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Abstract

The main results of this paper are the derivation of the distribution
functions of occupation times under the constant elasticity of variance
(CEV) process. The distribution functions can then be used to price
the α-quantile options. We also derive the fixed-floating symmetry
relation for α-quantile options when the underlying asset price process
follows the Geometric Brownian motion.
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1 Introduction

The α-quantile (0 < α < 1) of a stochastic process S = {St : t ∈ [0, T ]} is
defined by

Mα
T (S) = inf{x ∈ R : Ax,−T (S) > αT}, (1.1)

where

Ax,−T (S) =

∫ T

0

1{St≤x}dt (1.2)

is called the occupation time of the process S staying below the barrier
x. It is easily seen that the events {Mα

T (S) > L} and {AL,−T (S) < αT} are
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equivalent. Therefore, the pricing of α-quantile options whose payoff depends
on Mα

T would naturally require the determination of the distribution of the
occupation time.

There have been numerous papers on the derivation of the distribution
of occupation times for the Brownian motion with drift, Z = {Zt = Wt +
µt : t ≥ 0, µ ∈ R}, where Wt is the standard Wiener process. Akahori
(1995) derives the distribution of AL,−T (Z) by using the Feynman-Kac formula
and the strong Markov property of Brownian motion. By adopting various
analytic approaches, Takács (1996), Doney and Yor (1998) and Pechtl (1999)
obtain an explicit representation of the density of AL,−T (Z) in terms of the
normal density and distribution functions. Linetsky (1999) and Hugonnier
(1999) obtain the joint distribution functions of the occupation time and
terminal asset value, which are then used to derive pricing formulas of various
types of occupation time derivatives. Dassios (1995) obtains a remarkable
relationship between the α-quantile of a Brownian motion with drift and the
distributions of the maximum and minimum value of the Brownian motion.
He shows that

Mα
T (Z) and sup

{0≤s≤αT}

Zs + inf
{0≤s≤(1−α)T}

Z̃s

are equal in law, where Z̃s is an independent copy of the Brownian motion.
An alternative proof of Dassios’ result is given by Embrechts et al . (1995).

Miura (1992) first introduces the α-quantile option whose payoff depends
on the α-quantile of the asset price process S. The terminal payoff functions
of the fixed strike call and floating strike put α-quantile options are defined
by

(Mα
T (S) −K)+ and (Mα

T (S) − ST )+,

respectively, where K is the strike price and x+ = max(x, 0). By letting
α go to 1 (or 0) in an α-quantile option, we obtain the maximum (or min-
imum) lookback option. Fujita (2000) further extends the α-quantile op-
tion to exchange options of α, β-quantiles whose terminal payoff is given by(
Mα

T (S) −Mβ
T (S)

)+

. Besides analytic approaches, there have been numer-

ous papers that deal with the design of numerical algorithms for pricing
occupation time derivatives. For example, Kwok and Lau (2001) develop the
forward shooting grid method to price the Parisian options and α-quantile
options.
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In this paper, we would like to derive the distribution of the occupation
time, and the joint distribution of the occupation time and terminal asset
value under the constant elasticity of variance (CEV) process. The asset
price St under the CEV process is governed by

{
dSt = µSt dt+ σSβ+1

t dWt, t ≥ 0, St ∈ Î , β ≤ 0,

S0 = S ∈ Î ,
(1.3)

where Î = (0,∞), µ is the constant drift rate, σ is the constant volatility
and β is called the elasticity of the local volatility function. When β > 0,
we do not have the existence of an equivalent martingale measure (Davydov
and Linetsky, 2001). The CEV process nests a number of some well known
processes. It becomes the geometric Brownian motion (GBM) when β = 0,
absolute diffusion when β = −1 and square root process when β = −1/2.

The paper is organized as follows. In the next section, we present the
derivation of the double Laplace transform of the density function of the
occupation time of an asset price process and the joint density of the occu-
pation time and terminal asset value under the CEV process. In Section 3,
we illustrate the pricing formulations of α-quantile options. We then present
the integral representation of the price of α-quantile options when the as-
set price process S follows the CEV process. When the asset price process
is GBM, the symmetry relation between the prices of fixed strike call and
floating strike put α-quantile options is derived. Summary and conclusive
remarks are presented in the last section.

