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Abstract

Using real options game models, we consider the characterization of strategic equilibria
associated with an asymmetric R&D race between an incumbent firm and an entrant
firm in the development of a new innovative product under market and technologi-
cal uncertainties. The random arrival time of the discovery of the patent protected
innovative product is modeled as a Poisson process. Input spillovers on the R&D ef-
fort are modeled by the change in the leader’s hazard rate of success of innovation
upon the follower’s entry into the R&D race. Asymmetry between the two competing
firms include sunk costs of investment, stochastic revenue flow rates generated from
the product, and hazard rates of arrival of success of R&D efforts of the two firms.
Under asymmetric duopoly, we obtain the complete characterization of the three types
of Markov perfect equilibria (sequential leader-follower, preemption and simultaneous
entry) of the firms’ optimal R&D entry decisions with respect to various sets of model
parameters. Our model shows that under positive input spillover, preemptive equilib-
rium does not occur in the R&D race due to the presence of dominant second mover
advantage. The two firms choose optimally to enter simultaneously if the sunk cost
asymmetry is relatively small; otherwise, sequential equilibrium would occur. When
the initial hazard rate is low relative to the level of input spillover, simultaneous entry
would occur as an optimal decision, signifying another scenario of dominant second
mover advantage. On the other hand, when the initial hazard rate is sufficiently high
so that the first mover advantage becomes more significant, simultaneous equilibrium
does not occur even under high level of positive input spillover.

1 Introduction

The key elements in the strategic R&D (Research and Development) race between competing
firms in the discovery of a new product include market and technological uncertainties, and
spillovers in R&D effort. Here, market uncertainty refers to the uncertainty over the future
stochastic revenue flow rate generated from the new innovative product. The technological
uncertainty is related to the random arrival time of success of the R&D effort in the develop-
ment of the new product. For spillover effects on R&D, output spillovers are characterized
by imperfect appropriability of the revenue generated from the innovation that occurs in the
product market after the completion of the R&D race. The use of new knowledge tends to
spread through commercial development, though the inventor may want to minimize such
spread. For input spillovers, research activities conducted in one firm may influence the
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research activities of other rival firms, and the externality effect can be positive or negative.
The knowledge created by one firm through R&D efforts may not be contained within that
firm. There are various possible modes of input spillovers under which positive externalities
may arise from the research efforts of the rival firms. In terms of knowledge and informa-
tional spillovers, the research personnel across various firms may discuss among themselves
topics of mutual interest, or research results may be disseminated through various public
channels, like publications and seminars. Also, the physical movement of research personnel
from one firm to another firm may give rise to knowledge and expertise transfer. In addition,
one firm may observe the actions of its competitors and learns from the experience of these
actions. On the other hand, negative input spillovers may arise due to congestion effects, say,
firms are competing for skilled research personnel. R&D spillovers may increase free-riding
incentives and impact on investment spending in research. A good review on the economic
analysis of spillovers of research can be found in Jaffe (1996).

The analysis of R&D races with spillovers has been well explored in the literature. Under
positive input spillovers, Kamien et al. (1992) analyze the effects of R&D cartelization
and research joint ventures on firms that are engaged in R&D competitions in the product
market. They show that the costs of production tend to decrease with R&D cartelization,
thus creating public-good effect. Also, both consumer and producer surpluses are improved,
through elimination of duplication effects and positive effects of economies of scale. In a later
work, Kamien and Zang (2000) observe that the rate of spillover depends on imitators’ level
of R&D efforts. In their R&D race model, they assume that a firm’s own R&D effort improves
its absorptive capacity to realize spillovers from other firms’ R&D activity. The positive effect
of absorptive capacity may offset the negative effect of providing spillovers to rival firms. The
stochastic extension of these earlier deterministic models of input spillovers and imperfect
appropriability has been performed by Miyagiwa and Ohno (2002) and Martin (2002), where
uncertainty of the arrival of innovation is modeled by a hazard rate process. The strategic
aspects of licensing and impact on social welfare are analyzed in these papers. Hauenschild
(2003) considers the impact of input and output spillovers when the R&D projects are risky.
He argues that since the loser in the R&D race suffers from loss in profit in the product
market, so there is a strong incentive to expand R&D effort. In addition, the winner also
benefits from the rival’s R&D expenditure, so a higher input spillover rate enforces a stronger
incentive on R&D. Zhou (2006) examines the effects of uncertainty and spillovers on R&D
expenditure. He argues that a higher spillover rate decreases the effectiveness of R&D
spending due to the public-good effect. However, since the expected prize of innovations
increases with increased R&D efforts, the larger pie effect may offset the public-good effect.
These works, however, have not included the consideration of economic uncertainty of the
stochastic revenue flows generated from the R&D innovations.

Investment decisions on risky projects with stochastic revenue flows have been commonly
analyzed via the real options approach (Dixit and Pindyck, 1994) using an analogy with a
financial call option of the right to invest at an optimal timing. Real options games arise when
real options of investment decisions are combined with competitive interactions between rival
firms. There has been a substantial literature on investment decisions analyzed under the
real options game framework. In the pioneering work by Fudenberg and Tirole (1985), they
establish the concept of rent equalization in the characterization of preemption equilibrium
in a duopoly. Later works by Pawlina and Kort (2006) and Kong and Kwok (2007) deal
with real options game models under asymmetric duopoly of investment competitions and
subject to economic uncertainty of the future revenue flows. Azevedo and Paxson (2012)
consider an asymmetric duopoly preemption real options model to analyze investments in
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new technologies subject to various forms of uncertainties: market revenues, efficiency after
adoption and arrivals of alternative new technologies.

The adoption of the real options game approach in analyzing R&D competition is rather
limited in the literature. The first work is initiated by Weeds (2002), in which she considers
an irreversible investment on R&D effort between two symmetric firms. Her model assumes
stochastic revenue flows and uncertainty of arrival of innovation, with no spillovers of R&D
efforts. Depending on the model parameter values, two types of non-cooperative equilibria
appear under her symmetric duopoly real options game model. Her model reveals that when
preemption equilibrium occurs, real option values of both firms are undermined due to fear of
preemption. Otherwise, equilibrium of delayed simultaneous entry of the two firms prevails,
where each firm holds back from R&D investing in the fear of starting a keen race. In an
extended real options game model of R&D race, Femminis and Martini (2011) incorporate
inter-firm spillovers by assuming a reduction of R&D cost for the follower. They show that
the follower firm’s optimal strategy is to invest on R&D once it can attain the spillover
and the resulting spillovers reduce the difference between the leader’s and follower’s value
functions.

Our real options game model of R&D competition extends both the models of Weeds
(2002) and Femminis-Martini (2011) in several aspects. First, we assume asymmetric firms
instead of identical firms, with asymmetry in sunk costs of R&D investment, stochastic
revenue flow rates and hazard rates of success of innovation. Unlike earlier works that model
input spillovers by assuming cost reduction in R&D effort or effective research intensity, we
incorporate the input spillover effects on the hazard rates of arrival of innovation of both
firms. Compared to the spillover assumptions in Femminis and Martini (2011), we consider
more elaborate modeling of the Poisson rates of innovation success of the two firms due
to spillovers. We assume that the leader’s hazard rate of success of innovation jumps to
a new value (which can be above or below the original value) upon optimal entry of the
follower firm into the R&D race. The positive jump in the hazard rate (positive spillover)
indicates that the follower firm’s R&D effort contributes to the leader’s R&D progress, say,
through exchange of information among researchers in the two firms. On the other hand,
negative spillover may be resulted when the two firms are competing for research personnel.
As an extension to the R&D model of Weeds (2002), we allow the flexibility of choosing
different appropriability factors in the stochastic revenue flow rate of the two competing
firms upon delivery of the new innovative product. Our model does allow output spillovers
of imperfect appropriability of the revenue flow generated by the innovation. Under the
restricted assumption of symmetry in costs and hazard rates, Weeds’ model reveals only two
types of equilibrium: (i) preemption equilibrium where real option values of both firms are
reduced due to competition, (ii) simultaneous delayed R&D entry to avoid a keen R&D race.

