
Finite time dividend-ruin models

Kwai Sun Leung, Yue Kuen Kwok∗ and Seng Yuen Leung†

Department of Mathematics, Hong Kong University of Science and Technol-
ogy, Clear Water Bay, Hong Kong, China

Abstract
We consider the finite time horizon dividend-ruin model where the firm pays
out dividends to its shareholders according to a dividend-barrier strategy
and becomes ruined when the firm asset value falls below the default thresh-
old. The asset value process is modeled as a restricted Geometric Brownian
process with an upper reflecting (dividend) barrier and a lower absorbing
(ruin) barrier. Analytic solutions to the value function of the restricted asset
value process are provided. We also solve for the survival probability and the
expected present value of future dividend payouts over a given time horizon.
The sensitivities of the firm asset value and dividend payouts to the divi-
dend barrier, volatility of the firm asset value and firm’s credit quality are
also examined.
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1 Introduction

In this paper, we consider the classical problem of dividend payouts from a
firm according to a dividend-barrier strategy, where the excess of the firm
asset value above a threshold barrier will be automatically paid out to the
shareholders. The underlying stochastic state variable in our dividend-ruin
model is the firm asset value, which is modeled as a restricted Geometric
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Brownian motion with a lower absorbing barrier and an upper reflecting bar-
rier. The absorbing state represents the default of the firm when the asset
value reaches the default threshold. The upper reflecting barrier models the
dividend-barrier policy. We present the partial differential equation formu-
lation of the restricted asset value process, in particular, the prescription
of the auxiliary condition associated with the dividend barrier. Under the
assumption of constant interest rate, we solve for the value function of the
asset value process, survival probability and expected present value of future
dividend payouts from the risky firm over a finite time horizon. We also
examine the sensitivities of the firm asset value and dividend payouts to the
dividend barrier, volatility of the firm asset value and firm’s credit quality.

In the actuarial science literature, the dividend-ruin problem can be con-
sidered as a special case of the general consumption-investment problem.
There have been numerous papers on various forms of the perpetual dividend-
ruin models. A recent survey of the dividend control models is given by
Taksar (2000). In a typical model, the surplus process is modeled by a
compound Poisson process or a Brownian process with drift (Paulsen and
Gjessing, 1997). The dividend policy can be a constant payout at a dynamic
rate that may be dependent on the current surplus (Asmussen and Taksar,
1997). Shreve et al. (1984) show that under some general assumptions the
optimal dividend policy would be the barrier strategy, that is, the firm pays
out the excess surplus when the asset value goes beyond a dividend-barrier
B. In some recent papers on dividend-ruin models, the authors consider the
optimal dividend distribution subject to constraints on risk controls. Paulsen
(2003) includes the solvency requirement on the allowable dividend policy. In
his model, the firm is not allowed to pay dividend when the survival probabil-
ity over a given time period falls below a pre-set non-tolerant level. Choulli
et al . (2003) add a control in their perpetual dividend-ruin model to monitor
the firm’s risk (for example, through reinsurance). The control can decrease
simultaneously the drift and diffusion coefficients in the underlying surplus
process.

Our dividend-ruin model follows quite closely the formulation proposed
by Gerber and Shiu (2003), where the firm asset value is used as the un-
derlying process. The firm asset value approach is a slight departure from
most dividend-ruin models in the literature, where the surplus process has
been commonly used as the underlying process. These surplus process mod-
els assume bankruptcy to occur when the surplus hits the zero value. We
prefer the use of the asset value process in our model since the asset value
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process is more directly related to the capital structure of the firm and the
firm’s stock price dynamics. Our model assumes that there exists an ex-
ogenously imposed default threshold such that the firm defaults (is ruined)
when the asset value falls below this threshold. The default threshold can be
deduced from the liabilities of the firm (obtainable from the balance sheet
information). Our model framework is related to the structural models that
analyze defaultable bonds (Longstaff and Schwartz, 1985). The industrial
KMV software code puts the structural models into practice in analyzing the
creditworthiness of a risky firm (Crosbe and Bohn, 1993).

In our model, we assume a dividend barrier strategy where the firm pays
out the excess of the asset value above the constant dividend barrier as
dividends. The dividend barrier may be determined by the combination of
optimality in dividend distribution and solvency requirement as in Paulsen
(2003). Assuming that the firm follows the dividend barrier policy, the divi-
dend barrier becomes a reflecting barrier for the asset value process. Together
with the absorbing barrier at the default threshold, the asset value process
becomes a restricted process with an upper reflecting (dividend) barrier and
a lower absorbing (ruin) barrier. While all earlier dividend-ruin models com-
pute the expected present value of future dividends over perpetuity, we de-
rive closed form formulas that give the survival probability and the expected
present value of future dividends over a finite time period.