2 Distribution functions of occupation times

of CEV process

First, we would like to present the Feynman-Kac equation that governs the
double Laplace transform of the density function of the occupation time
AL,−T (S). Consider the stochastic process S that follows

{
dSt = µ(St) dt+ σ(St) dWt, t ≥ 0, St ∈ I,
S0 = S, S ∈ I,

(2.1)

for which the functions µ(·) and σ(·) satisfy the global Lipschitz and linear
growth conditions as stated in Karatzas and Shreve (1991) and I ∈ (−∞,∞).
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Note that the CEV process defined in Eq. (1.3) is a special case of process
(2.1). The infinitesimal generator G of the process is defined by

G =
σ2(S)

2

d2

dS2
+ µ(S)

d

dS
, S ∈ I. (2.2)

Let f : I → R and k : I → [0,∞) be piecewise continuous functions. For
some fixed constant λ > 0, we have

ES

∫ ∞

0

e−λt|f(St)| dt <∞ for all S ∈ I.

Define

Ŷ (S) = ES

∫ ∞

0

f(St) exp(−λt−

∫ t

0

k(Su) du) dt,

then Ŷ (S) is piecewise C2(I). It satisfies the following second order ordinary
differential equation (Karatzas and Shreve, 1991, p.366)

[λ+ k(S)]Ŷ (S) = GŶ (S) + f(S) on I\(Df ∪Dk), (2.3)

whereDf andDk are the set of points of discontinuity of f and k, respectively.

By taking f = λ and k(x) = γ1{S≤L}, Ŷ (S) is related to the double Laplace

transform of the distribution of AL,−t (S) and t.
We define

Y (S) = ES[exp(−γ

∫ τ

0

1{Su≤L} du)], (2.4)

where τ ∼ exp(λ) and τ is independent of S. Here, Y (S) equals λ times the
double Laplace transform of the density function of the occupation time with
respect to t and occupation time. From Eq. (2.3), Y (S) is seen to satisfy
the following Feynman-Kac equation

GY (S) − (λ+ γ1{S≤L})Y (S) = −λ. (2.5)

We show how to solve for Y (S) when the asset price St follows the CEV
process (see Proposition 2.1).

Proposition 2.1 (distribution function of occupation time)
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Assume τ ∼ exp(λ) and τ is independent of S, and suppose the asset price
{St : t ≥ 0} follows the CEV process defined in Eq. (1.3) with β < 0 and

µ > 0. For some fixed L ∈ Î, we have

ES

[
exp

(
−γ

∫ τ

0

1{Su≤L} du

)]

=

{
λ

λ+γ
+ c1ψλ+γ(S) 0 < S ≤ L

1 + c4φλ(S) L < S <∞
, (2.6)

where

ψα(S) = Sβ+ 1

2 eǫx/2Mkα,m(x)

φα(S) = Sβ+ 1

2 eǫx/2Wkα,m(x)

x =
|µ|

σ2|β|
S−2β, ǫ = sign(µβ), m =

1

4|β|
,

kα = ǫ

(
1

2
+

1

4β

)
−

α

2|µβ|
, xL =

|µ|

σ2|β|
L−2β ,

c1 =
2mγ

λ+ γ

Mk
λ+1

2

,m− 1

2

(xL)

φλ(L)Wkλ+γ+ 1

2
,m− 1

2

(xL) − 2mψλ+γ(L)Mk
λ+ 1

2

,m− 1

2

(xL)
,

c4 = −
γ

λ + γ

Mkλ+γ+ 1

2
,m− 1

2

(xL)

2mψλ+γ(L)Mk
λ+1

2
,m−

1
2

(xL) + φλ(L)Wkλ+γ+ 1

2
,m− 1

2

(xL)
. (2.7)

and W·,·(·) and M·,·(·) are the Whittaker functions (see Appendix).

Proof of Proposition 2.1

We write

u(S) = ES

[
exp

(
−γ

∫ τ

0

1{Su≤L} du

)]
,

where τ ∼ exp(λ) and τ is independent of S, then u(S) satisfies

σ2

2
S2β+2 d

2u

dS2
+ µS

du

dS
−

(
λ+ γ1{S≤L}

)
u = −λ (2.8)

subject to the following auxiliary conditions:

(i) u(L+) = u(L−) and u′(L+) = u′(L−),
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(ii) u(0+) =
λ

λ+ γ
and lim

S→∞
u(S) <∞.