Compared to Weeds’ model, our model helps shed more insight into better understand-
ing of the phenomena in real options games and follower strategies, extending the discussion
in Cottrell-Sick (2002) on the second mover advantages in investment games. We show
that when the difference in investment costs of two firms is small, the type of equilibrium
changes from preemption equilibrium to simultaneous equilibrium as the externality fac-
tor of input spillover increases in value (second mover advantage becomes more prevalent).
That is, positive input spillover enhances “non-cooperative” simultaneous equilibrium as the
two firms hold back from entry into the R&D race. As a result, the negative aspect of
value function being undermined due to preemption threat is reduced through positive input
spillover. While preemption threat may undermine the second mover advantage, positive in-
put spillover resulted from delayed follower entry enhances the second mover advantage. By
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allowing asymmetry in costs, revenue flows, hazard rates and input spillover effects, our real
R&D race model illustrates that different types of equilibriums (sequential equilibrium, pre-
emptive equilibrium and simultaneous equilibrium) can be resulted from different parameter
configurations. In terms of policy implication, our model provides the insight that some form
of tacit collusion may help minimize inefficiencies generated in a preemptive game. Suppose
one of the two firms is a public firm whose objective is to maximize the social welfare as
proxied by the sum of value functions of the two firms, our analysis may justify the adoption
of more liberal approach of allowing some form of positive input spillover. Our model also
shows that sequential leader-follower equilibrium may be resulted under positive spillovers
and high level of cost asymmetry. Moreover, technological uncertainty on the arrival of in-
novation tends to mitigate the preemption incentive since the first mover that enters into
R&D is not guaranteed to be the first one that delivers the innovation.

As a remark, our model assumes “winner-takes-all” in revenue upon the winner’s success
of innovation. The investment models by Pawlina and Kort (2006) and Kong and Kwok
(2007) allow the follower to receive a proportional share of the market revenue (a smaller
share when under negative externalities) if it chooses to invest at a later time. The use of the
term “follower entry” takes different interpretations under our R&D model (which refers to
late entry in initiating R&D) and the other asymmetric duopoly of investment game models
(which refers to late entry in investment decision).

This paper is organized as follows. The formulation of the strategic R&D race model
in an asymmetric duopoly setting with spillovers is presented in the next section. Both the
incumbent firm and entrant firm (as the challenger) have the option to enter into R&D for a
new innovative product by investing an upfront sunk cost. In Section 3, we derive the value
functions and the corresponding trigger threshold values of the stochastic fundamental of
revenue flow at which the firms are optimal to enter into the R&D race either as the leader
or follower. Once the value functions and trigger threshold values are known, we deduce the
optimal preemption strategies or simultaneous entry by examining the sign properties of the
preemption function (defined as the difference between the preemption leader value function
and the follower value function). In Section 4, we present the full characterization of the
three types of Markov perfect equilibria of their optimal entry decisions into the R&D race.
In particular, we examine the impact of various parameter values, like the sunk costs, hazard
rate, etc. on the outcomes of the strategic games. In Section 5, we present various plots
of the value functions and figures that illustrate the characterization of strategic equilibria
under different parameter spaces. The last section contains conclusive remarks of the paper
and discuss the potential policy implications and insights that can be deduced from the
analysis of strategic equilibria in our R&D real options game models.

2 Model formulation

We consider the formulation of strategic R&D races model in an asymmetric duopoly setting
with an incumbent firm (Firm i) and an entrant firm (Firm e) as the challenger. Both firms
are assumed to be able to borrow and lend freely at the constant riskfree interest rate r.
The incumbent firm is now serving a monopolized market with an existing product. Firm i

receives the perpetual stochastic revenue flow rate xt from operating the incumbent product.
The stochastic process xt is a strong Markov càdlàg (right continuous with left limits) semi-
martingale on a filtered probability space (Ω,F , (Ft)t≥0, P ) adopted to the filtration (Ft)t≥0.
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Under the pricing measure P , xt follows the Geometric Brownian motion as governed by

dxt = µxt dt+ σxt dZt. (2.1)

Here, σ is the constant volatility and Zt is the standard Brownian motion. By following the
usual no-bubble condition, the constant drift rate µ is taken to be less than r (Dixit and
Pindyck, 1994).

Both firms are assumed to have the option to operate their R&D effort in the innovation
of a new product by investing an instantaneous sunk cost1. In this paper, the decision to
invest in a R&D project is assumed to be irreversible and the corresponding fixed sunk cost
for Firm j is Kj , where j = i, e. The two sunk costs, Ki and Ke, are different in general2.
Both firms strive for the discovery of the same new product. Also, we assume that the new
innovative product can be launched without any further cost.

In our model, we assume that the new product is an enhanced version of the incumbent
product and it serves a similar set of target customers so that the stochastic revenue flow rates
generated by these two products take the same form of the stochastic fundamental, except
with different proportional multipliers. The drive for enhanced new products that serve
an almost identical group of customers has been quite common in the consumer electronics
industry. In general, the combined market size of the incumbent and new products is larger
than the original market size of the incumbent product alone; otherwise, there will be no
incentive for launching the R&D efforts. To model the output spillover effects, the multipliers
(appropriability factors) in the revenue flow rates generated by the two products after the
delivery of the new product are chosen so as to reflect the appropriability of the revenue flow
rates from the two products to the competing firms. Besides investment cost asymmetry,
our model also assumes asymmetry between the two firms in their stochastic revenue flow
rates generated from operating the new product. When the incumbent firm (Firm i) wins
the R&D race (discovery of the new product and subsequent launching into the product
market), the total revenue flow rate received by Firm i from operating the two products
is (1 + π+

i )xt, where π+
i > 0. Here, π+

i xt represents the additional revenue flow rate from
operating the two products for Firm i. On the other hand, suppose the entrant firm wins the
R&D race, the revenue flow rate received by Firm e is πext, where πe > 0. Now the product
market is operated in duopoly with two products and this causes a drop in the revenue flow
rate of Firm i from xt to (1 − π−

i )xt, where 0 ≤ π−
i < 1. Here, π−

i xt represents the drop
in the revenue flow rate for Firm i due to loss of monopoly in the product market. It is
reasonable to set πe > π−

i so that the combined market size of the two products is larger
than the incumbent product alone.

In this duopoly R&D race between the incumbent and entrant firms, the two firms face
both technological and market uncertainty. The success of innovation by an active firm
entering into R&D is assumed to occur according to a Poisson distribution with constant
hazard rate. The two Poisson processes are assumed to be mutually independent and inde-
pendent of the revenue flow process xt. The earlier entry by a firm into the research phase

1Though continual R&D expenses would normally incur during the research phase, the assumption of an
instantaneous sunk cost [also adopted by Weeds (2002)] leads to less clumsy calculations in our later analysis
of strategic equilibria. Using a R&D flow cost that stops at the time of innovation would add a new term
(with dependence on the hazard rates) to the total R&D costs. The analytic procedures for analyzing the
strategic equilibriums in both cases of R&D costs assumption are essentially similar.