This paper is structured as follows. In the next section, we present the
formulation of our dividend-ruin model with the firm asset value restricted by
a lower ruin barrier and an upper dividend barrier. The restricted asset value
process is seen to include both the lookback and barrier features. In Section
3, we present the partial differential equation formulation for the value func-
tion of the firm value process, and provide the eigenfunction solution of the
governing differential equation. We also show how to obtain a fairly accurate
analytic approximation price formula. In Section 4, we present the solution
of the survival probability and the expected present value of future dividends
over a finite time horizon. We also examine the dependence of the expected
amount of dividend payouts and survival probability on the dividend barrier,
ruin barrier and firm’s creditworthiness. Concluding remarks and summaries
are presented in the last section.
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2 Formulation of the dividend-ruin model

In this paper, we use the firm asset value process rather than the surplus pro-
cess as the underlying process to model the wealth dynamics of the firm. As
usual, we start with a filtered probability space (Ω,F ,Ft,P) and a standard
Brownian motion Zt adapted to the filtration Ft. Here, P is the probability
measure. Let At denote the asset value of a firm which follows the Geometric
Brownian motion, where

dAt

At
= µ dt+ σ dZt. (2.1)

Here, µ is the constant drift rate, σ2 is the variance rate and Zt is the
standard Brownian motion. We write At = A0e

Wt , where A0 is the asset
value at some reference “zeroth” time. Here, Wt is a Brownian motion with

drift rate α = µ− σ2

2
and variance rate σ2 defined by

Wt = αt+ σZt. (2.2)

We use Wt2
t1

and W
t2
t1

to denote the respective minimum value and maximum
value of the Brownian process Wt over the time period [t1, t2]. Suppose we

write AT
0 and A

T

0 to denote the minimum value and maximum value of the
asset value process over the time period [0, T ], and let t denote the current
time where t ∈ [0, T ], we then have

AT
0 = A0e

min0≤s≤T Ws = min(A0e
W t

0 , Ate
W T

t ) (2.3a)

A
T

0 = A0e
max0≤s≤T Ws = max(A0e

W
t
0 , Ate

W
T
t ). (2.3b)

Here, W t
0 andW

t

0 are the realized extremum values over [0, t] that are already

known at the current time t while W T
t and W

T

t are the stochastic lookback
state variables.

The formulation of our proposed dividend-ruin model follows closely to
that of the modified asset value process presented by Gerber and Shiu (2003).
Let L denote the liability or default threshold such that the firm becomes
default when the asset value At falls to L. The liability level L may be
visualized as the lower absorbing barrier or the knock-out barrier of the
asset value process. On the other hand, the firm pays out dividends to
shareholders according to a dividend barrier strategy with an upper barrier
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B. Whenever the asset value rises to B, the excess amount will be paid out
as dividends. Under such dividend strategy, the restricted asset value can
never go above B. Hence, the barrier level B may be considered as an upper
reflecting barrier.

Subject to the possibilities of ruin and dividend payouts, the asset value
process becomes restricted with a lower absorbing barrier and an upper re-
flecting barrier. Let Ãt denote the corresponding modified (or restricted)
asset value process. One may visualize the dividend payouts as withdrawal
of portion of the firm’s asset so that the remaining firm’s asset value always
stays at or below B (Gerber and Shiu, 2003). Over the finite period [0, t], the

fraction of the firm’s asset remaining is given by min

(
1,
B

A
t

0

)
. We define

the non-ruined modified asset value Ât at time t to be

Ât = At min

(
1,
B

A
t

0

)
, (2.4a)

and denote the running minimum value of Ât over the time interval [t1, t2]
by

Â
t2

t1
= min

t1≤t≤t2
Ât. (2.4b)

Hence, the modified (or restricted) asset value at time T is given by

ÃT = ÂT1n
bAT

0 >L
o. (2.5)

The indicator function 1n
bAT

0 >L
o is included in ÃT to reflect the ruin feature

that the asset value becomes zero when the modified asset value Ât at any
intermediate time t falls to L.

3 Value function of firm value process

Our dividend-ruin model is defined over the finite time horizon [0, T ]. Let t
denote the current time, where t ∈ [0, T ]. We are interested to compute the
expected present value of the modified asset value at the future time T . Let

A denote the asset value At at time t and Vin(A, τ ;At
0, A

t

0, L, B) denote the
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corresponding in-progress value function, with dependence on A, τ = T − t

and parameter values At
0, A

t

0, L and B. By definition, Vin is given by

Vin(A, τ ;A
t
0, A

t

0, L, B) = Et

[
e−rτ ÃT

]
, (3.1)

where Et denotes the expectation under the probability measure P conditional
on the filtration Ft. The above expectation representation is complicated
by the presence of the realized minimum and maximum value of the firm

value process over [0, t]. Provided that Â
t

0 > L and A
t

0 ≤ B, Ât is the
same as At. We define V (A, τ ;L,B) as the “initiation-state” value function

with no dependence on At
0 and A

t

0, corresponding to the state where At

has not reached either the lower absorbing barrier or the upper reflecting
barrier within [0, t]. The following relation between Vin and V can be deduced
[similar results can be found in Chu and Kwok (2004)]:

Vin(A, τ ;At
0, A

t

0, L, B) =





V
(

B

A
t
0

A, τ ;L,B
)

if Â
t

0 > L and A
t

0 > B

V (A, τ ;L,B) if Â
t

0 > L and A
t

0 ≤ B

0 if Â
t

0 ≤ L

.