The matching and smooth pasting conditions at L are derived from the re-
quirement of u(S) ∈ C1(I). The general solution of Eq. (2.8) is given by

u(S) =

{
λ

λ+γ
+ c1ψλ+γ(S) + c2φλ+γ(S), S ≤ L,

1 + c3ψλ(S) + c4φλ(S), S > L,

where the hypergeometric functions ψα(S) and φα(S) are defined in Eq. (2.7).
Next, we determine the arbitrary constants using the auxiliary conditions.

First, we deduce c3 = 0 by using the asymptotic property of the Whittaker
functionMkλ,m(S) as S → ∞ [see Appendix]. By applying the boundary con-

dition u(0+) =
λ

λ+ γ
and the asymptotic expansion of the Kummer function

[see Appendix], we obtain c2 = 0. Lastly, we apply the matching and smooth
pasting conditions and together using the properties of the derivatives of
Whittaker functions, we obtain the solution of c1 and c4 as stated in Eq.
(2.7).

Proposition 2.2 (joint distribution of occupation time and terminal
asset value)
Assume τ ∼ exp(λ) and τ is independent of S, and suppose St follows the

CEV process. For some fixed L ∈ Î, we define

U(S) = ES

[
exp

(
−γ

∫ τ

0

1{Su≤L} du

)
, Sτ ∈ dz

]
, (2.9)

then U(S) has the following functional forms in different regions:

(i) 0 < z ≤ L, S ≥ L
U(S) = d2φλ(S)

where

d2 =
2λeǫxB

zβ+3/2σ2

(
σ2|β|

|µ|

)2β+2

exB/2x1−m
B L2β+1

Mkλ+γ ,m(xz)

2mφλ(L)Mkλ+γ+ 1

2
,m− 1

2

(xL) + ψλ+γ(L)Wkλ+ 1

2
,m− 1

2

(xL)
. (2.10a)
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(ii) 0 < z ≤ L, 0 < S ≤ L

U(S) = d3ψλ+γ(S) + d(S)

where

d4 =
λσ2|β|Γ

(
m− kλ+γ + 1

2

)
Mkλ+γ ,m(xz)

σ2β|µ|Γ(2m+ 1)zβ+3/2

d3 =
φλ(L)Wkλ+γ+ 1

2
,m− 1

2

(xL) − φλ+γ(L)Wkλ+ 1

2
,m− 1

2

(xL)

2mφλ(L)Mkλ+γ+ 1

2
,m− 1

2

(xL) + ψλ+γ(L)Wkλ+ 1

2
,m− 1

2

(xL)
d4

d(S) =





d4φλ+γ(S), z ≤ S ≤ L

d4
φλ+γ(z)ψλ+γ(S)

ψλ+γ(z)
, 0 < S < z

, xz =
|µ|

σ2|β|
z−2β .

(2.10b)

(iii) z > L, 0 < S ≤ L
U(S) = e1ψλ+γ(S)

where

e1 =
2λeǫxL

zβ+3/2σ2

(
σ2|β|

|µ|

)2β+2

exB/2x1−m
B S2β+1

B

Wkλ,m(xz)

2mφλ(L)Mkλ+γ+ 1

2
,m− 1

2
(xL) + ψλ+γ(L)Wkλ+ 1

2
,m− 1

2
(xL)

. (2.10c)

(iv) z ≥ L, S ≥ L
U(S) = e4φλ(S) + e(S)

where

e3 = −
λ|β|Γ

(
m− kλ + 1

2

)
Wkλ,m(xz)

zβ+3/2β|µ|Γ(2m+ 1)

e4 = 2me3
ψλ+γ(L)Mkλ+ 1

2
,m− 1

2

(xL) − ψλ(L)Mkλ+γ+ 1

2
,m− 1

2

(xL)

2mφλ(L)Mkλ+γ+ 1

2
,m− 1

2

(xL) + ψλ+γ(L)Wkλ+ 1

2
,m− 1

2

(xL)

e(S) =

{
e3ψλ(S) L ≤ S ≤ z

e3
ψλ(z)
φλ(z)

φλ(S) S > z
. (2.10d)
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Proof of Proposition 2.2

Similar to Eq. (2.8), the governing differential equation for U(S) is given by

σ2

2
S2β+2d

2U

dS2
+ µS

dU

dS
−

(
λ+ γ1{S≤L}

)
U = −λδ(S − z), (2.11)

subject to the following auxiliary conditions

(i) matching conditions at L and z

U(L+) = U(L−) and U(z+) = U(z−)

(ii) smooth pasting condition at L

U ′(L+) = U ′(L−)

(iii) jump condition across z

U ′(z+) − U ′(z−) = −
2λ

σ2z2β+2

(iv) boundary conditions at S = 0 and S → ∞

U(0+) = 0 and lim
S→∞

U(S) <∞.