2The assumption of different sunk costs for the two firms does not add complexity into the model. When
the respective value functions and revenue flows of each firm are normalized by the corresponding sunk
cost, we may set the two sunk costs to assume unit value. The sunk costs are essentially taken to be the
numeraires of the respective firm value functions.
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may not guarantee the firm to be the eventual winner of the R&D race. The modeling of
the arrival of innovation by a simple Poisson process exhibits the undesirable memoryless
property. Also, it does not take into account that the firm’s knowledge accumulation and
continual R&D expenses would affect the hazard rate of arrival of R&D success. Like most
of the earlier works on R&D races, we choose to assume a simple Poisson process for the
arrival of R&D success for achieving analytic tractability in our analysis.

A firm may enter into the R&D race as the follower (either as the optimal choice of its
own or being preempted) provided that discovery of the innovative product has not occurred.
There also exists the possibility that the two firms enter simultaneously into the R&D race.
Next, we show how to introduce input spillover effects into our model of R&D race. Let
hj denote the constant hazard rate of the Poisson arrival of discovery of Firm j, j = i, e,
when only one firm is operating in the research phase. When both firms have launched the
research efforts into the discovery of the innovative product, our model assumes that the
input spillover effects lead to a change in the hazard rate of the Poisson arrival of discovery
from hj to ĥj, j = i, e. Note that ĥj can be lower or higher than hj , corresponding to positive
or negative spillover, respectively.

Compared to the real options game model of R&D race of Weeds (2002) with symmetry
in costs and hazard rates, we introduce asymmetries in sunk costs, status of the firms as
incumbent and entrant, hazard rates and spillover effects. Following similar assumptions
made by Weeds (2002), the initial value of the stochastic revenue flow rate process x0 is
sufficiently low so that an immediate entry leads to negative expected return, thus none of
the firms has entered into R&D. Each of the two firms is supposed to make one optimal
stopping criterion: the optimal time at which it pays the R&D cost. The optimal stopping
times are assumed to be Ft-measurable. Based on the strong Markovian nature of the
revenue flow rate process, one may take the range of the process as the state space rather
than time itself. Here, the determination of the Ft-measurable stopping time amounts to
the determination of the trigger threshold. In other words, the optimal decisions of entry
into R&D race are Markov (stationary) trigger strategies, where the strategic moves are
time invariant and they are dependent on the current state of xt and the action taken by
the competing firm (specifically, whether the rival has initiated R&D at an earlier time or
otherwise). Once a firm has launched the sunk cost of R&D, the research into the innovative
discovery continues for all times until the real options game ends with the discovery of the
new innovative product by one of the two firms.

3 Value functions and investment thresholds

In this section, we derive the value functions and the trigger threshold values of optimal entry
into R&D race of Firm i (incumbent) and Firm e (entrant) under various scenarios. The
standard Bellman’s optimality approach of solving the associated optimal stopping problems
is adopted. As the first step, we find the value functions when the two firms have adopted
their respective role as either the leader or follower. Once the leader value function and
follower value function are known, we can examine the preemption strategies by analyzing
the behavior of the preemption function (defined as the difference of the leader value function
and follower value function). We then consider the preemptive leader value function of each
firm. Suppose none of the two firms have entered into the R&D phase and the competition
for entry is keen, Weeds (2002) shows that one of the two firms may choose to preempt
strategically its rival at a threshold level that is below its own optimal leader threshold.
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Lastly, we consider the value functions and optimal thresholds under simultaneous entry
where the firm would adopt optimal follower entry immediately once the rival firm chooses
strategically to invest into R&D. As in most dynamic programming problems, we adopt the
backward induction procedure where the value functions are solved backwards in time.

3.1 Value functions

To implement the backward induction procedure, we derive the value functions when both
firms have initiated their R&D efforts by paying the corresponding sunk cost of investment
but none of them has succeeded in the discovery of the product. Since the two firms are
asymmetric in the revenue flows and investment costs, it is necessary to determine the value
function of each firm separately.

Let t be the current time and the stochastic state variable xt assumes the value x.
Let Ri(x) and Re(x) denote the expected revenue value function of Firm i and Firm e,
respectively, when both firms are active in R&D but the discovery of the product has not
been made by either firm. The value functions are stationary with no dependence on t since
perpetuality of the real options game model and time invariant strategic moves are assumed.
The arrival of the success of discovery by either firm is assumed to be a Poisson event with
constant hazard rate. These two Poisson arrivals of discovery are assumed to be independent
of each other and also independent of the stochastic fundamental xt.

Determination of Re(x)
The value function Re(x) is computed by finding the expected value of the revenue flow
received by Firm e when it is the final winner of the R&D race, which is found to be

Re(x) =

∫ ∞

t

∫ v

t

ĥie
−ĥi(v−t)ĥee

−ĥe(u−t)
Et

[
∫ ∞

u

e−r(s−t)πexs ds|xt = x

]

dudv

=
ĥeπex

(r − µ)(r − µ+ ĥi + ĥe)
. (3.1)

The hazard rate ĥe appears in the numerator since Firm e succeeds with probability ĥe dt in
the innovative discovery over (t, t+ dt] and receives the perpetual revenue.

Determination of Ri(x)
In a similar manner, we compute Ri(x) by finding the net gain in the expected value of the
revenue flow received by Firm i, noting that it may win or lose in the R&D race. Recall that
the gain in revenue flow rate is π+

i xs when Firm i wins while the corresponding loss is π−
i xs

when it loses. The value function Ri(x) is easily deduced to be

Ri(x) =
(ĥiπ

+
i − ĥeπ

−
i )x

(r − µ)(r − µ+ ĥi + ĥe)
. (3.2)

3.2 Follower value functions

Suppose the rival firm has entered into the R&D phase as the leader, we would like to
determine the corresponding follower value function. The follower value function consists of
two parts, depending on whether the follower firm is still waiting for its optimal entry into
R&D or it has committed the R&D cost. Suppose Firm j, j = i, e, serves as the follower,
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it enters into the R&D race optimally at the optimal threshold x∗
jf at the optimal stopping

time t∗jf . The follower value function of Firm j takes the form

Fj(x) =

{

F
(1)
j (x), x < x∗

jf

Rj(x)−Kj, x ≥ x∗
jf

, j = i, e. (3.3)

Here, F
(1)
j (x) is the option value of waiting as follower for Firm j prior to its optimal entry.

As in typical optimal stopping models, the continuation value function F
(1)
j (x) observes the

value matching condition and smooth pasting condition at x∗
jf .

Determination of F
(1)
e (x) and x∗

ef

Based on the strong Markov property and time homogeneity of the underlying geometric
Brownian motion xt, we obtain

F (1)
e (x) = sup

tef≥t

Et

[

e−(r+hi)(tef−t)[Re(xtef )−Ke]
]

= Et

[

e−(r+hi)(t
∗

ef
−t)
]

[

Re(x
∗
ef )−Ke

]

, x < x∗
ef .

It can be shown that (Dixit and Pindyck, 1994)

Et

[

e−(r+hi)(t
∗

ef
−t)
]

=

(

x

x∗
ef

)βi

,

where βi is the positive root of the quadratic equation:
σ2

2
β2 +

(

µ−
σ2

2

)

β − (r + hi) = 0.

The optimal threshold x∗
ef can be determined by invoking the smooth pasting condition. We

obtain

x∗
ef =

βi

βi − 1

Ke

ĥeπe

(r − µ)(r − µ+ ĥi + ĥe), (3.4a)

and F
(1)
e (x) can be simplified to become

F (1)
e (x) =

(

x

x∗
ef

)βi

Ke

βi − 1
, x < x∗

ef . (3.4b)

Determination of F
(1)
i (x) and x∗

if

When Firm e has initiated R&D effort as leader, the revenue flow rate received by Firm i

will be undermined by the amount π−
i xs, where s > τe, if Firm e is the eventual winner.

