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Abstract

Repricing of an employee stock option refers to the practice of lowering
the strike price and /or extending the maturity date of a previously
granted employee stock option. Normally, firms reprice after a pe-
riod of significant stock price decline that renders the employee stock
options deeply out-of-the-money. By modeling various repricing mech-
anisms based on some form of Brownian functional of the stock price
process, we investigate the impact of the embedded repricing flexibil-
ity on the market value of the employee stock options. We manage
to derive analytic representation of the price functions of the reprice-
able options. We also construct the lattice tree type option valuation
algorithms by applying the forward shooting grid technique to incor-
porate the path dependent feature of the Brownian functional in the
repriceable option models. Our calculations show that the repricing
flexibility may have varying degrees of impact on the option values
and their comparative statics. The option delta (option vega) values
of the repriceable options are seen to be lower (higher) than those of
the vanilla options.

1 Introduction

Employee stock options are considered as a standard component of the com-
pensation package used to attract, retain and motivate employees. The value
of this equity compensation may move up and down, depending on the per-
formance of the firm’s stock price. In the event of falling stock price and the
options become underwater (out-of-the-money), the employees are usually
the first group of people that feel the loss of wealth. In order to avoid the
disappointed employees from leaving the firms, many firms are tempted to
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lower the strike price and / or extend the maturity date of the employee
options when the firm’s stock price falls substantially. In the sample of firms
analyzed by Chance et al . (2000), they find that repricing usually follows a
period of about one year of poor firm-specific performance in which the aver-
age firm loses one-fourth of its value. Besides the traditional repricing, the 6
& 1 (six-month-one-day) repricing has become more popular recently. In this
so-called synthetic repricing, the firm cancels the underwater options and re-
places them by new options that are received six months and one day later
at strike equals the then-current stock price. Compared to the firms that
continued the traditional repricing over the same time period, 6 & 1 repric-
ing firms are shown to have higher growth potential and are more likely to
be followed by analysts (Zheng, 2004).

Repricing is considered as an embedded flexibility to the employer. Ac-
cording to the Towers Perrin survey report in late 1990s, 44% of the firms
responding to the survey claim that repricing is not allowed under the terms
of the stock option plan. Chen (2004) investigates the determinants of firms’
repricing policies. He discovers that firms that have better internal gov-
ernance, ability to use more powerful stock-based incentives, or have less
shareholder scrutiny are more likely to retain repricing flexibility. Ferri
(2004) shows from his analysis of over 4,000 firm-level repricings of exec-
utives and employees’ stock options that there is a significant evidence of
managerial self-serving behavior in the design of the repricing offer. He finds
that repricings are timed just before significant price increase when the CEO
participates in the repricing, but not in employee-only repricings.

The practice of repricing has been controversial. Such practice has drawn
criticism for weakening managerial incentives. With the embedded repricing
flexibility, the employees may perceive that they do not need to care too
much about overall stock price performance since their vested value in the
options will be relatively well protected. However, when options become deep
underwater, firms face the pressure to reprice in order to address employee
incentive concerns. Repricing is a valuable retention tool and indirectly helps
retain shareholder value. Based on their two-step utility model, Acharya et

al . (2000) find that though the anticipation of repricing weakens incentives in
the original option award, the repricing flexibility can be a value-enhancing
strategy for firms to use, even in ex-ante sense. They show that repricing
implies two competing effects, a negative feedback on initial incentives but
a positive incentive effect that gives the principal greater ability to influ-
ence continuation outcomes. Chidambaran and Prabhala (2003) argue that
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repricing costs are modest, and the benefits flow mostly to non-executive em-
ployees. Also, restriction of repricing may simply force firms to other inferior
contractual choices and create deadweight losses to shareholders. Carter and
Lynch (2003) find little evidence that repricing affects executive turnover.
Their study indicates that repricing helps lower turnover due to underwater
options.

There have been several earlier papers that examine the impact of repric-
ing on the market value of employee stock options. Using the Black-Scholes
pricing framework and assuming repricing to be triggered once the stock
price touches the preset trigger threshold, Brenner et al . (2000) and Johnson
and Tian (2000) model a repriceable employee stock option as the sum of
two barrier options: a down-and-out barrier call with one-touch knock-out
barrier and a down-and-in barrier call with the same barrier but a new re-
set value of strike price. Corrado et al . (2001) use the utility maximization
approach for pricing options that allow multiple times of repricing.