Remark

The jump condition can be deduced by integrating Eq. (2.11) over the in-
finitesimal interval (z−, z+) and applying the continuity condition of U(S)
across z.

We consider the solution under the two separate cases (i) 0 < z ≤ L and
(ii) z > L.

First, for 0 < z ≤ L, the general solution to Eq. (2.11) is given by

U(S) =





d1ψλ(S) + d2φλ(S), S > L
d3ψλ+γ(S) + d4φλ+γ(S), z < S ≤ L
d5ψλ+γ(S) + d6φλ+γ(S), 0 < S < z

.

By virtue of the boundary condition at S → ∞, we deduce that d1 = 0.
Also, by applying U(0+) = 0 and ψλ+γ(0

+) = 0, we obtain d6 = 0. The
remaining 4 arbitrary constants are determined by applying the matching,
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smooth pasting and jump conditions. The system of algebraic equations for
d2, d3, d4 and d5 is found to be

d2φλ(L) − d3ψλ+γ(L) − d4φλ+γ(L) = 0 (i)

d3ψλ+γ(z) + d4φλ+γ(z) − d5ψλ+γ(z) = 0 (ii)

d2φ
′
λ(L) − d3ψ

′
λ+γ(L) − d4φ

′
λ+γ(L) = 0 (iii)

d3ψ
′
λ+γ(z) + d4φ

′
λ+γ(z) − d5ψ

′
λ+γ(z) = −

2λ

σ2z2β+2
. (iv)

From Eqs. (ii) and (iv), we obtain

d4 =
2λψλ+γ(z)

σ2z2β+2
[
φλ+γ(z)ψ′

λ+γ(z) − φ′
λ+γ(z)ψλ+γ(z)

] .

The denominator can be simplified by applying analytic properties of the
Whittaker functions as follows:

φλ+γ(z)ψ
′
λ+γ(z) − φ′

λ+γ(z)ψλ+γ(z)

= −
2βeǫxz |µ|

σ2|β|

[
Wkλ+γ ,m(xz)M

′
kλ+γ ,m

(xz) −Mkλ+γ ,m(xz)W
′
kλ+γ ,m

(xz)
]

= −
2βeǫxz |µ|

σ2|β|

Γ(2m+ 1)

Γ
(
m− kλ+γ + 1

2

) ,

so that the analytic expression for d4 is obtained [see Eq. (2.10b)]. Here,
Γ(x) is the Euler Gamma function. Once d4 is known, we can solve for d2

and d3 from the following pair of algebraic equations:

d2φλ(L) − d3ψλ+γ(L) = d4φλ+γ(L)

d2φ
′
λ(L) − d3ψ

′
λ+γ(L) = d4φ

′
λ+γ(L).

The analytic expressions for d2 and d3 can be derived in terms of d4 and
the Whittaker functions [see Eqs. (2.10a,b)]. Lastly, d5 can be expressed in
terms of d3 and d4, where

d5 = d3 + d4
φλ+γ(z)

ψλ+γ(z)
.

For the case z > L, by following similar derivation procedures as above,
we can obtain the analytic expressions for e1, e3, e4 and e(S) as shown in Eqs.
(2.10c,d).
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Remark

The above two proofs can be extended to study the distribution function
of occupation times of other asset price process St. The coefficients in the
governing Feynman-Kac equation would differ and this leads to different
types of hypergeometric functions in the solution. For example, we may
consider the Ornstein-Uhlenbeck (OU) process as defined by

{
dSt = −κSt dt+ σ dWt, t ≥ 0, St ∈ I,
S0 = S ∈ I,

(2.12)

where I ∈ (−∞,∞) and κ is a parameter. The analytic expressions for the
corresponding u(S) and U(S) can be found in the Handbook by Borodin and
Salminen (2002).