First, assuming that Firm i never enters into the R&D race, the expected loss of revenue
flow received by Firm i conditional on discovery delivered by the rival firm (Firm e) is given
by

Et

[
∫ ∞

t

e−(he+r)(u−t)heπ
−
i xu

r − µ
du

]

=
heπ

−
i x

(r − µ)(r − µ+ he)
.

We are concerned with the expected loss of revenue faced by Firm i from time t to t∗if , which
is then given by

heπ
−
i

(r − µ)(r − µ+ he)



x−

(

x

x∗
if

)βe

x∗
if



 ,
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where βe is the positive root of the quadratic equation:
σ2

2
β2 +

(

µ−
σ2

2

)

β − (r + he) = 0.

Combining the option value of waiting prior to entry at the optimal threshold x∗
if as follower

and the expected loss of revenue due to potential R&D success of the rival firm, the follower
value function of Firm i prior to entry into R&D investment is given by

F
(1)
i (x) = sup

tif≥t

Et

[

−

∫ tif

t

e−(r+he)(u−t)heπ
−
i xu

r − µ
du+ e−(r+he)(tif−t)[Ri(xtif )−Ki]

]

=

(

x

x∗
if

)βe

Ki

βe − 1
−

heπ
−
i x

(r − µ)(r − µ+ he)
, x ≤ x∗

if . (3.5)

The first term in Eq. (3.5) represents the expected value at time t of the total revenue flow
to Firm i when Firm e has not made the discovery of the innovative product by time t∗if ,
where t∗if = inf{u ≥ t : xu ≥ x∗

if}, The negative to the expected loss faced by Firm i when
Firm e has made the discovery before time t∗if (see the second term) is added as part of

contribution to the follower value function F
(1)
i (x). The optimal threshold x∗

if is determined
by applying the smooth pasting condition at x∗

if , which is found to be

x∗
if =

βeKi

βe − 1

1
heπ

−

i

(r−µ)(r−µ+he)
+

ĥiπ
+

i
−ĥeπ

−

i

(r−µ)(r−µ+ĥi+ĥe)

. (3.6)

3.3 Leader value functions

We would like to determine the leader value function of each firm where the firm adopts
the role as the leader. The derivation of the leader value functions is complicated by the
potential entry of the rival firm as the follower at a later time. Once the entry of the rival
firm as follower occurs, both firms have initiated R&D and the true R&D race commences.
In this case, the value function of Firm j becomes Rj(x)−Kj , j = i, e. Therefore, the leader
value function consists of 3 segments: (i) x < x∗

jl, (ii) x
∗
jl ≤ x < x∗

j′f , (iii) x ≥ x∗
j′f , where x

∗
jl

is the optimal leader threshold of Firm j, and x∗
j′f is the optimal follower threshold of Firm

j′. Note that j′ = e when j = i and j′ = i when j = e. Here, we derive the leader value
function under the assumption that x∗

jl < x∗
j′f . The scenario where x∗

jl ≥ x∗
j′f indicates that

Firm j has relatively lower first mover advantage when compared to its rival. Under this
scenario, it will be shown in the next section that the optimal strategy followed by Firm j is
either choosing entry as follower or simultaneous entry with the rival. That is, Firm j will
not choose to enter optimally as the leader. In other words, when x∗

jl ≥ x∗
j′f , the leader value

function of Firm j is not meaningfully defined. The analytic formulas for the leader value
functions of both firms are summarized in Proposition 1. The derivation of these results
follows a similar procedure as that of the follower value functions.

Proposition 1 We write Lj(x) as the leader value function of Firm j, which consists of 3
separate segments:

Lj(x) =











L
(1)
j (x), x < x∗

jl

L
(2)
j (x), x∗

jl ≤ x < x∗
j′f

Rj(x)−Kj, x ≥ x∗
j′f

, j = i, e. (3.7)
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The leader value function of firm j, j = i, e, after its optimal entry but before optimal follower
entry of its rival is given by

L
(2)
j (x) =

(

x

x∗
j′f

)βj

djx
∗
j′f +

hjπjx

(r − µ)(r − µ+ hj)
−Kj , x∗

jl ≤ x < x∗
j′f , (3.8a)

where

di =
ĥiπ

+
i − ĥeπ

−
i

(r − µ)(r − µ+ ĥi + ĥe)
−

hiπ
+
i

(r − µ)(r − µ+ hi)
, (3.8b)

de =
ĥeπe

(r − µ)(r − µ+ ĥi + ĥe)
−

heπe

(r − µ)(r − µ+ he)
. (3.8c)

The value matching condition (but not the smooth pasting condition) is observed at x = x∗
if .

The option value of waiting L
(1)
j (x) prior to the optimal entry at x∗

jl is deduced to be

L
(1)
j (x) =

(

x

x∗
jl

)β0

L
(2)
j (x∗

jl), x < x∗
jl, (3.9)

where β0 is the positive root of the quadratic equation:
σ2

2
β2 +

(

µ−
σ2

2

)

β − r = 0. The

entrant’s optimal entry threshold x∗
el is given by the root of

fj(z) =
dj(βj − β0)

(x∗
j′f)

βj−1
zβj −

(β0 − 1)hjπj

(r − µ)(r − µ+ hj)
z + β0Kj = 0. (3.10)

Remarks

1. The first term in L
(2)
e (x) [see Eq. (3.8a)] represents the expected discount factor

Et[e
−(r+he)(t∗if−t)] =

(

x
x∗

if

)βe

applied over the time period (t, t∗if ), which is then mul-

tiplied by the change in value dex
∗
if arising from the potential entry of the incumbent

as follower at x∗
if . The parameter de can be interpreted as Firm e’s externality factor

that is directly related to the input spillover effect. When de > 0, the entrant benefits
from the follower entry of the incumbent. More precisely, we have

de > 0 ⇔ ĥe − he >
heĥi

r − µ
; (3.11a)

so positivity of de implies that an increase of the entrant’s hazard rate of arrival of
discovery arising from the R&D spillover effect outweighs the potential loss in value
when the R&D race is lost to the incumbent firm which has entered as the follower.

2. To achieve positivity of Firm i’s externality factor di, one requires an increase of the
incumbent’s hazard rate due to R&D spillover effect of sufficient amount as indicated
by the following relation:

di > 0 ⇔ ĥi − hi >
hiπ

+
i + (r − µ+ hi)π

−
i

(r − µ)π+
i

ĥe. (3.11b)
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3. The optimal entry threshold x∗
em of the entrant firm under no competition (monopoly

state) is given by

x∗
em =

β0

β0 − 1

Ke(r − µ)(r − µ+ he)

heπe

.

By substituting z = x∗
em in fe(z) [see eq. (3.10)], we have

fe(x
∗
em) =

de(βe − β0)

(x∗
if )

βe−1
(x∗

em)
βe .

One can deduce easily that x∗
el > x∗

em if and only if de > 0. That is, the entrant chooses
to enter at a lower threshold when its externality factor is negative (strong first mover
advantage).

3.4 Preemption strategies

It may occur that Firm j is strategically advantageous to preempt its rival by choosing entry
as the leader even at level x that is below its leader optimal threshold x∗

jl if the rival chooses
to enter as a leader at some threshold lower than x∗

jl. Accordingly, we define the preemptive

leader value function L
(p)
j (x) is taken to be the same as L

(2)
j (x) while the interval of definition

is extended from [x∗
jl, x

∗
j′f) to [0, x∗

j′f ). Obviously, preemption strategy is adopted only when
the firm’s leader value is indifferent to or higher than its follower value. To characterize
preemption strategies, consider the behavior of the preemption function φj(x) as defined by

φj(x) = L
(p)
j (x)− Fj(x), j = i, e, 0 ≤ x < x∗

j′f . (3.12)

For dj ≥ 0, by observing Fj(x) = F
(1)
j (x) ≥ Rj(x)−Kj for x < x∗

jf and Fj(x) = Rj(x)−Kj

for x ≥ x∗
jf , we have

φj(x) ≤ L
(2)
j (x)− [Rj(x)−Kj ] = djx





(

x

x∗
j′f

)βj−1

− 1



 < 0, 0 ≤ x < x∗
j′f .