In this paper, we would like to examine how the embedded repricing
flexibility may affect the ex-ante option value. Instead of employing the one-
touch mechanism to trigger repricing, we follow the Carr-Linetsky’s Brownian
functional (2000) approach by assuming that the firm exercises repricing only
when the stock price falls below some target barrier level for a certain period
of time. The time duration of the stock price process staying below the barrier
can be measured by either the excursion time or occupation time of the stock
price path below the barrier. Compared to the one touch mechanism, the
Brownian functional approach reflects better the reality of the stock price
movement before repricing occurs.

The paper is organized as follows. In the next section, we state the
model formulation of the repricing mechanism based on various forms of the
Brownian functionals. These include the excursion time or occupation time
below a pre-specified barrier level of the stock price. We manage to obtain
analytic representation of the price of repriceable employee stock options.
In Section 3, we design effective option valuation algorithms by applying the
forward shooting grid approach to obtain the numerical solution of the pricing
models. The numerical scheme can be extended to incorporate the feature
that allows for potential early exercise of the option due to employment
termination and employee’s desire for liquidity; and together, the number of
repricing can be more than one. In Section 4, we compare the numerical
option values obtained from the numerical evaluation of the analytic price
formulas and the lattice tree calculations. Such comparison serves to test the
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validity of the analytic price formulas and numerical accuracy of the lattice
tree algorithms. We also examine the impact of various forms of repricing
flexibility on the market value of the employee stock options. By examining
the sensitivities of the option values with respect to stock price fluctuation
and volatility, we deduce the impact of the repricing flexibility on incentive
strengths. Concluding remarks are presented in the last section.

2 Model formulation and analytic represen-

tation formulas

In this section, we discuss the pricing formulation of an employee stock option
whose strike price or/and maturity date may be reset when certain triggering
condition is satisfied. Instead of the simple one-touch mechanism where
the option terms are reset at the first time that the stock price falls below
a prespecified ‘barrier’ level B, the reset triggering condition is taken to
be dependent on the time duration that the stock price stays below B, as
measured by various forms of the Brownian functional of the stock price
process.

We assume frictionless market, constant interest rate and dividend yield,
and that the underlying stock price of the employee stock option observes
the following Geometric Brownian process under the risk neutral probability
measure Q:

dSt

St
= (r − q) dt + σ dWt, S0 = x, (2.1)

where Wt, t ≥ 0, is a Q-Brownian process and x > 0, σ is the constant
volatility. It then follows that

St = x exp

((
r − q − σ2

2

)
t + σWt

)
. (2.2)

For notational convenience, we define

µ =
r − q − σ2

2

σ
and b =

1

σ
ln

B

x
, (2.3)

where B < x is the pre-specified barrier level for defining the reset triggering
condition. Let the date of valuation of the employee stock option be time zero
and T be the maturity date of the option. Two common forms of Brownian
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functional that measures the duration of the stock price staying below the
triggering barrier B can be defined as follows.

1. The occupation time Γt,B is the total amount of time that the stock
price process is staying below B from time zero up to time t

Γt,B =

∫ t

0

1{Su≤B} du. (2.4a)

Given α satisfying 0 < α < 1, the right-continuous inverse of the
occupation time is defined by

Γ−1
α,B = inf {t ≥ 0 : Γt,B > αT} , 0 < α < 1. (2.4b)

Here, Γ−1
α,B is interpreted as the first time at which the total time du-

ration with stock price staying below B reaches α fraction of option’s
life.

2. The excursion time Ht,B at a given time t is the amount of time that
the stock price process stays below B in its most recent excursion to
the region below B. That is,

Ht,B = (t − gt,B)1{St≤B} (2.5a)

where
gt,B = sup(u ≤ t : Su = B). (2.5b)

Given α satisfying 0 < α < 1, the right-continuous inverse of the
excursion time is defined by

H−1
α,B = inf{t ≥ 0 : Ht,B > αT}, 0 < α < 1. (2.6)

Here, H−1
α,B is the first time at which the excursion time to the region

below B reaches α fraction of the option’s life.