3 Pricing of α-quantile options

We describe the financial market under which the pricing of options is under-
taken. Consider the time horizon [0, T ], the uncertain economy is modeled by
a filtered probability space (Ω,F , {Ft}t∈[0,T ], Q), where Q is the risk neutral
(equivalent martingale) probability measure and the filtration Ft is generated
by the standard Wiener process {Ws : 0 ≤ s ≤ t}. Let S = {St : t ∈ [0, T ]}
be an one-dimensional time-homogeneous diffusion process on (Ω,F) with
state space I ⊆ R (R may be open, semi-open, closed or include ∞ or −∞).

Under the Black-Scholes pricing paradigm, the value of the fixed strike
α-quantile call option at t = 0 is given by

Cα
fix(S, 0;K) = e−rTES[(M

α
T (S) −K)+], (3.1)

where ES denotes the expectation with respect to the risk neutral measure
Q [subscript S indicates that the stochastic process S starts at S0 = S] and
r is the riskless interest rate. The above expectation can be expressed in
terms of integration of the distribution function of either Mα

T (S) or AL,−T (S),
namely,

Cα
fix(S, 0;K) = e−rT

∫ ∞

K

P [Mα
T (S) > L] dL

= e−rT
∫ ∞

K

P [AL,−T (S) < αT ] dL. (3.2)
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The pricing of the fixed strike α-quantile call option amounts to the deter-
mination of the distribution function AL,−T (S).

In a similar manner, the value of the floating strike α-quantile put option
at time t = 0 is given by

P α
fℓ(S, 0) = e−rTES[(M

α
T (S) − ST )+]. (3.3)

By observing the following relations

P [Mα
T (S) ∈ dL, ST ∈ dz] = −

∂

∂L
{P [Mα

T (S) > L, ST ∈ dz]}

= −
∂

∂L

{
P

[
AL,−T (S) < αT, ST ∈ dz

]}

= −
∂

∂L

∫ αT

0

P
[
AL,−T (S) ∈ dτ, ST ∈ dz

]
dτ,

the put option value can be expressed in the following form

P α
fℓ(S, 0) = e−rT

∫ ∞

0

∫ ∞

z

(z−L)
∂

∂L

{∫ αT

0

P
[
AL,−T (S) ∈ dτ, ST ∈ dz

]
dτ

}
dLdz.

(3.4)
The valuation of P α

fℓ(S, 0) amounts to the determination of the joint density

function of AL,−T (S) and ST .
Let L−1

λ and L−1
γ denote the Laplace inversion with respect to the Laplace

variable λ and γ, respectively, and let t and τ be the respective variables after
Laplace inversion. By setting t = T and τ = αT , we have

P
[
AL,−T (S) < αT

]
= L−1

λ L−1
γ

[
u(S)

λγ

] ∣∣∣∣
t=T and τ=αT

, (3.5)

so that the value of the fixed strike α-quantile call option under the CEV
process is given by

Cα
fix(S, 0;K) = e−rT

∫ ∞

K

L−1
λ L−1

γ

[
u(S)

λγ

] ∣∣∣∣
t=T and τ=αT

dS. (3.6)

The above expression gives a formal representation of Cα
fix(S, 0;K) in terms

of double Laplace inversion and an integral.
When the asset price process is the GMB (corresponding to β = 0), the in-

tegral representation of the distribution or density function of Mα
T (Z) can be
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obtained in simpler analytic forms by using various probabilistic approaches
(Akahori, 1994; Dassios, 1995). By performing tedious integration proce-
dures, Pechtl (1999) manages to obtain closed form solution to Cα

fix(S, 0;K)
by using either Akahori’s or Dassios’ integral representation.

In a similar manner, the double Laplace inversion of U(S) gives the joint
density function of AL,−T (S) and ST , where

P
[
AL,−T (S) ∈ dτ, ST ∈ dz

]
= L−1

λ L−1
γ

[
U(S)

λ

] ∣∣∣∣
t=T

so that the value of the floating strike α-quantile put option under the CEV
process is given by the following integral representation

P α
fℓ(S, 0)

= e−rT
∫ ∞

0

∫ ∞

z

(z − L)
∂

∂L

{∫ αT

0

L−1
λ L−1

γ

[
U(S)

λ

] ∣∣∣∣
t=T

dτ

}
dLdz.(3.7)