In this case, φj(x) has no root for 0 ≤ x < x∗
j′f . On the other hand, when dj < 0, we observe

d2

dx2
φj(x) = βj(βj − 1)djx

∗
j′f

xβj−2

(x∗
j′f)

βj
− βj′Kj

xβj′−2

(x∗
jf)

βj′
< 0.

Therefore, φj(x) is concave in x. In addition, φj(0) < 0 and φ′
j(0) > 0, so either φ′

j(x) > 0
for x < x∗

j′f ; or else there exists x0 ∈ [0, x∗
j′f) such that φ′

j(x) > 0 for x < x0 and φ′
j(x) < 0

for x > x0. It is straightforward to show that φj(x) has either no root, one root or two
roots within [0, x∗

j′f). In order that Firm j chooses to preempt its rival at some threshold
z, a necessary condition (though not sufficient) is given by φj(z) > 0. We consider these 3
separate cases as follows:

(i) No root or one root at x̂j with φ
′

j(x̂j) = 0
One deduces that

L
(p)
j (x) ≤ Fj(x) for x ∈ [0, x∗

j′f),

so Firm j never chooses to preempt.
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(ii) One root at xjp, where φ
′

j(xjp) 6= 0 and 0 < xjp < x∗
j′f

We have
L
(p)
j (x) > Fj(x) for x ∈ (xjp, x

∗
j′f).

In this case, it may be possible that Firm j chooses to preempt its rival at a lower
threshold if the rival chooses to enter at a threshold within (xjp, x

∗
j′f ) as a leader.

(iii) Two roots at xjp and xjp, where 0 < xjp < xjp < x∗
j′f

Similarly, it may be possible that Firm j chooses preemption as an optimal strategy if
the rival chooses to enter at a threshold within (xjp, xjp) as a leader.

In summary, preemption strategy is never adopted by Firm j if L
(p)
j (x) < Fj(x), 0 ≤ x <

x∗
j′f . For example, when dj ≥ 0, one can show that

L
(p)
j (x)− Fj(x) = djx





(

x

x∗
j′f

)βi−1

− 1



 < 0, j = i, e, 0 ≤ x < x∗
j′f .

Therefore, non-negativity of dj, j = i, e, is seen to be a sufficient condition for Firm j not
to adopt preemption strategy at any level x. This result can be explained using economic
intuition as follows. When the input spillover effect for Firm j is sufficiently strong (as
dictated by dj ≥ 0), the second mover advantage prevails for Firm j so it never chooses to
adopt preemption strategy.

3.5 Simultaneous entry of both firms

Suppose the input spillover effects are sufficiently strong so that the second mover advantage
prevails for both firms, none of the two firms chooses to enter as leader in the R&D race.
In this case, the two firms choose to invest into R&D simultaneously as their joint optimal
strategies. As the game is non-cooperative, simultaneous entry commences when one firm
(Firm j) chooses optimally to invest at level x while the rival firm (Firm j′) finds that it is
also optimal to invest at the same level. We would like to determine the optimal simultaneous
entry threshold x∗

js of Firm j, j = i, e, given that the conditions for optimal simultaneous
entry are met (see Sec. 4.1 for the detailed discussion of these conditions).

Suppose Firm j invests optimally at level z while optimal entry is followed immediately
by Firm j′, j′ 6= j, then Firm j’s value function at z is given by Rj(z)−Kj . The option value

of waiting at x < z prior to its optimal simultaneous entry is given by [Rj(z)−Kj ]
(

x
z

)β0.
Note that the simultaneous entry threshold cannot be lower than x∗

j′f ; otherwise, simulta-
neous equilibrium cannot be substained since Firm j′ chooses not to follow immediately.
On the other hand, the simultaneous entry threshold is chosen such that the option value

[Rj(z)−Kj ]
(

x
z

)β0 is maximized. One can show easily that the choice of the threshold β0

β0−1

Kj

bj

maximizes [Rj(z) − Kj ]
(

x
z

)β0 among z ∈ [0,∞). Mathematically, the simultaneous entry
threshold x∗

js as preferred by Firm j is determined by

x∗
js = arg maxz∈[x∗

j′f
,∞) [Rj(z)−Kj]

(x

z

)β0

= max

{

β0

β0 − 1

Kj

bj
, x∗

j′f

}

, (3.13)

where

bi =
ĥiπ

+
i − ĥeπ

−
i

(r − µ)(r − µ+ ĥi + ĥe)
, be =

ĥeπe

(r − µ)(r − µ+ ĥi + ĥe)
.
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One would expect that x∗
js ≥ x∗

j′f . These properties are consistent with the conditions for

the occurrence of optimal simultaneous entry. Note that βj > β0 so that
β0

β0 − 1
>

βj

βj − 1
,

j = i, e. We then have

x∗
js = max

{

β0

β0 − 1

Kj

bj
, x∗

j′f

}

≥
β0

β0 − 1

Kj

bj
≥

βj′

βj′ − 1

Kj

bj
= x∗

jf , j = i, e, j′ 6= j.

Together with x∗
js ≥ x∗

j′f , we then have

x∗
js > max{x∗

jf , x
∗
j′f}, j = i, e. (3.14)

The corresponding value function of Firm j, j = i, e, that follows this joint optimal strategies
is seen to be

Jj(x) =







[

Rj(x
∗
js)−Kj

]

(

x
x∗

js

)β0

, x < x∗
js,

Rj(x)−Kj , x ≥ x∗
js.

(3.15)

As a final remark, the two firms actually do not cooperate to enter into R&D race
at the same threshold level. Rather, optimal simultaneous entry occurs when one firm
enters optimally while the rival firm responds optimally to adopt an immediate entry at the
same threshold. When simultaneous equilibrium prevails, both firms jointly invest at the
simultaneous entry threshold. Note that the smaller value among x∗

is and x∗
es is taken due

to non-cooperation between the two firms.

4 Analysis of strategic equilibria

Recall that there are 3 types of equilibria of the firms’ strategies. The first type is the
preemptive equilibrium where one firm chooses to preempt the rival at a threshold lower
than its optimal leader threshold due to the preemptive threat of its rival. The other type
is the sequential equilibrium where one firm dominates its rival in the sense that it chooses
its optimal leader’s entry strategy without preemptive threat of its rival. The last type is
the simultaneous equilibrium where the two firms optimally choose to enter at the same
threshold, one firm’s optimal entry is followed immediately by the optimal entry of its rival.

In Sec. 4.1, we consider the categorization of strategic equilibria that is based on the
relative magnitudes of the leader and follower thresholds of the two firms. In our strategic
R&D race model, we assume that the input spillovers have impact on the follower’s R&D
hazard rate of discovery but not on follower’s R&D cost. However, the existence of upfront
R&D cost asymmetry between the two firms does have strong influence on the strategic
games. In Sec. 4.2, we characterize the various types of equilibria of the firms’ strategies
with regard to the upfront R&D costs. One may visualize that the first mover advantage
may be lost when the hazard rate of discovery is relatively low. In Sec. 4.3, we examine the
impact of hazard rates on the strategic equilibria.

