto the set of pre-set

values. Similarly, we define

An+1
k−(j) = An

k +
Sn+1

j−1 − An
k

n + 2

An+1
k0(j) = An

k +
Sn+1

j − An
k

n + 2
,

corresponding to the new average at the (n + 1)th time level when the as-

set price experiences a downward jump and zero jump, respectively. Also,

floor(k−(j)), ceil(k−(j)), floor(k0(j)) and ceil(k0(j)) are obtained in a similar

manner.

Let V n
j,k+(j) denote the Asian option value at node (n, j) with the aver-

aging state variable At assuming the value An
k+(j), and similar notation for

V n
j,floor(k+(j)), etc. In the lattice tree calculations, numerical option values

for V n
j,k are obtained only for k being an integer. Since k+(j) assumes a

non-integer value in general, V n
j,k+(j) is approximated through interpolation

using option values at the neigbouring nodes. Suppose linear interpolation

is adopted, we approximate V n
j,k+(j) by the following interpolation formula:

V n
j,k+(j) = ǫ+

j,kV
n
j,ceil(k+(j)) + (1 − ǫ+

j,k)V
n
j,floor(k+(j)), (12)

where

ǫ+
j,k =

ln An
k+(j) − ln An

floor(k+(j))

∆Y
.

The FSG algorithm with linear interpolation for pricing an Asian option can
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be formulated as follows:

V n
j,k = e−r∆t

(

puV
n+1
j,k+(j) + p0V

n+1
j,k0(j) + pdV

n+1
j,k−(j)

)

(13)

= e−r∆t
{

pu

[

ǫ+
j,kV

n+1
j,ceil(k+(j)) + (1 − ǫ+

j,k)V
n+1
j,floor(k+(j))

]

+ p0

[

ǫ0
j,kV

n+1
j,ceil(k0(j)) + (1 − ǫ0

j,k)V
n+1
j,floor(k0(j))

]

+ pd

[

ǫ−j,kV
n+1
j,ceil(k−(j)) + (1 − ǫ−j,k)V

n+1
j,floor(k−(j))

]}

.
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Figure 2. The average value An
k at the nth time step changes to An+1

k+(j) at

the (n + 1)th time step upon an upward move of the asset price from Sn
j to

Sn+1
j+1 . The option value at node (n + 1, j + 1) with asset price average An

k+(j)

is approximated by linear interpolation between the option values with asset

price average An
floor(k+(j)) and An

ceil(k+(j)).

Numerical convergence of FSG schemes

Besides linear interpolation between two neighboring nodal values, other

forms of interpolation can be adopted (say, quadratic interpolation between
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3 neighboring nodal values or nearest node point interpolation). Forsyth et

al . [3] remark that the FSG algorithm using ρ that is independent of ∆t and

the nearest node point interpolation may exhibit large errors as the number

of time steps increases. They also prove that this choice of ρ in the FSG al-

gorithm together with linear interpolation converges to the correct solution

plus a constant error term. Unfortunately, the error term cannot be reduced

by decreasing the size of the time step. To ensure convergence of the FSG cal-

culations to the true Asian option price, they propose to use ρ that depends

on
√

∆t, though this would lead to a large number of nodes in the averaging

direction. More precisely, if ρ is independent of
√

∆t, then the complexity

of the FSG method is O(n3), but convergence cannot be guaranteed. If we

set ρ = λ
√

∆t, which guarantees convergence, then the complexity becomes

O(n7/2).