Fixed-floating symmetry relation under GBM
When the asset price process follows the GBM, there exists a simple sym-
metry relation between the prices of fixed strike call and floating strike put
for α-quantile options. Under the risk neutral measure Q, the drift rate µ
of the GBM is given by r − q. Here, q is the constant dividend yield. The
symmetry relation has a very simple form, namely,

P α
fℓ(S, 0; r, q) = Cα

fix(S, 0;S, q, r). (3.8)

The proof stems from the following identity established by Detemple

(2001). We define the process S∗
t =

S

ST
St and consider

S

ST
Mα

T (S) =
S

ST
inf

{
y ∈ R :

∫ T

0

1{Su≤y} du > αT

}

= inf

{
S

ST
y ∈ R :

∫ T

0

1n
S∗

u≤
S

ST
y

o du > αT

}

= inf

{
z ∈ R :

∫ T

0

1{S∗

u≤z} du > αT

}
= Mα

T (S∗), (3.9)

where Mα
T (S∗) is the α-quantile of S∗

t . The above relation is distribution
free.
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Suppose Q∗ denote the equivalent martingale measure where the asset
price is used as the numeraire, then

dQ∗

dQ
=
ST
S
e−(r−q)T . (3.10)

Using the Girsanov Theorem, W ∗
t = Wt − σt is a Brownian motion under

Q∗. The process S∗
t =

S

ST
St is related to W ∗

t by

S∗
t = S exp

(
σ(Wt −WT ) +

(
r − q −

σ2

2

)
(t− T )

)

= S exp

(
σ(W ∗

t −W ∗
T ) +

(
r − q +

σ2

2

)
(t− T )

)
. (3.11a)

Let W̃t = −W ∗
t , which is a reflected Q∗-Brownian motion. Note that W ∗

t −

W ∗
T

law
= W̃T−t so that

S∗
t

law
= S exp

(
σW̃T−t +

(
q − r −

σ2

2

)
(T − t)

)
. (3.11b)

The price formula of P α
fℓ(S, 0) can be rewritten in the form of a fixed strike

α-quantile call option when the asset price process is expressed in terms of
S∗, where

P α
fℓ(S, 0; r, q) = e−rTES

[
(Mα

T (S) − ST )+
]

= ES

[
ST
S
e−(r−q)T e−qT

(
S

ST
Mα

T (S) − S

)+
]

= e−qTE∗
S

[
(Mα

T (S∗) − S)+
]
, (3.12)

where E∗
S is the expectation under Q∗ with S0 = S. Equation (3.12) repre-

sents an interesting symmetry relation between a floating strike α-quantile
put option with state variable process S and a fixed strike α-quantile call
with state variable process S∗ in a market with interest rate q.

To proceed further, by considering the reversal of time via the change of
variable t̃ = T − u, by virtue of Eq. (3.11), we obtain

Mα
T (S∗) = inf

{
z ∈ R :

∫ T

0

1{S∗

u≤z} du > αT

}

= inf

{
z ∈ R :

∫ T

0

1n
S exp

“
σfWet+

“
q−r−σ2

2

”
et
”
≤z

o dt̃ > αT

}
.(3.13)
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If we let S̃t = S exp

(
σW̃t +

(
q − r −

σ2

2

)
t

)
, then S̃t is governed by

dS̃t

S̃t
= (q − r) dt+ σ dW̃t, S0 = S. (3.14)

We write Mα
T (S̃) as the α-quantile of S̃t, then Eq. (3.13) reveals that

Mα
T (S∗) = Mα

T (S̃). Together with the property that S̃t follows the GBM
under Q∗ with drift rate q − r, we obtain

e−qTE∗
S

[
(Mα

T (S∗) − S)+]
= e−qTE∗

S

[(
Mα

T (S̃) − S
)+

]

= Cα
fix(S, 0;S, q, r). (3.15)

Hence, the symmetry relation in Eq. (3.8) is established.

Remark

The fixed-floating symmetry relation in Eq. (3.15) does not hold when the
volatility is state dependent, like the CEV process. This is because when

σ = σ(St, t), the process S∗
t is related to W ∗

t = Wt−

∫ t

0

σ(Su, u) dt as follows:

S∗
t = S exp

(
−

∫ T

t

[
r(Su, u) − q(Su, u) +

σ2

(Su, u)

]
du−

∫ T

t

σ(Su, u) dW
∗
u

)
.