4.1 Optimal entry thresholds and strategic games

We consider the following two mutually exclusive cases (i) at least one firm has dominant
first mover advantage over its rival, so simultaneous equilibrium is precluded. This results
in a leader-follower game and it may give rise to either preemptive or sequential equilibrium;
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(ii) none of the two firms has dominant first mover advantage over its rival. Case (i) occurs
when x∗

il < x∗
ef or x∗

el < x∗
if or both, while case (ii) occurs when x∗

il ≥ x∗
ef and x∗

el ≥ x∗
if .

Leader-follower games resulting in either preemptive or sequential equilibrium

When the leader threshold of one firm (say, Firm j) is lower than the rival firm’s (Firm j′)
follower threshold, where x∗

jl < x∗
j′f , it becomes certain that Firm j adopts its optimal leader

entry at x∗
jl unless preemption strategy has been adopted earlier by itself or the rival firm at

some lower threshold. If Firm j′ does not choose to be the preemptive leader, then it would
delay its follower entry until the higher follower threshold x∗

j′f is reached at some later time.
The possibility of simultaneous entry where Firm j′ enters as follower immediately after
leader entry by Firm j is thus precluded. When both firms have the first mover advantage,
where x∗

il < x∗
ef and x∗

el < x∗
if , a similar argument shows that simultaneous equilibrium arising

from the action of either firm is precluded. In conclusion, when x∗
il < x∗

ef or x
∗
el < x∗

if or both,
then (i) either one of the two firms enters as the preemptive leader (preemptive equilibrium)
or (ii) the two firms enter sequentially as leader and follower (sequential equilibrium) at their
respective optimal entry thresholds.

We consider the following two separate cases: (1) only one firm has the first mover
advantage (its optimal leader threshold is lower than its rival’s optimal follower threshold),
(2) both firms have the first mover advantage, that is, x∗

il < x∗
ef and x∗

el < x∗
if .

1. Only one firm exhibits the first mover advantage: x∗
jl < x∗

j′f , where Firm j can be
either Firm i or Firm e

We examine whether Firm j′ has preemption incentive by considering the number and
location of roots of φj′(x). If Firm j′ is shown to have no preemption incentive, then
sequential equilibrium is resulted with Firm j as the leader. Otherwise, we compare the
preemption incentive of both firms and the one with the stronger preemption incentive
becomes the preemptive leader. The loser firm chooses to enter at its optimal follower
threshold under preemptive equilibrium.

(i) When φj′(x) has no root or only one root at x̂j′ with φ
′

j′(x̂j′) = 0, then φj′(x) ≤ 0.
In this case, Firm j′ never chooses to preempt so sequential equilibrium is resulted.
That is, Firm j enters optimally as the leader at x∗

jl while Firm j′ enters later at
its optimal follower threshold x∗

j′f .

(ii) When φj′(x) has one root at xj′p and φ′
j′(xj′p) 6= 0, we compare the relative

values of x∗
jl and xj′p. Sequential equilibrium is resulted if x∗

jl ≤ xj′p since Firm
j has chosen to enter optimally at x∗

jl before Firm j′ has incentive to preempt
at the higher threshold xj′p. On the other hand, when xj′p < x∗

jl, preemptive
equilibrium is resulted as sequential equilibrium is precluded since Firm j′ has
incentive to preempt Firm j at some threshold lower than x∗

jl. Subsequently,
there are four possible forms of preemptive competition, depending on whether
Firm j has incentive to preempt further with respect to the relative position of
xjp. The analysis requires the examination of the number of roots of φj(x) and
the relative position of x∗

jl with respect to these roots.

(a) Suppose φj(x) has no root or only one root, then Firm j′ chooses to epsilon-
preempt Firm j by adopting entry at x∗

jl, provided that x∗
j′f < x∗

jf .

(b) Suppose φj(x) has two roots xjp and xjp, then there are 3 possible outcomes:

· If xjp < x∗
jl, then Firm j′ chooses to epsilon-preempt Firm j at x∗

jl, as the
preemptive leader.

14



· If xj′p < xjp < x∗
jl ≤ xjp, then Firm j′ chooses to epsilon-preempt Firm j

at the threshold xjp.

· If xjp < xj′p < x∗
jl ≤ xjp, then Firm j chooses to epsilon-preempt Firm j′

at the threshold xj′p.

In the last two cases in which Firm j preempts another firm (Firm j′) at xj′p.
Firm j′ is indifferent between being the leader and follower since φj′(xj′p) = 0.
There is no guarantee that Firm j can act as the leader since Firm j′ may
enter at the same time. To avoid such problem, Firm j may epsilon-preempt
its rival at xj′p by acting right before the entry of the rival. However, such
preemptive strategy may not be a feasible strategy since optimality of this
stopping rule depends on whether the state variable xt hits the threshold xj′p

in the next time increment t+ dt. In order to resolve the difficulty, we follow
Thijseen (2012) and impose the following assumption:

Assumption: Provided that Lj(xj′p) > Fj(xj′p), Firm j can act as the leader
with probability 1 if it preempts Firm j′ at the threshold xj′p.

Under this assumption, Firm j can wait and preempt its rival until the state
variable xt reaches xj′p without facing the risk of being preempted by its
rival. According to Thijseen (2012), such preemptive strategy of acting at
the stopping time τj = inf{τ ≥ 0 : xτ = xj′p} is a feasible strategy.

In summary, if Firm j has no incentive to preempt at a lower threshold, then
Frim j′ will be the preemptive leader and preempt Firm j at x∗

jl. On the other
hand, if Firm j has an incentive to preempt at a lower threshold, we continue to
examine whether Firm j′ has an incentive to preempt at a lower threshold and so
on. Continuing on this iterative process, one can find that the firm with the lower
preemptive threshold will be the preemptive leader and chooses to preempt the
rival at rival’s preemptive threshold since the rival has no incentive to preempt
the competing firm at any threshold lower than its own preemptive threshold.
The comprehensive discussion of these various forms of preemptive equilibrium
can be found in Leung (2011).

(iii) When φj′(x) has two roots at xj′p and xj′p, where xj′p < xj′p, we examine the
following 3 cases: x∗

jl ≤ xj′p, xj′p < x∗
jl < xj′p, or xj′p ≤ x∗

jl. When x∗
jl ≤ xj′p,

sequential equilibrium is resulted. When xj′p < x∗
jl < xj′p, we examine the relative

values of xjp and xj′p. By following the standard epsilon-preemption arguments in
Fudenberg and Tirole (1985), the firm which has the lower preemption threshold is
the preemptive leader. Also, the preemptive leader chooses to epsilon-preempt its
rival at the rival’s preemption threshold (which is higher than its own preemption
threshold). Lastly, when xj′p ≤ x∗

jl, since φj′(x) ≤ 0 when x ∈ [xj′p, x
∗
jl), so it can

be shown that it is non-optimal for Firm j′ to preempt Firm j at any threshold
lower than x∗

jl. Therefore, sequential equilibrium is resulted with Firm j entering
as leader at its optimal leader threshold x∗

jl and Firm j′ entering later as follower
at its optimal follower threshold x∗

j′f .

2. Both firms exhibit the first mover advantage: x∗
il < x∗

ef and x∗
el < x∗

if

First, we identify the firm that has the stronger first mover advantage, or equivalently,
a lower optimal leader threshold. Let m be the firm such that

x∗
ml = min{x∗

il, x
∗
el},
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and Firm m′ be its rival. The analysis of strategic competition would be similar to that
of case (1), where Firm m plays the same role as Firm j (the only firm that has the
first mover advantage). In a similar manner, sequential equilibrium is resulted when
Firm m′ has no preemption incentive [that is, φm′(x) ≤ 0]. Otherwise, we examine the
various forms of preemptive equilibria, depending on the relative value of x∗

ml and the
nature of roots of φm(x) and φm′(x).