The stopping time t̂ at which repricing of the employee stock option is
triggered depends on the choice of the Brownian functional, barrier level B
and parameter α. For example, suppose we choose the random trigger time
t̂ to be governed by H−1

α,B, then the strike or the maturity date of employee
stock option are reset when the excursion time below B reaches α fraction
of option’s life. In some option contractual design, a black-out period of
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repricing may be specified. Let δ be the length of the time period prior to
the original maturity date within which repricing is not allowed. In this case,
repricing can occur only if t̂ < T − δ.

In this paper, we consider the most general case where both strike and
maturity are reset and there is a black-out period δ. Upon repricing, let the
strike price be reset to K ′ and maturity date to T ′. The terminal option
payoff (ST − K)+ is paid at time T if the triggering condition has not been
met prior to T − δ, otherwise the payoff becomes (ST ′ −K ′)+ paid at time T ′

if the triggering time t̂ occurs prior to T −δ. Note that t̂ can be either Γ−1
α,B or

H−1
α,B, depending on the specification of the Brownian functional used as the

criterion of trigger. Suppose the employee stock option is European style,
the value of the employee stock option at time zero with repricing flexibility
is given by

V = EQ

[
e−rT (ST − K)+1{bt≥T−δ} + e−rT ′

(ST ′ − K ′)+1{bt<T−δ}

]
, (2.7)

where EQ is the expectation under the risk neutral measure Q conditional
on the information at time zero.

There are various choices of setting K ′ and T ′. The reset strike may be
chosen to depend on the stock price at the repricing date t̂. In the more
interesting case of 6 & 1 repricing, the strike price is set at the stock price
on 6 months and 1 day after the repricing date t̂. In this case, we have
K ′ = Sbt+0.5. When dealing with maturity extension, the reset maturity T ′

may become either t̂+T or T +5. The first case implies that the new option
is granted with the same life span as that of the original option while the
second case refers to a fixed extension period of 5 years beyond the original
maturity date.

The European call option value cBS at time 0 with an initial stock price
x, strike K and maturity T is given by

cBS(x, τ ; K) = EQ[e−rT (ST − K)+], τ = T. (2.8)

For the call price function cBS(x, τ ; K), we follow the notation that the tem-
poral variable in the price function refers to the time to expiry τ of the call
option. We would like to decompose the value V at time 0 of the repriceable
option into the sum of repricing premium and European call option value so
that

V = EQ[e−rT ′

(ST ′ − K ′)+1{bt<T−δ}

− e−rT (ST − K)+1{bt<T−δ}] + cBS(x, T ; K). (2.9)
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By applying the Girsanov Theorem, we introduce a new probability measure
Qµ such that Zt = Wt + µt is a Qµ-Brownian process. Under Qµ, the first
term in Eq. (2.9) can be transformed as follows:

EQ[e−rT ′

(ST ′ − K ′)+1{bt<T−δ}]

= EQµ

[
e
−

„
r+ µ2

2

«
T ′

eµZT ′

(
xeσZT ′ − K ′

)+
1{bt(Z)<T−δ}

]
, (2.10)

where t̂(Z) is obtained from t̂ by applying appropriate transformation from
the stock price process S to the Qµ-Brownian process Z.

We consider the following various types of reset strike:

1. The reset strike K ′ is a fixed constant

By applying the technique of iterated conditional expectation, one can
show that

EQµ

[
e
−

„
r+ µ2

2

«
T ′

eµZT ′ (xeσZT ′ − K ′)+1{bt(Z)<T−δ}

]

=

∫ T−δ

0

∫ ∞

−∞

e
−

„
r+ µ2

2

«
h
eµzhcBS(xeσzh , T ′ − h; K ′)f(zh, h) dzhdh, (2.11)

where f(zh, h) is the density function of the joint process (Zbt(Z), t̂(Z)).
Combining Eqs. (2.9) and (2.11), the analytic representation formula
for the value of the employee stock option with repricing flexibility can
be expressed as

V = cBS(x, T ; K)

+

∫ T−δ

0

∫ ∞

−∞

e
−

„
r+ µ2

2

«
h
eµzh [cBS(xeσzh , T ′ − h; K ′)

− cBS(xeσzh , T − h; K)] f(zh, h) dzhdh.(2.12)

2. Resetting the strike price to the prevailing stock price on the trigger
date: K ′ = Sbt

Using a similar argument as above, we obtain

V = cBS(x, T ; K)