(3.2)
The mathematical proof of the first relation in Eq. (3.2) is presented in
Appendix A, while other relations can be derived in a similar manner.

The above relations agree with the following financial intuition. When

Â
t

0 > L and A
t

0 > B, the firm remains alive and dividends have been paid
out to the shareholders. The fraction of the original asset value remaining

is B/A
t

0 so that the modified firm asset value process becomes (B/A
t

0)At.

Referring to the non-ruined modified asset value Ât, the dividend barrier
remains to be B and ruined barrier remains to be L, thus we establish the

first relation in Eq. (3.2). When Â
t

0 > L and A
t

0 ≤ B, the firm remains alive
and no dividends have been paid out. In this case, there is no modification

to the firm asset value. Lastly, when Â
t

0 ≤ L, the firm has ruined already so
that Vin = 0.

Next, we present the differential equation formulation of the “initiation-
state” value function V (A, τ ;L,B). Shreve et al . (1984) show that the
dividend payout can be considered as a non-decreasing “withdrawal” process.
The firm asset process is controlled by subtracting off the dividend payoff and
the controlled process is absorbed when it reaches the default barrier. Shreve
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et al . (1984) prove that under the perpetuality assumption the controlled
process is reflected at the dividend barrier and absorbed at the default barrier.
In their differential equation formulation, the absorbing barrier gives the
Dirichlet condition while the reflecting barrier is prescribed by the Neumann
condition. Extending to the finite-time horizon model, the partial differential
equation formulation for V (A, τ ;L,B) is given by

∂V

∂τ
= LV, L < A < B, τ > 0, (3.3)

where

L =
σ2

2
A2 ∂2

∂A2
+ µA

∂

∂A
− r.

The auxiliary conditions are:

V (L, τ) = 0 and
∂V

∂A
(B, τ) = 0 for all τ ,

V (A, 0) = A, L < A < B. (3.4)

To justify the validity of the above auxiliary conditions in our finite time hori-
zon model, one may follow a similar analytic technique used in the derivation
of the differential equation formulation of the expected present value of div-
idends (see Section 4).

Analytic solution
Given the above partial differential equation formulation of V (A, τ), we would
like to derive its analytical solution in the form of an infinite series. We define

x = ln
A

B
and ℓ = ln

L

B
, (3.5)

it can be shown that V (A, τ) can be expressed in the form

V (A, τ) = e−rτ

∫ 0

ℓ

BeyG(x, τ ; y) dy, A = Bex. (3.6)

The Green function G(x, τ ; y) is governed by

∂G

∂τ
=
σ2

2

∂2G

∂x2
+ α

∂G

∂x
, ℓ < x < 0 and τ > 0, (3.7a)
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with auxiliary conditions:

G(ℓ, τ ; y) = 0 and
∂G

∂x
(0, τ ; y) = 0

G(x, 0; y) = δ(x− y). (3.7b)

The analytic representation of the Green function with mixed Dirichlet-
Neumann boundary conditions is less well known compared to that of the
counterpart with Dirichlet condition at both boundaries. Recall that the
Green function with double Dirichlet conditions can be represented by an
infinite series involving either the normal kernel functions or the eigenfunc-
tions (whose analytic form is a product of exponential function in time and
sinusoidal function in space). In a similar manner, two different series rep-
resentations of G can be found. The solution of G in a series expansion of
eigenfunctions has been derived by Domine (1996). In this paper, we de-
rive another analytic representation of the solution in terms of the parabolic
cylinder functions, the details of which are relegated to Appendix B.

Suppose we adopt the eigenfunction solution of the Green function, the
evaluation of the integral in Eq. (3.6) gives the following solution to V (A, τ):

V (A, τ) = Be−rτ

(
B

A

)α/σ2
[
d0e

−α2τ/2σ2 −
∞∑

n=1

dn

ℓ
2

+ σ2

2α
cos2 λn

exp

(
−
(
α2

2σ2
+
σ2λ2

n

2ℓ2

)
τ

)
sin

(
λn

ℓ

(
ℓ− ln

A

B

))]
, (3.8)

where

dn =
1 + α

σ2(
1 + α

σ2

)2
+ λ2

n

ℓ2

{
sinλn − λn(

1 + α
σ2

)
ℓ

[
e(1+ α

σ2 )ℓ − cosλn

]}
. (3.9a)

Here, λn is the solution to

tanλ = −σ
2λ

αℓ
, (3.9b)

for λn ∈
(
nπ,

(
n+

1

2

)
π

)
, n = 0, 1, 2, · · · .