(3.16)
Apparently, the dynamics of S∗

t depends on the dynamics of St beyond the

current time t. In this case, S̃t cannot be defined when we attempt to do the
time reversal.

On the other hand, when σ = σ(t) is time dependent, the stochastic

differential equation for S̃t is then modified as

dS̃t

S̃t
= [q(T − t) − r(T − t)] dt+ σ(T − t) dW̃t, S0 = S. (3.17)

For the price formulas of the α-quantile options, the corresponding modifi-
cations to the discount terms and variance rate terms are given by

e−
R T

0
[q(T−t)−r(T−t)] dt = e−

R T

0
[q(t)−r(t)] dt
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and
1

T

∫ T

0

σ2(T − t) dt =
1

T

∫ T

0

σ2(t) dt,

respectively. Hence, the symmetry relation as in Eq. (3.15) remains valid
when r, q and σ are time dependent.

4 Conclusion

The Feynman-Kac approach is an effective tool to study the law of Brownian
functionals. In this paper, we apply the Feynman-Kac approach to derive
analytic expressions for the double Laplace transform of the density func-
tion of occupation time and the joint density function of occupation time
and terminal asset value under the CEV process. The derivation procedures
involve the solution of the Sturm-Liouville equation and the resulting ana-
lytic formulas are expressed in terms of the Whittaker functions. We then
illustrate how to use the occupation time density functions to derive the inte-
gral representations of α-quantile options. When the underlying asset price
process follows the Geometric Brownian motion, we obtain the symmetry re-
lation between the prices of floating strike put and fixed strike call α-quantile
options.
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Appendix – Whittaker functions

The Whittaker functions satisfy the following second order ordinary differ-
ential equation (commonly called the Whittaker equation)

∂2u

∂x2
+

( 1
4
−m2

x2
+
k

x
−

1

4

)
u = 0.

The Whittaker functions are defined by

(i) Mk,m(x) = e−x/2xm+ 1

2 1F1

(
1

2
+m− k, 1 + 2m, x

)
, where the confluent

hypergeometric function 1F1 is given by

1F1(a, b, x) =
Γ(b)

Γ(a)

∞∑

n=0

Γ(a+ n)xn

Γ(b+ n)n!
;

(ii) Wk,m(x) = e−x/2xm+ 1

2T

(
1

2
+m− k, 1 + 2m, x

)
, where the Tricomi func-

tion is given by

T (a, b, x) =
1

Γ(a)

∫ ∞

0

e−xtta−1(1 + t)b−a−1 dt.

The derivatives of Mk,m(x) and Wk,m(x) are given by

dn

dxn

(
e−

x
2xm− 1

2Mk,m(x)
)

= (−1)n(−2m)ne
−x

2xm−n
2
− 1

2Mk+ n
2
,m−n

2
(x)

dn

dxn

(
e−

x
2xm− 1

2Wk,m(x)

)
= (−1)ne−

x
2xm− 1

2
−n

2Wk+ n
2
,m−n

2
(x).

where (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), (a)0 = 1.
In addition, we have the following relation:

M ′
k,m(x)Wk,m(x) −Mk,m(x)W ′

k,m(x) =
Γ(2m+ 1)

Γ
(
m− k + 1

2

) .

Some asymptotic results of 1F1(a, b, x) and T (a, b, x) for large x and small x
are presented below:

(i) For large x, (a, b fixed),
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(a) 1F1(a, b, x) =
Γ(b)

Γ(a)
exxa−b(1 +O(x−1));

(b) T (a, b, x) = x−a(1 +O(x−1)).

(ii) For small x, (a, b fixed)

(a) 1F1(a, b, 0) = 1, for b > 0;

(b) T (a, b, x)

=





Γ(1−b)
Γ(1+a+b)

+O(|x|) for b < 0
1

Γ(1+a)
+O(|x lnx|) for b = 0

Γ(1−b)
Γ(1+a−b)

+O(|x|1−b) for 0 < b < 1

− 1
Γ(a)

[
ln x+ Γ′(a)

Γ(a)
− 2Γ′(1)

Γ(1)

]
+O(|x lnx|) for b = 1

Γ(b−1)
Γ(a)

x1−b +O(1) for 1 < b < 2
Γ(b−1)
Γ(a)

x1−b +O(| lnx|) for b = 2
Γ(b−1)
Γ(a)

x1−b +O(|x|b−2) for b > 2

.
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