+

∫ T−δ

0

∫ ∞

−∞

e
−

„
r+ µ2

2

«
h
[e(µ+σ)zhcBS(x, T ′ − h; x)

− eµzhcBS(xeσzh , T − h; K)]f(zh, h) dzhdh. (2.13)
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3. Resetting the strike price to the prevailing stock price on 6 months and
1 day after the trigger date: K ′ = Sbt+0.5 (called 6 & 1 repricing)

Let cfwd(x, τ ; ∆) denote the price function of a European call option
with time to expiry τ conditional on the option that is forward starting
∆ period from now with the strike price set at the prevailing stock price
on the forward starting date. We then have

V = cBS(x, T ; K)

+

∫ T−δ

0

∫ ∞

−∞

e
−

„
r+ µ2

2

«
h [

e(µ+σ)zhcfwd(x, T ′ − h; 0.5)

− eµzhcBS(xeσzh , T − h; K)] f(zh, h) dzhdh. (2.14)

Joint density function of (Zbt(Z), t̂(Z))
To obtain a closed form analytic representation of the price function of a
repriceable employee stock option under various forms of reset strike and
maturity, it suffices to find the analytic representation of the density func-
tion of the joint process (Zbt(Z), t̂(Z)). When the stopping time t̂ is dependent
on either the occupation time Γt,B(Z) or the excursion time Ht,B(Z), we are
able to derive the joint density of (Zbt(Z), t̂(Z)). The analytic representation
formulas may involve an inversion of Laplace transform function. In the
literature, computational algorithms for performing numerical inversion of
Laplace transforms are well developed. Craddock et al . (2000) provide a
survey of techniques of numerical inversion of Laplace transforms with ap-
plications to derivatives pricing.

We consider the joint density of (Zbt(Z), t̂(Z)) under the following two

cases: (i) t̂(Z) = Γ−1
α,b(Z), (ii) t̂(Z) = H−1

α,b(Z).

1. Occupation time specification

The occupation time of the Brownian process {Zt : t ≥ 0} with the
down-barrier b is defined by

Γt,b(Z) =

∫ t

0

1{Zu≤b} du (2.15a)

and its corresponding right-continuous inverse is

Γ−1
α,b(Z) = inf{t ≥ 0 : Γt,b(Z) > αT}, 0 < α < 1. (2.15b)
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To derive the joint law P (ZΓ−1

α,b
(Z) ∈ dz, Γ−1

α,b(Z) ∈ dt), we start with

the case b = 0. Applying the known results in Karatzas and Shreve’s
text (1991) and Huggonnier’s paper (1999), we can obtain the following
analytic expression of the joint law when b = 0.

m(z, t; αT )

= P
(
ZΓ−1

α,0(Z) ∈ dz, Γ−1
α,0(Z) ∈ dt

)

=
1

π

[
− zαT

t2
√

αT (t − αT )

]
exp

(
− z2

2αT

)

+

√
2

π

(
1

t

)3/2(
1 − z2

t

)
exp

(
−z2

2t

)
N

(
z(t − αT )√
αT (t − αT )t

)
, (2.16)

where N(x) is the normal distribution function. For b 6= 0, by using
the strong Markov property of the Brownian motion and let

Tb = inf{t : Zt = b}, (2.17)

we obtain the density function of the joint law as follows

f(z, t) = P (ZΓ−1

α,b
(Z) ∈ dz, Γ−1

α,b(Z) ∈ dt)

= P (ZΓ−1

α,0(Z) + b ∈ dz, Γ−1
α,0(Z) + Tb ∈ dt)

=

∫ t−αT

0

− b√
2πu3

exp

(
− b2

2u

)
m(z − b, t − u; αT ) du,

z ≤ b, t > αT, (2.18a)

and
f(z, t) = 0 for z > b. (2.18b)

2. Excursion time specification

Recall the definition of the right-continuous inverse of the excursion
time of the Brownian process {Zt : t ≥ 0}

H−1
α,b(Z) = inf

{
t : 1{Zt≤b}(t − gt,b(Z)) > αT

}
(2.19a)

where

gt,b(Z) = sup{s : s ≤ t, Zs = b}.
(2.19b)

9



It is important to note that ZH−1

α,b
(Z) and H−1

α,b(Z) are independent

(Chesney et al ., 1997). Using the marginal density functions derived
in Chesney et al .’s paper, the joint density function is given by

f(z, t)