Note that d0 takes different functional forms depending on the sign of

α +
σ2

ℓ
. We have
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(i) α+
σ2

ℓ
< 0

d0 = −
exp

(
−λ2

0σ2τ

2ℓ2

)
sin λ0(ℓ−x)

ℓ

ℓ
2

+ σ2

2α
cos2 λ0

1 + α
σ2

(
1 + α

σ2

)2
+

λ2
0

ℓ2{
sinλ0 −

λ0

ℓ
(
1 + α

σ2

)
[
e(1+ α

σ2 )ℓ − cosλ0

]}
; (3.10a)

(ii) α+
σ2

ℓ
= 0

d0 =
3(ℓ− x)

ℓ3
(
1 + α

σ2

)





[
e(1+ α

σ2 )ℓ − 1
]

1 + α
σ2

− ℓ



 ; (3.10b)

(iii) α+
σ2

ℓ
> 0

d0 =
exp

(
η2σ2τ
2ℓ2

)

σ2

2α
cosh2 η − ℓ

2

sinh
η(ℓ− x)

ℓ

1 + α
σ2(

1 + α
σ2

)2 − η2

ℓ2{
sinh η +

η

ℓ
(
1 + α

σ2

)
[
cosh η − e(1+ α

σ2 )ℓ
]}

, (3.10c)

where η is the solution to tanh η = −σ
2η

αℓ
.

Analytic approximation formula
It is well known that the rate of convergence of the eigenfunction series to
the exact solution is relatively slow. Also, the accurate determination of
the eigenvalues λn poses difficulties in the numerical evaluation procedure.
It is desirable to express the solution in the form of the exponential kernel
functions, like that of the density function of the Brownian process with two-
sided absorbing barriers. While it is not possible to express the asset value
function V in terms of the exponential kernel functions, we manage to obtain
an analytic approximation to V whose analytic representation involves the
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exponential kernel functions only. Let τB = inf{t ≥ 0, At = B}, and E
denote the expectation under the measure P, and recall [see Eq. 2.4a)]

ÂT = AT min

(
1,

B

A
T

0

)
and Ât = At min

(
1,
B

A
t

0

)
,

the “initiation-state” asset value function for a term T can be expressed as

V (A, T ;L,B)

= e−rT
E

[
ÂT1n

bAT

0 >L
o
]

= e−rT
E

[
AT1{AT

0 >L}1{AT
0 ≤B}

]

+ e−rT
E

[
AT

B

A
T

0

1{B<A
T
0 }1n

bAT

0 >L
o

]

= e−rT
E

[
AT1{AT

0 >L}1{AT
0 ≤B}

]

+ e−rT
E

[
AT

B

A
T

0

1{B<A
T
0 }1

min

„
A

τB
0 ,minτB≤t≤T At

B

A
t
0

«
>L

ff

]

= e−rT
E

[
ÂT1{AT

0 >L}

]

+ E

[
AT

B

A
T

0

1{B<A
T
0 }1

A
τB
0 >minτB≤t≤T At

B

A
t
0

ff

(
1

min0≤t≤T At
B

A
t
0

>L

ff −1{AT
0 >L}

)]
. (3.11)

The second term in the last expression is small when the expectation of the

difference between the two indicator functions E

[
1

min0≤t≤T At
B

A
t
0

>L

ff −1{AT
0 >L}

]

is small. This is true when A is sufficiently close to L.

We set Va(A, T ;L,B) to be e−rT
E

[
ÂT1{AT

0 >L}

]
, which is taken to be an

analytic approximation to V (A, T ;L,B). Since the original indicator func-
tion 1n

bAT

0 >L
o in V has been replaced by 1{AT

0 >L} in Va, it becomes possible

to express Va in terms of the density function of the restricted Brownian
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process with two-sided absorbing barriers. After performing several deriva-
tion steps in double integration (see Appendix C for details), we obtain the
following representation for Va:

Va(A, T ;L,B) = e−rTB

∫ ∞

K

∫ M

0

exe−Mf(x,M, T ; x0) dxdM, (3.12)

where K = ln
B

L
and f(x,M, T ; x0) is the density function of the terminal

value WT of the Brownian motion with drift α that is subject to two-sided
absorbing barriers. It is known that

f(x,M, T ; x0) = P

[
WT ∈ dx,W

T

0 < M,W T
0 > 0

∣∣∣∣W0 = x0

]

= exp

(
2α(x− x0) − α2T

2σ2

)