Soft call requirement in callable convertible bonds

Most convertible bonds contain the call provision that allows the issuer to

have the flexibility to manage the debt-equity ratio in the company’s capital

structure. To protect the conversion premium paid upfront by the bondhold-

ers to be called away too rapidly, the bond indenture commonly contains

the hard call protection clause that prevents the issuer from initiating a call

during the early life of the convertible bond. In addition, the soft call clause

further requires the stock price to stay above the trigger price (typically

30% higher than the conversion price) for a consecutive or cumulative period

before initiation of issuer’s call. The purpose of the soft call clause is to

minimize the potential of market manipulation by the issuer.
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The path dependent feature that models the phenomenon of the asset

price staying above some threshold level for a certain period of time is com-

monly called the Parisian feature. Let B denote the trigger price and the

“Parisian” clock starts counting (cumulatively or consecutively) when the

asset price stays above B. In the discrete trinomial evolution of the asset

price, we construct the grid function gcum(k, j) that models the correlated

evolution of the discrete asset price process and the cumulative counting of

the number of time steps that Sj ≥ B. Given that k is the cumulative count-

ing of the number of time steps that the asset price has been staying above

B, the index k increases its value by 1 when Sj ≥ B. We then have

gcum(k, j) = k + 1{Sj≥B}, (14)

where 1{Sj≥B} denotes the indicator function associated with the event {Sj ≥

B}. In a similar manner, the grid function gcon(k, j) that models the consec-

utive counting of the number of time steps that Sj ≥ B is defined by

gcon(k, j) = (k + 1)1{Sj≥B}. (15)

Using the FSG approach, the path dependence of the soft call requirement

can be easily incorporated into the pricing algorithm for a convertible bond

with call provision [7]. Suppose the number of cumulative time steps required

for activation of the call provision is K, then the dynamic programming

procedure that enforces the interaction of the game option of holder’s optimal

conversion and issuer’s optimal call is applied at a given lattice grid only when
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the condition: gcum(k, j) ≥ K is satisfied.

Call options with strike reset feature

Consider a call option with strike reset feature where the option’s strike price

is reset to the prevailing asset price on a preset reset date if the option is

out-of-the-money on that date. Let ti, i = 1, 2, · · · , M , denote the reset dates

and Xi denote the strike price specified on ti based on the above reset rule.

Write X0 as the strike price set at initiation, then Xi is given by

Xi = min(X0, Xi−1, Sti), (16)

where Sti is the prevailing asset price at reset date ti. Note that the strike

price at expiry of this call option is not fixed since its value depends on

the realization of the asset price at the reset dates. When we apply the

backward induction procedure in the trinomial calculations, we encounter

the difficulty in defining the terminal payoff since the strike price is not yet

known. These difficulties can be resolved easily using the FSG approach

by tracking the evolution of the asset price and the strike reset through an

appropriate choice of the grid function [6].

Recall that S0 is the asset price at the tip of the trinomial tree and the

asset price after j net upward jumps is S0u
j. In our notation, the index k

is used as the one-to-one correspondence to the asset price level S0u
k. Say,

suppose the original strike price X0 corresponds to the index k0, this would

mean X0 = S0u
k0. For convenience, we may choose the proportional jump

parameter u such that k0 is an integer. In terms of these indexes, the grid

function that models the correlated evolution between the reset strike price
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and asset price is given by [see equation (16)]

greset(k, j) = min(k, j, k0), (17)

where k denotes the index that corresponds to the strike price reset in the

last reset date and j is the index that corresponds to the prevailing asset

price at the reset date.

Since the strike price is reset only on a reset date, we perform the usual

trinomial calculations for those time levels that do not correspond to a reset

date while the augmented state vector of strike prices are adjusted according

to the grid function greset(k, j) for those time levels that correspond to a reset

date. The FGS algorithm for pricing the reset call option is given by

V n
j,k =



































puV
n+1
j+1,k + p0V

n+1
j,k + pdV

n+1
j−1,k

if (n + 1)∆t 6= ti for some i

puV
n+1
j+1,greset(k,j+1) + p0V

n+1
j,greset(k,j) + pdV

n+1
j−1,greset(k,j−1),

if (n + 1)∆t = ti for some i

. (18)

Lastly, the payoff values along the terminal nodes at the N th time level in

the trinomial tree are given by

V N
j,k = max(S0u

j − S0u
k, 0), j = −N,−N + 1, · · · , N, (19)

and k assumes values that are taken by j and k0.
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