= P (ZH−

α,b
(Z) ∈ dz, H−1

α,b(Z) ∈ dt)

= P (ZH−

α,b
(Z) ∈ dz)P (H−1

α,b(Z) ∈ dt)

=
b − z

αT
exp

(
−(z − b)2

2αT

)
1{z≤b}L−1

s

(
exp(b

√
2s)

Ψ(
√

2sαT )

)
, (2.20)

where L−1
s denotes the Laplace inversion operator and

Ψ(x) = 1 +
√

2πx exp(x2/2)N(x). (2.21)

3 Construction of lattice tree algorithms

One may perform valuation of the above analytic price formulas through
numerical computation of the multiple integrals and use of Laplace inversion
algorithm. However, numerical valuation of these repriceable options can
be obtained through the lattice tree calculations that are commonly used in
option valuation. To cope with the path dependence feature of the Brownian
functional in the repriceable option models, it is necessary to augment an
auxiliary state vector at each node on the lattice tree that simulates the
excursion time or occupation time. This numerical technique is called the
forward shooting approach in the literature (Barraquand and Pudet, 1996;
Kwok and Lau, 2001).

Forward shooting grid technique

We first discuss how to construct the corresponding forward shooting grid
algorithm in pricing employee stock options with various forms of reset of
strike price and/or maturity date based on the triggering criteria discussed in
Section 2. We also show how to extend the forward shooting grid algorithm to
include additional features that allow for potential early exercise and multiple
repricing. As in usual lattice tree calculations, we simulate the stock price
process St by a trinomial lattice tree. Let ∆t denote the time step, where
∆t = T/M . Here, M is the total number of time steps in the lattice tree. Let
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∆x denote the step width of x = ln S, where ∆x = σ
√

∆t. We let V m
j,k denote

the numerical option value at the mth time level and j jumps from the initial
value of x = ln S, m = 0, 1, · · · , M , and j = −m,−m+1, · · · , 1, · · · , m. Here,
k represents the positive counting index of the path dependent Brownian
functional, which may be the excursion time or occupation time. When the
integer counting index k reaches the target cap Kcap, where Kcap = αT/∆t,
repricing is triggered.

Following the formulation of the forward shooting approach in Kwok-
Lau’s paper (2001), we construct the discrete grid function g(k, j) that simu-
lates the correlated evolution of the Brownian functional with the stock price
process. Let xj = ln S0 + j∆x, the grid function is defined by

(i) occupation time specification

g(k, j) = k + 1{xj≤lnB} (3.1a)

(ii) excursion time specification

g(k, j) = (k + 1)1{xj≤lnB}. (3.1b)

We proceed backward in the lattice tree calculations by specifying the
terminal payoff of the option as

V M
j,k = max(exj − K, 0), −M ≤ j ≤ M, k < Kcap. (3.2)

To model the black-out period that is δ-period prior to expiration during
which repricing is not allowed, we define

M̃ = M − T − δ

∆t
. (3.3)

We follow the usual trinomial calculations for M̃ ≤ m ≤ M − 1, where

V m
j,k = e−r∆t

(
puV

m+1
j+1,g(k,j+1) + poV

m+1
j,g(k,j) + pdV

m+1
j−1,g(k,j−1)

)
. (3.4)

The probability values in the above trinomial scheme are given by

pu =
ν + c

2
, po = 1 − ν pd =

ν − c

2
, (3.5a)
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where

ν =
σ2∆t

∆x
and c =

(
r − q − σ2

2

)
∆t

∆x
. (3.5b)

When 0 ≤ m < M̃ , repricing will be triggered when the value of the grid
function equals or exceeds Kcap. Hence, when k < Kcap, the lattice tree calcu-
lations follow the usual trinomial scheme as depicted in Eq. (3.4). However,
when k = Kcap, we set the nodal option value to be

V m
j,Kcap

=





cBS(ln xj , τ ; K ′) pre-set new strike equals K ′

cBS(ln xj , τ ; ln xj) new strike equals prevailing stock price
cfwd(ln xj , τ ; 0.5) 6 & 1 repricing

, (3.6)

according to various policies of strike reset. Here, the time to expiry τ of the
new option can be T − m∆t if there is no maturity extension or equals T if
the new option is granted with the same life span T as that of the original
option.