Absence of the first mover advantage in both firms resulting in simultaneous

equilibrium

Under the scenario where x∗
il ≥ x∗

ef and x∗
el ≥ x∗

if , sequential equilibrium is precluded so that
either preemptive equilibrium or simultaneous equilibrium is resulted. Now, we establish
that neither firm would choose to preempt its rival at any threshold that is lower than the
rival’s optimal follower threshold. To show the claim, we compare the Firm j’s preemptive
leader value function at z, where z < x∗

j′f , with the firm’s option value of waiting when firm
j’s entry is deferred to the higher simultaneous entry threshold level at min{x∗

is, x
∗
es}, where

min{x∗
is, x

∗
es} > max{x∗

if , x
∗
ef}. Since z < x∗

j′f < x∗
jl and x∗

j′f ≤ min{x∗
is, x

∗
es}, so

L
(p)
j (z) < L

(p)
j (x∗

j′f )

(

z

x∗
j′f

)β0

=
[

Rj(x
∗
j′f)−Kj

]

(

z

x∗
j′f

)β0

≤ [Rj(min{x∗
is, x

∗
es})−Kj]

(

z

min{x∗
is, x

∗
es}

)β0

.

Therefore, it is always non-optimal for Firm j to preempt its rival at any threshold level z
that is lower than x∗

j′f .
As preemptive equilibrium is precluded, so simultaneous equilibrium prevails. That is,

none of the two firms chooses to act as the leader, consistent with the fact that both firms have
no dominant first order advantage. Now, the two firms would choose to enter simultaneously
at the threshold min{x∗

is, x
∗
es}, which is always higher than max{x∗

if , x
∗
ef} [see Eq. (3.14)].

As a remark, the asymmetric investment model in Pawlina and Kort (2006) assumes
negative externalties, so x∗

jl < x∗
j′f is always observed. Our model provides a richer set of

feasible equilibrium strategies. In particular, we discuss the nature of equilibrium strategies
under the scenario of absence of the first mover advantage (as signified by x∗

jl ≥ x∗
j′f).

4.2 Impact of cost asymmetry on the strategic games

First, it may be instructive to recall some of the earlier results obtained by Pawlina and
Kort (2006) and Kong and Kwok (2007) on the impact of investment cost asymmetry on the
optimal strategies in duopolistic investment games. Under cost asymmetry and symmetry in
all other model parameters, Pawlina and Kort (2006) comment that the lower-cost firm has
higher first mover advantage so it tends to act either as the dominant leader or preemptive
leader. Kong and Kwok (2007) consider duopolistic investment games under a more general
setting, where positive externalities correspond to returns in the duopoly state exceed that
in the monopoly state, and vice versa for negative externalities. It is seen that negative
externalities induce keen competition between the two rival firms. Simultaneous equilibrium
is resulted under positive externalities when there is no dominant first mover advantage
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of both firms. On the other hand, under negative externalities, preemptive equilibrium is
resulted when the cost-profit ratio is low (keen competition) while sequential leader-follower
equilibrium is attained when the cost-profit ratio becomes sufficiently high (competition is
less keen).

Referring to our R&D model, positive and negative externalities of Firm j, j = i, e, are
seen to correspond respectively to positivity and negativity in the sign of dj, j = i, e, [see
Eqs.(3.8b) and (3.8c)]. We would like to examine the impact of cost asymmetry on the
strategic games under positive and negative externalities. To simplify our analysis, we set
all other model parameters except the sunk costs to be the same for both firms. That is, we
set

π+
i = πe = π, π−

i = 0, hi = he = h, and ĥi = ĥe = ĥ.

Under the above assumption of the model parameter values, di and de are seen to be equal,
and we write

d = di = de.

Now, since hi = he, we have equality of βi and βe. For convenience, we write β̂ = βi = βe.
The following two propositions state the pattern of strategic equilibria under positive and

negative externalities, respectively, in the Ki-Ke parameter space of the sunk costs of R&D
investment.

Proposition 2 Under positive externalities, where d > 0, there exists kl ∈ (0, Ke) and
ku ∈ (Ke,∞) such that simultaneous equilibrium is resulted when Ki ∈ [kl, ku]. Otherwise,
when Ki < kl (or Ki > ku), Firm i (or Firm e) is the leader in the resulting sequential
leader-follower equilibrium.

The proof of Proposition 2 is relegated to Appendix A. Recall that the input spillover has
to be sufficiently strong in order to induce positive externalities [see Eqs. (3.11a,b)]. The
results in Proposition 2 reveal that under positive externalities, simultaneous equilibrium is
resulted when cost asymmetry between the two firms is small. Otherwise, sequential leader-
follower equilibrium prevails when the cost asymmetry is significant. The firm with the
lower cost then serves as the leader. Interestingly, the sequential leader-follower equilibrium
represents the more desirable scenario of tactic collusion (with no fear of preemption).

The next proposition characterizes the strategic equilbria under negative externalities,
where d < 0. The pattern of strategic equilibria depends on whether d∗ < d < 0 or
d < d∗ < 0, where the critical threshold d∗ is given by

d∗ = −
hπ(β̂ − β0)

(r − µ)(r − µ+ h)(β̂2 − β0)
< 0. (4.1)

Proposition 3 Under negative externalities, where d < 0, the pattern of strategic equilibria
of the two firms can be characterized as follows:

(a) d∗ < d < 0

There exist k
(1)
l ∈ (0, Ke) and k

(1)
u ∈ (Ke,∞) such that simultaneous equilibrium is

resulted when Ki ∈ [k
(1)
l , k

(1)
u ]. Otherwise, when Ki < k

(l)
l (or Ki > k

(1)
u ), Firm i (or

Firm e) is either the preemptive or sequential leader in the resulting leader-follower
equilibrium.
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(b) d < d∗ < 0

There exist k
(2)
l ∈ (0, Ke) and k

(2)
u ∈ (Ke,∞) such that preemptive equilibrium is

resulted when Ki ∈ [k
(2)
l , k

(2)
u ], where the firm with the lower sunk cost serves as the

preemptive leader. Otherwise, when Ki < k
(2)
l (or Ki > k

(2)
u ), Firm i (or Firm e) is

the leader in the resulting sequential leader-follower equilibrium.

The proof of Proposition 3 is relegated to Appendix B. The standard leader-follower game
is resulted under negative externalities when d is sufficiently negative in value. Preemptive
equilibrium emerges when cost asymmetry is not significant, where the firm with the lower
sunk cost serves as the preemptive leader. Otherwise, the sequential leader-follower equilib-
rium is resulted when cost asymmetry becomes more significant. On the other hand, when
d is negative but larger than some threshold value d∗, the pattern of strategic equilibria
is somewhat similar to that under positive externalities where simultaneous equilibrium is
resulted when cost asymmetry is not significant. Otherwise, either preemptive or sequential
leader-follower equilibrium may result when cost asymmetry is significant.

4.3 Hazard rates and strategic equilibria

It would be instructive to examine the impact of the initial hazard rates of the R&D in-
vestment of the two firms on the pattern of strategic equilibria. A lower value of the initial
hazard rate hj of Firm j indicates a lower chance of innovative success before the entry of
the rival firm, given that Firm j enters as the leader in the R&D race. In other words, the
scenario represents a weaker first mover advantage of Firm j. Alternatively, we observe that
dj, j = i, e, [see Eqs. (3.8b) and (3.8c)] are both decreasing functions with respect to hj .
This is because the second mover advantage decreases as hj increases in value. In other
words, Firm j may enjoy positive externalities with dj > 0 at a lower value of hj but subject
to negative externalities with dj < 0 at some sufficiently high value of hj .