∞∑

n=−∞

1√
2πσ2T

[
exp

(
−(x− x0 − 2nM)2

2σ2T

)

− exp

(
−(x+ x0 − 2nM)2

2σ2T

)]
. (3.13)

By evaluating the double integral in Eq. (3.12), we obtain

Va(A, T ;L,B) = e−rTBe−
1

2σ2 (α2T+2αx0)
∞∑

n=−∞
[I1(n) + I2(n)], (3.14)

where

(i) n 6= 0

I1(n) = Ψn

(
− n

|n| ,−x0 −
σ2T

2|n| − 2|n|K, 1 +
α

σ2
− 1

2n
, 0, K,−x0

)

− Ψn

(
− n

|n| , x0 −
σ2T

2|n| − 2|n|K, 1 +
α

σ2
− 1

2n
, 0, K, x0

)
,

(3.15a)

I2(n) = Ψn

(
(2n− 1)

n

|n| ,−x0 −
σ2T

2|n| , 1 +
α

σ2
− 1

2n
,K,∞,

n

|n|x0

)

− Ψn

(
(2n− 1)

n

|n| , x0 −
σ2T

2|n| , 1 +
α

σ2
− 1

2n
,K,∞,

n

|n|x0

)
,

(3.15b)
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Ψn(a, b, c, d, f, g) =
1

2n

e
g
2n

+ 1
2(

1
2n)

2
σ2T

c

{
ecfN

(
b− af

σ
√
T

)
− ecdN

(
b− ad

σ
√
T

)

+ e
bc
a

+ 1
2(

c
a)

2
σ2T

[
N

(
af −

(
b+ c

a
σ2T

)

σ
√
T

)

− N

(
ad−

(
b+ c

a
σ2T

)

σ
√
T

)]}
; (3.15c)

(ii) n = 0

I1(0) =
L

B

[
Φ
(
1, x0, 1 +

α

σ2
, 0, K

)
− Φ

(
1,−x0, 1 +

α

σ2
, 0, K

)]
,

(3.16a)

I2(0) = Φ
(
1, x0,

α

σ2
, K,∞

)
− Φ

(
1,−x0,

α

σ2
, K,∞

)
, (3.16b)

Φ(a, b, c, d, f) =
1

a
e

bc
a

+ 1
2(

c
a)

2
σ2T

[
N

(
af −

(
b+ c

a
σ2T

)

σ
√
T

)
−N

(
ad−

(
b+ c

a
σ2T

)

σ
√
T

)]
. (3.16c)

Here, N(·) denotes the cumulative standard normal distribution function.
We performed numerical calculations to testify the accuracy of the ana-

lytic approximation formula. In Figure 1, we show the plot of the asset value
function V (A, T ;L,B) against ln(A/L). The model parameter values used
in the calculations are: r = 0.08, σ = 0.15, T = 1, µ = 0.08, L = 0.2, B = 1.2.
We compare the numerical approximation values of V obtained from the an-
alytic approximation formula (3.14) with the numerical results obtained by
solving the partial differential equation for V [see Eqs. (3.5a,b)] using the
finite difference algorithm. As shown by the two curves in Figure 1, the fi-
nite difference solution to the asset value function agrees very well with the
solution obtained from the analytic approximation formula even at relatively
high value of A/L. As revealed from Figure 1, V (A, T ;L,B) is an increasing

function of A, with a higher value of
∂V

∂A
when A is closer to the ruin barrier

L and a lower value of
∂V

∂A
when A is closer to the dividend barrier B.

We also examine the dependence of V (A, T ;L,B) on the dividend barrier
B. Figure 2 shows the plot of V (A, T ;L,B) against B with varying values
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of the ruin barrier L. Here, we take A = 1 and use the same set of model
parameter values as those in Figure 1 in the numerical calculations. When
the ratio L/A is small, corresponding to a high credit quality of the firm,
the asset value function V is seen to be quite insensitive to the level of ruin
barrier. This is revealed by the overlapping of the asset value curves for
L = 0.4 and L = 0.6 where A is taken to be 1. For a fixed value of L, the
asset value function is an increasing function of dividend barrier since the
dividend payout is less with a higher dividend barrier. The curves in Figure 2
illustrate the phenomenon of the high sensitivity of V to the dividend barrier
level.

4 Expected present value of dividends and

survival probability

In this section, we would like to derive the analytic formulation of the ex-
pected present value of future dividends and the survival probability, and
examine their dependence on the creditworthiness of the firm, dividend bar-
rier and ruin barrier.