Early exercise feature and multiple repricing

The forward shooting grid approach has the flexibility to incorporate addi-
tional features, like the potential early exercise of the option and occurrence
of multiple repricing. For the early exercise (or forfeiture) feature, we follow
the Carr and Linetsky’s intensity approach (2000) of modeling the arrival of
the early exercise event as an exogenous point process. Let ht denote the
early exercise intensity with dependence on the stock price St and time t.
We take

ht = λf + λe1{St>K}, (3.7)

where λf and λe are positive constants. Here, λf is the constant intensity
of early exercise due to the exogenous employment termination (taken to be
independent of the stock price) and λe1{St>K} is the constant intensity of
the early exercise due to the employee’s desire for liquidity (occurring only
when the option is in-the-money). To incorporate the above criterion of early
exercise, the forward shooting grid algorithm is modified as follows:

V m
j,k = exp

(
−
(
r + λf + λe1{xj>ln K}

)
∆t
)

[
puV

m
j+1,g(k,j+1) + poV

m
j,g(k,j) + pdV

m
j−1,g(k,j−1)

]

+ (λf + λe)∆t(exj − K)+. (3.8)
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As deduced from the governing differential equation of the option value func-
tion [see Eq. (5) in Carr-Linetsky’s paper], the intensity ht enters into the
discount factor term where the discount rate “apparently” increases from r
to r +λf + λe1{xj>ln K}. The last term (λf +λe)∆t(exj −K)+ represents the
outcome of the early exercise payoff (exj −K)+ that occurs with probability
(λf + λe)∆t over the time interval ∆t when the option is in-the-money (that
is, exj − K > 0).

To allow for multiple repricing, it is necessary to modify the auxiliary
condition at k = Kcap. Instead of setting V m

j,Kcap
to be the Black-Scholes

price function [as shown in Eq. (3.6)], we simply set V m
j,Kcap

to be the price
function of the repriceable option with one repricing right less. The lattice
tree calculations continue with nesting iterations on the count of repricing
right, with the count decreasing by one whenever a repricing occurs (the oc-
currence is contingent upon the satisfaction of the repricing trigger criterion).

4 Numerical calculations and examination of

pricing behaviors

We performed numerical calculations of the value of the employee stock op-
tion under various reset policies on the strike and maturity and different
repricing trigger mechanisms. Unless otherwise stated, the parameter values
of the option model are

S0 = 100, K = 100, B = 90, σ = 20%, r = 5%, q = 2%, T = 5 and α = 10%.

For the reset policy on the strike price, we consider

(i) 6 & 1 synthetic repricing: K ′ = Sbt+0.5;

(ii) new strike set at the prevailing stock price at trigger moment: K ′ = Sbt;

(iii) new strike set at the barrier level: K ′ = B.

Let T ′ be the new maturity date of the new option. For the reset policy on
the maturity date, we allow

(i) no maturity extension at all: T ′ = T ;
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(ii) new maturity date set at 5 years from the trigger date: T ′ = t̂ + 5.

In Tables 1 and 2, we list the numerical option values of the employee stock
option obtained from numerical valuation of the analytic price formulas and
lattice tree calculations using the forward shooting gird algorithm under var-
ious reset policies and repricing trigger mechanisms (occupation time criteria
and excursion time criteria in Table 1 and Table 2, respectively). We also list
the percentage gain in option value of the repriceable options with reference
to the option value of the vanilla counterpart (considered as the premium of
the repriceable feature as percentage of the vanilla option value). As repric-
ing flexibility always leads to an increase in option value, so we always have
a positive value of premium for all types of reset criteria. The numerical
option values are obtained from the lattice tree calculations using varying
number of time steps N . Taking the numerical values from valuation of ana-
lytic formulas as “exact”, the percentage errors of the numerical results from
lattice tree calculations are seen to be small, typically less than 0.2%. The
good agreement between the two sets of numerical results serves to verify the
validity of the analytic formulas.

In Table 3, we list the numerical values of the executive stock options
which allow for double repricing flexibility and possibility of early termi-
nation. The numerical calculations are based on the lattice tree algorithm
defined in Eq. (3.8), together with the use of the early exercise intensity de-
fined in Eq. (3.7). We use the occupation time specification as the repricing
trigger mechanism and the strike reset and maturity reset criteria are defined
by K ′ = Sbt and T ′ = t̂ + 5, respectively. The value of the executive stock
option that allows for double repricing (shown in Table 3 with λf = λe = 0)
is seen to be higher than that of the counterpart with single repricing (shown
in Tables 1 and 2 with K ′ = Sbt and T ′ = t̂ + 5). Obviously, option value
decrease with higher propensity of early exercise since this leads to poten-
tial shorter life of the option. Hence, as λf and/or λe increases, the option
value decreases. Comparing the two intensity parameters, λf has a stronger
influence on the drop of the option value.

Impact of repricing on option values and employees’ incentives

First, we would like to comment on the impact of reset criteria and various
mechanisms of repricing trigger on the value of an employee stock option. We
observe from Table 1 that the strike reset policy which sets the new option
strike price at the prevailing stock price gives the highest option value com-
pared to other strike reset policies. This is quite obvious as the prevailing

14



stock price is expected to be lower than the barrier level or the stock price
at 6 months later, and a lower new strike price means a higher value for the
new call option. Comparing the two sets of option values in Tables 1 and 2,
the option values corresponding to the triggering criterion that is based on
excursion time specification (entries in Table 2) are lower than those under
the occupation time specification (entries in Table 1). This is intuitive since
repricing is more difficult to be triggered under the excursion time specifica-
tion. We also plot the value of repriceable option against various parameters
in the pricing model, like stock price (see Figure 1), option maturity (see Fig-
ure 2), stock price volatility (see Figure 3), repricing barrier level (see Figure
4). The option values are seen to be increasing with respect to each of these
parameter values. In Figure 2, we observe that the long-maturity options are
less sensitive to the duration of occupation time or excursion time specified
for triggering repricing.

Next, we would like to compare the incentive effects of the vanilla (non-
repriceable) executive stock options with their repriceable counterparts. The
natural question: would the repricing feature enhance or decrease the incen-
tives for the executives to increase the stock price and stock price volatility?
Though the measurement of the exact incentives for a particular executive
would depend on the executive’s personal risk preference and wealth level,
we use the risk neutral option values and their comparative statics as the
proxies for the assessment of incentives of increasing stock price / stock re-
turn volatility. In Figure 5, we show the plot of the option delta (derivative
of the option value with respect to the stock price) against stock price of
the repriceable executive stock options under the occupation time repricing
mechanism and with varying forms of strike reset and maturity reset. We
observe that under all repricing criteria, the deltas of the repriceable options
are always lower than those of the vanilla counterparts. This is consistent
with the usual intuition that the repricing flexibility leads to a lower incentive
for the employees to increase the stock price, thus a lower option delta value.
The delta values are seen to differ quite significantly with respect to different
reset policies and stock price level. The option delta values increase with
higher stock price level, a typical pricing property of option type derivatives.
The deltas assume lower values when the strike reset criterion is based on the
prevailing stock price or stock price in 6 months later. Another comparative
static is the option vega, which is the derivative of the option price with re-
spect to the volatility σ of the stock price. Higher option vega of the option
means a higher incentive for the option holder to increase the volatility (firm
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risk). In Figure 6, we plot the option vega against volatility σ under varying
reset policies on the strike price and maturity. For all cases of repricing, the
vega values of the executive stock options with repricing flexibility are always
higher than those of the vanilla option. Highest vega values occur for the
case when the strike price is reset to the prevailing stock price and the new
maturity is extended to 5 years after the trigger date.