Recall that Ât as defined in Eq. (2.4a) represents the non-ruined modified
asset value at time t, which is the asset value process after dividends. Let
dCt denote the non-negative amount of dividends paid in the time interval
[t, t+ dt), and Ct is adapted to the filtration Ft. The stochastic differential

equation for Ât takes the form

dÂt = µÂt dt+ σÂt dZt − dCt, (4.1)

with Â0 = A. Let τ̂ denote the first passage time of Ât to the ruin barrier L,
that is,

τ̂ = inf{t ≥ 0, Ât = L}. (4.2)

Let F (A, T ;L,B) denote the expected present value of dividends at time zero
over a term T subject to ruin at a lower barrier L and dividend payout at
an upper barrier B. We then have

F (A, T ) = E

[∫ T∧bτ

0

e−ru dCu

]
, (4.3)
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where E denotes the expectation under the measure P. By considering a
function φ(A, τ) ∈ C2,1((L,B) × (0,∞)) that satisfies

∂φ

∂τ
(A, τ) =

σ2

2
A2 ∂

2φ

∂A2
(A, τ) + µA

∂φ

∂A
(A, τ) − rφ(A, τ) (4.4)

with auxiliary conditions:

φ(A, 0) = 0, L < A < B, (4.5a)

φ(L, τ) = 0 and
∂φ

∂A
(B, τ) = 1, τ > 0, (4.5b)

we would like to show that

F (A, T ) = φ(A, T ). (4.6)

To establish the result in Eq. (4.6), we follow the procedure outlined in
Freidlin (1985). First, we apply the Ito calculus to obtain

e−r(τ∧bτ)φ(Âτ∧bτ , T − τ ∧ τ̂ )

= φ(A, T ) +

∫ τ∧bτ

0

e−ru

[
−∂φ
∂τ

(Âu, T − u) +
σ2

2
A2 ∂

2φ

∂A2
(Âu, T − u)

+ µA
∂φ

∂A
(Âu, T − u) − rφ(Âu, T − u)

]
du

−
∫ τ∧bτ

0

e−ru ∂φ

∂A
(Âu, T − u) dCu

+

∫ τ∧bτ

0

e−ru ∂φ

∂A
(Âu, T − u)Âuσ dZu. (4.7)

Next, we set τ = T and take the expectation under P on both sides of the
above equation. By enforcing the partial differential equation for φ and the

boundary condition:
∂φ

∂A
= 1, we obtain

φ(A, T ) = E

[
e−r(T∧bτ)φ(ÂT∧bτ , T − T ∧ τ̂ )

]

+ E

[∫ T∧bτ

0

e−ru dCu

]
. (4.8)
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The last term is simply F (A, T ). It suffices to show that the first term
vanishes. The first term can be split into two terms, namely,

E

[
e−r(T∧bτ )φ(ÂT∧bτ , T − T ∧ τ̂)

]

= E

[
e−rTφ(ÂT , 0)1{bτ≥T}

]
+ E

[
e−rbτφ(L, T − τ̂)1{bτ<T}

]
. (4.9)

Both terms are seen to be zero by virtue of the auxiliary conditions: φ(A, 0) =
0 and φ(L, τ) = 0, τ > 0. Hence, we obtain the result in Eq. (4.6).

Next, we would like to establish the relation between F (A, T ) and V (A, T ).
If we let

ψ(A, τ) = φ(A, τ) −A + L, (4.10)

then the governing equation for ψ(A, τ) becomes

∂ψ

∂τ
=
σ2

2
A2 ∂

2ψ

∂A2
+ µA

∂ψ

∂A
− rψ + (µ− r)A+ rL (4.11)

with auxiliary conditions:

ψ(A, 0) = L− A, L < A < B, (4.12a)

ψ(L, τ) = 0 and
∂ψ

∂A
(B, τ) = 0. (4.12b)

Now, the two boundary conditions (4.12a,b) are homogeneous, similar to
those of the asset value function V (A, τ) [see Eq. (3.5b)]. It can be shown
that the solution to ψ(A, τ) admits the following stochastic representation:

ψ(A, τ) = E

[
e−rτ (L− ÂT )1{τ<bτ}

]

+ E

[∫ τ∧bτ

0

e−ru
[
(µ− r)Âu + rL

]
du

]
. (4.13)

Setting τ = T and observing

V (A, T ) = E

[
e−rT ÂT1{T<bτ}

]
, (4.14)

we can deduce the following relation between F (A, T ) and V (A, T ):

V (A, T ) = A− F (A, T ) − E

[
Le−rbτ1{T≥bτ}

]

+ (µ− r)E

[∫ T∧bτ

0

e−ruÂu du

]
. (4.15)
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We performed numerical calculations to explore the dependence of the
expected present value of dividend payouts F (A, T ) on the ruin barrier L,
dividend barrier B, volatility of the asset value process σ and length of time
horizon T . The plots in Figure 3 show that F (A, T ) is decreasing with respect
to L and B. Also, F (A, T ) is seen to be highly sensitive to the change in
dividend barrier. From Figure 4, we observe that F (A, T ) is increasing with
respect to σ and T . All these results agree with our intuition on the behaviors
of the expected present value of dividend payouts.

Another quantity of interest is the survival probability over a term T , as
defined by

S(A, T ) = P[τ̂ > T ]. (4.16)

The partial differential equation formulation of S(A, T ) has been documented
in Paulsen (2003). It is quite straightforward to establish the following rela-
tion between V (A, T ), F (A, T ) and S(A, T ):

V (A, T ) = A− F (A, T ) + Le−rTS(A, T ) − LE[e−r(T∧bτ)]

+ (µ− r)E

[∫ T∧bτ

0

e−ruÂu du

]
. (4.17)

In Figure 5, we show the plot of the survival probability S(A, T ) against
ln(A/L) with varying values of the firm asset value volatility σ. A higher
value of ln(A/L) indicates better creditworthiness of the firm, thus leading
to a higher survival probability. On the other hand, a higher asset value
volatility leads to a higher chance of hitting the ruin barrier and consequently
a lower probability of survival.

5 Conclusion

In this paper, we derive the pricing formulation of the value function of
the firm value process under the dividend barrier strategy and possibility of
ruin. The upper dividend barrier is seen to be a reflecting barrier while the
lower default barrier is an absorbing barrier. Our finite time dividend-ruin
model resembles a path dependent option model with both the lookback
and barrier features. We have presented the analytic formulations of the
expected present value of the firm value, survival probability and expected
present value of dividends over a finite time horizon. Closed form analytic
solution to the value function of firm asset is obtained. In addition, a fairly
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accurate analytic approximation formula is also derived. The mathematical
relations between the asset value function, expected present value of dividend
payouts and survival probability of the finite time dividend-ruin model are
presented. Our numerical calculations show that the asset value function,
survival probability and dividend payouts are quite sensitive to the dividend
barrier, firm’s creditworthiness and volatility of firm value.
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Appendix A – Proof of Eq. (3.2)

Under the assumption of A
t

0 > B, we obtain

AT min

(
1,

B

A
T

0

)
= AT

B

max
(
A

t

0, A
T

t

)

= ATBmin

(
1

A
t

0

,
1

A
T

t

)

= AT
B

A
t

0

min


1,

B

A
T

t

(
B

A
t
0

)


 .

Furthermore, assuming Â
t

0 > L, we have

1
min0≤u≤T

»
Au min

„
1, B

A
u
0

«–
>L

ff

= 1
mint≤u≤T

»
Au min

„
1, B

A
u
0

«–
>L

ff

= 18
<
:mint≤u≤T

2
4 AuB

A
t
0

min

0
@1, B

A
u
t

B

A
t
0

1
A

3
5>L

9
=
;

.

Combining the results, when Â
t

0 > L and A
t

0 > B, we obtain

ÃT = AT
B

A
t

0

min


1,

B

A
T

t

(
B

A
t
0

)


18

<
:mint≤u≤T

2
4 AuB

A
t
0

min

0
@1, B

A
u
t

B

A
t
0

1
A

3
5>L

9
=
;

,

and from which we can deduce the first relation in Eq. (3.2).

Appendix B – Green function with mixed Dirichlet-Neumann bound-
ary conditions
Let U(x; y) denote the Laplace transform of G(x, τ ; y), where

U(x; y) =

∫ ∞

0

e−γτG(x, τ ; y) dτ.
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The governing equation for U(x; y) is given by

σ2

2

d2U

dx2
+ α

dU

dx
− γU = 0, ℓ < x < 0,

with auxiliary conditions

U(ℓ) = U ′(0) = 0,

U ′(y+) − U ′(y−) = − 2

σ2
and U(y+) = U(y−).

The solution to U(x, y) is found to be

(i) ℓ < x < y

U(x; y)

= D

"
(β − α)e

−

β

σ2 (y−x+ℓ)
+ (β + α)e

−

β

σ2 (ℓ−x−y)
− (β − α)e

−

β

σ2 (x+y−ℓ)
− (β + α)e

−

β

σ2 (x−y−ℓ)
#

(ii) y < x < 0

U(x; y)

= D

"
(β − α)e

−

β

σ2 (x−y+ℓ)
+ (β + α)e

−

β

σ2 (ℓ−x−y)
− (β − α)e

−

β

σ2 (x+y−ℓ)
− (β + α)e

−

β

σ2 (y−x−ℓ)
#

where D =
e

α

σ2 (y−x)

2β
[
β cosh

(
βℓ
σ2

)
+ α sinh

(
βℓ
σ2

)] and β =
√
α2 + 2γσ2. The fol-

lowing Laplace inversion formula [see p.642, Borodin and Salminen (2002)]
is useful:

L−1
γ

(
(2γ)bµ/2e−bx√2γ

sinh(t̂
√

2γ) + z
√

2γ cosh(t̂
√

2γ)

)

=

∞∑

k=0

(−1)kk!