5 Conclusion

Retention enhancing features in compensation package are more important
when there is a higher perceived retention risk and better outside employment
opportunities for the firm’s employees. Empirical studies on employee stock
options have shown that repricing benefits shareholders since it enhances re-
tention of key managers and employees in the presence of underwater options.
In this paper, we propose pricing formulations of repriceable employee stock
options in which we model various forms of repricing mechanisms that are
based on the occupation time and excursion time of the stock price process.
Our pricing models allow for different types of strike price reset and matu-
rity extension upon the trigger of repricing. We manage to obtain analytic
representation of the price function of the repriceable options in terms of a
multiple integral that involves the density function of the joint process of
stock price and trigger time of repricing. The option values can also be com-
puted effectively using trinomial tree algorithms embedded with the forward
shooting grid technique, by appending a grid function at each lattice node to
capture the correlated evolution of the stock price process and its Brownian
functional. The trinomial tree algorithm is also extended to price repriceable
executive stock options that allow for multiple repricing flexibility and early
termination. Impact of various repricing mechanisms and reset policies on
the employee option values and comparative statics have also been studied.
Depending on the chosen criteria on strike reset and maturity reset, we ob-
serve that the option delta (option vega) of the repriceable stock options are
always lower (higher) than those of the non-repricable counterparts. These
observations indicate that the various reset polices have negative impact on
employees’ incentives to increase the stock price and positive impact on in-
creasing the stock return volatility. Our reported results on incentive effects
may shed insight on the design of optimal executive stock option plans that
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better align the interests of the employees with those of their employers.
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Figure 1 Plot of employee stock option value against stock price under
varying repricing criteria, where the occupation time and excursion time can
be 6 months or 12 months.
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Figure 2 Plot of employee stock option value against maturity under varying
repricing criteria, where the occupation time and excursion time can be 6
months or 12 months.
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Figure 3 Plot of employee stock option value against stock price volatility
σ under varying repricing criteria, where the occupation time and excursion
time can be 6 months or 12 months.
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Figure 4 Plot of value of employee stock option against repricing barrier
under varying repricing criteria, where the occupation time and excursion
time can be 6 months or 12 months.
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Figure 5 Plot of option delta against stock price under varying strike reset
and maturity reset criteria.
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Figure 6 Plot of option vega against stock price volatility under varying
strike reset and maturity reset criteria.
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analytic formula lattice tree calculation
option value percentage gain N = 72 N = 288 N = 512

K ′ = Sbt+0.5 T ′ = T 24.61 11.81% 24.62 24.60 24.60

T ′ = t̂ + 5 26.54 20.58% 26.53 26.58 26.60
K ′ = Sbt T ′ = T 25.28 14.83% 25.27 25.26 25.27

T ′ = t̂ + 5 27.06 22.94% 27.03 2.708 27.11
K ′ = B T ′ = T 23.49 6.04% 23.26 23.31 23.35

T ′ = t̂ + 5 25.30 13.67% 25.04 25.16 25.22

Table 1 Comparison of the numerical option values of executive stock options
obtained from valuation of analytic price formulas and lattice tree calcula-
tions (with varying number of time steps N). The repricing trigger mecha-
nism is based on the specification of occupation time.

analytic formula lattice tree calculatons
option value percentage gain N = 72 N = 288 N = 512

K ′ = Sbt+0.5 T ′ = T 24.27 10.26% 24.47 24.42 24.42

T ′ = t̂ + 5 25.83 17.35% 26.23 26.16 26.16
K ′ = Sbt T ′ = T 25.08 12.67% 25.04 24.97 24.97

T ′ = t̂ + 5 26.67 19.26% 26.66 26.57 26.57
K ′ = B T ′ = T 23.04 4.22% 23.02 22.97 22.97

T ′ = t̂ + 5 24.62 11.85% 24.64 24.57 24.57

Table 2 Comparison of the numerical option values of executive stock options
obtained from valuation of analytic price formulas and lattice tree calcula-
tions (with varying number of time steps N). The repricing trigger mecha-
nism is based on the specification of excursion time.
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occupation time (double repricing) excursion time (double repricing)
option value percentage gain option value percentage gain

λf = 0, λe = 0 28.18 28.02% 27.23 23.73%

λf = 0, λe = 0.05 26.80 27.77% 25.95 17.89%

λf = 0, λe = 0.1 25.58 16.20% 24.80 12.66%

λf = 0.05, λe = 0 25.49 15.78% 24.64 11.95%

λf = 0.05, λe = 0.05 24.33 10.55% 23.56 7.05%

λf = 0.05, λe = 0.1 23.30 5.86% 22.59 2.64%

λf = 0.1, λe = 0 23.20 5.40% 22.45 1.97%

λf = 0.1, λe = 0.05 22.23 0.99% 21.53 −2.17%

λf = 0.1, λe = 0.1 21.36 −2.98% 20.71 −5.91%

Table 3 Values of the executive stock options with allowance of double repric-
ing and possibility of early termination [as characterized by the intensity
parameters λe and λf defined in Eq. (3.7)].
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