2kzk+1

k∑

ℓ=0

(−1)ℓ

(k − ℓ)!ℓ!
cby(µ̂− k − 1, k + 1, t̂, x̂+ kt̂− 2ℓt̂), x̂ > −t̂,

where γ is the dummy Laplace variable, z 6= 0, t̂ > 0 and the function cey is
defined by

cey(µ̃, ν̃, t̃, z̃)

= 2eν
∞∑

j=0

(−1)jΓ(ν̃ + j)e−(eνet+ez+2jet)2/(4ey)

√
2πỹ1+ eµ

2 Γ(ν̃)j!
Deµ+1

(
ν̃ t̃+ z̃ + 2jt̃√

ỹ

)
,

ν̃ ≥ 0, ν̃t̃+ z̃ > 0 and t̃ > 0,
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Deµ+1 is the parabolic cylinder function. One can then use the inversion
formula to perform the Laplace inversion of U(x; y) to obtain G(x, τ ; y).

Appendix C – Derivation of analytic approximation formula (3.11)
For the Brownian motion Wt with drift α and variance rate σ2, we write

W T
0 = min

0≤t≤T
Wt and W

T

0 = max
0≤t≤T

Wt, the density function f̂(x,M, T ; x0) of

the terminal valueWT conditional onW0 = x0 and subject to lower and upper
absorbing barriers at x = 0 and x = M , respectively, has been presented in

Eq. (3.13). The joint density of WT and W
T

0 is given by

f̂(x,M, T ; x0) dxdM

= P

[
WT ∈ dx,W

T

0 ∈ dM,W T
0 > 0

∣∣∣∣W0 = x0

]

=
∂f

∂M
(x,M, T ; x0) dxdM.

We write A = A(0), K = ln
B

L
and let x0 = W0 = ln

A

L
so that x0 = 0 when

A = L. The restricted asset value process is given by

Va(A, T ;L,B) = E

[
e−rTLeWT min

(
1,

B

LeW
T
0

)
1{WT

0 >0}

]

= e−rT

[
L

∫ K

0

∫ M

0

exf̂(x,M, T ; x0) dxdM

+ B

∫ ∞

K

∫ M

0

exe−M f̂(x,M, T ; x0) dxdM

]
.

We let

I1 =

∫ K

0

∫ M

0

exf̂(x,M, T ; x0) dxdM

=

∫ K

0

∫ K

x

ex ∂f

∂M
dMdx

=

∫ K

0

ex [f (x,K, T ; x0) − f(x, x, T ; x0)] dx
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and

I2 =

∫ ∞

K

∫ M

0

exe−M ∂f

∂M
dxdM

=

∫ K

0

∫ ∞

K

ex

[
∂

∂M
(e−Mf) + e−Mf

]
dMdx

+

∫ ∞

K

∫ ∞

x

ex

[
∂

∂M
(e−Mf) + e−Mf

]
dMdx

= −
∫ K

0

ex L

B
f(x,K, T ; x0) dx−

∫ ∞

K

f(x, x, T ; x0) dx

+

∫ ∞

K

∫ M

0

exe−Mf(x,M, T ; x0) dxdM.

It is easily seen that f(x, x, T ; x0) = 0. Combining the above results together,
we obtain

Va(A, T ;L,B) = e−rTB

∫ ∞

K

∫ M

0

exe−Mf(x,M, T ; x0) dxdM.
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Fig. 1. Plot of the asset value function V (A, T ;L,B) against ln(A/L).
The asset value is an increasing function of the firm’s creditworthiness [as
measured by ln(A/L)]. The finite difference solution agrees very well with
the solution obtained by the analytic approximation formula.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0.75

0.8

0.85

0.9

0.95

1

Dividend Barrier

A
ss

et
 V

al
ue

 F
un

ct
io

n L=0.4
L=0.6
L=0.8

Fig. 2. Plot of the asset value function V (A, T ;L,B) against the dividend
barrier B with varying values of the ruin barrier L. When the credit quality
of the firm is relatively high, the asset value function is not quite sensitive
to the level of ruin barrier. However, for a fixed value of L, the asset value
function shows a relatively strong dependence on the dividend barrier.
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Fig. 3. Plot of the expected present value of dividend payouts F (A, T )
against the dividend barrier B with varying values of ruin barrier L. The
expected present value of dividend is a decreasing function of L and B.
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Fig. 4. Plot of the expected present value of dividend payouts F (A, T )
against the length of time horizon T with varying values of firm asset value
volatility σ. The expected present value of dividend is an increasing function
of the length of time horizon and volatility of asset value.
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Fig. 5. Plot of the survival probability S(A, T ) against ln(A/L) with varying
values of the firm asset value volatility σ. The survival probability is an
increasing function of the creditworthiness of firm and a decreasing function
of volatility.

25