Propositions 2 and 3 show that when cost asymmetry is small, the two firms choose
optimally to invest simultaneously when dj > d∗, where d∗ < 0; otherwise, they adopt the
leader-follower equilibrium. We then expect that the two firms under symmetry conditions
(same set of model parameters and same initial status) tend to invest simultaneously when
the common initial hazard rate h is low while they tend to preempt each other when h is
sufficiently high. Taking the assumption that π+

i = πe = π, Ki = Ke = K, hi = he = h,

ĥi = ĥe = ĥ and π−
i = 0, we summarize the impact of hazard rates on the pattern of strategic

equilibria of the two symmetric firms in the following proposition.

Proposition 4 Assuming that the two rival firms are symmetric, the common hazard rates
h and ĥ exhibit the following properties on the pattern of strategic equilibrium.

(a) Suppose h < r − µ, preemptive equilibrium is resulted if ĥ < ĥ∗ while simultaneous
equilibrium is resulted if ĥ ≥ ĥ∗, where

ĥ∗ =
hβ̂(β̂ − 1)(r − µ)

(r − µ)(β̂2 − β0)− h(β̂2 − 2β̂ + β0)
.

(b) There exists some threshold h∗, where h∗ > r − µ, such that the preemptive leader-
follower equilibrium is always resulted when h > h∗.
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The proof of Proposition 4 is presented in Appendix C. Given that h < r−µ, Proposition
4(a) states precisely the condition on the common updated hazard rate ĥ such that simulta-
neous equilibrium is resulted (ĥ has to be above some threshold value ĥ∗). This corresponds
to the scenario where the first mover advantage is low (small value of h) and the second
mover advantage is substantial as dictated by the condition: ĥ > ĥ∗. The result is seen to
be similar to that of Proposition 2 where simultaneous equilibrium is resulted when the two
firms are under positive externalities and low cost asymmetry. On the other hand, when
the common initial hazard rate h is above certain threshold value, Proposition 4(b) states
that simultaneous equilibrium is always ruled out due to significant first mover advantage
(even in the presence of strong positive spillovers). This result echoes that of part (b) in
Proposition 3 when one considers the scenario where the two firms face sufficiently deep
negative externalities.

5 Numerical examples

In this section, we would like to illustrate through various numerical examples that demon-
strate how the hazard rate and spillover effects may impact on the strategic equilibria in the
R&D races of the two firms. First, we show the plot of the value functions of the two firms
under various types of strategic equilibriums. We then illustrate the dependence of the entry
threshold values of the two firms on their hazard rates. We also characterize the types of
strategic equilibria in the parameter space of various pairs of model parameters.

5.1 Plots of value functions

In Figures 1(a-d), we show various plots of the value functions of the two firms under different
strategic equilibria. The common set of parameter values in the numerical calculations for
plotting the value functions are chosen to be: r = 0.05, µ = 0.01, σ = 0.3, π+

i = 0.8, π−
i = 0,

Ki = 8. Other model parameters, like hi, he, ĥi, ĥe, πe and Ke, assume different set of values
in each figure.

In Figure 1(a), we demonstrate the behavior of various value functions under sequential
equilibrium with Firm e as the leader. This scenario corresponds to case 1(i) considered in
Sec. 4.1. The other parameter values used in generating the plots in the figure are taken to
be: hi = 0.1, he = 0.2, ĥi = 1, ĥe = 0.25, πe = 0.9 and Ke = 5. Note that Firm i enjoys a
strong positive spillover since the hazard rate jumps from hi = 0.1 (in the monopoly state)
to ĥi = 1 (in the duopoly state). The parameter values give di > 0, thus Firm i has no
preemption incentive. This agrees with Li(x) < Fi(x) for x < x∗

ef as shown in the figure.
Indeed, our numerical calculations give x∗

il = 1.85, x∗
el = 0.46, x∗

if = 0.81, x∗
ef = 2.06, which

show x∗
el < x∗

if . Since x∗
il < x∗

ef and x∗
el < x∗

if , both firms possess the dominant first mover
advantage. According to the discussion in Sec. 4.1, one has to check whether Firm i has
incentive to preempt Firm e at a threshold lower than x∗

el since Firm e has lower leader
threshold. Since Li(x) < Fi(x) for all values of x and φi(x) has no root, so preemption
incentive does not exist for Firm i. As a result, it is never optimal for Firm i to preempt
Firm e at any threshold below x∗

el. Based on the result discussed in case 1(i) in Sec. 4.1,
Firm e enters into the R&D race optimally at x∗

el as leader while Firm i enters optimally at
x∗
if as follower.
In Figure 1(b), we plot the value functions of the two firms under preemptive equilibrium

with Firm e preempting its rival at xip. This scenario corresponds to case 1(iii) in Sec.
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4.1. The relevant parameter values used in generating the plots are taken to be: hi = 0.3,
he = 0.4, ĥi = 0.5, ĥe = 0.5, πe = 0.9 and Ke = 7. The threshold values of the two firms are
found to be: x∗

il = 0.72, x∗
el = 0.68, x∗

if = 1.16, x∗
ef = 0.94, xep = 0.36, xip = 0.53, xip = 0.90.

Both firms hold dominant first mover advantage since x∗
il < x∗

ef and x∗
el < x∗

if , and they also
share negative externalities as the parameter values give di < 0 and de < 0. Since Firm e

has lower leader threshold, one has to check whether Firm i has incentive to preempt Firm e

according to the guiding principles discussed in case 2 in Sec. 4.1. The leader function Li(x)
and follower function Fi(x) intersect twice at x = xip and x = xip. Both firms face keen
competition as xip < x∗

el < xip. It is necessary to consider the relative magnitude of xep and
xip in order to determine the preemptive leader [see case 1(iii) in Sec. 4.1]. Since xep < xip,
we conclude that preemptive equilibrium is resulted and Firm e chooses to preempt its rival
at the rival’s preemption threshold xip.

To generate the plots in Figure 1(c), we modify the hazard rate parameter ĥe from
ĥe = 0.5 used in Figure 1(b) to the new value ĥe = 0.9 while keeping all other parameter
values the same. This scenario corresponds to case 1(ii)(a) in Sec. 4.1. From the leader and
follower value functions of the two firms shown in Figure 1(c), the corresponding threshold
values of the two firms are found to be: x∗

il = 0.59, x∗
el = 0.82, x∗

if = 1.60, x∗
ef = 0.72,

xep = 0.36. Both firms remain to hold dominant first mover advantage since x∗
il < x∗

ef and
x∗
el < x∗

if , and they both face negative externalities. Since Firm i has lower leader threshold,
one needs to check whether Firm e has incentive to preempt Firm i. Note that φe(x) has
one root xep with φ′

e(xep) 6= 0 and xep < x∗
il, Firm e has incentive to preempt Firm i at

x ∈ [xep, x
∗
il). On the other hand, Li(x) < Fi(x) for all x and φi(x) has no root, so Firm i

has no preemption incentive. According to the guiding principles discussed in case 1(ii)a in
Sec. 4.1, we conclude that Firm e is the preemptive leader and chooses to epsilon-preempt
Firm i at x∗

il.

Lastly, we choose larger values of ĥi and ĥe in order to generate strong positive spillovers
among the two firms. This is the scenario where first mover advantage is absent in both
firms, thus resulting in simultaneous equilibrium. As revealed by the plots in Figure 1(d),
the new set of relevant parameter values are taken to be: hi = he = 0.03, ĥi = ĥe = 1,
πe = 0.8, Ke = 7. The leader and follower threshold values of the two firms are found to be:
x∗
il = 2.41, x∗

el = 2.11, x∗
if = 1.87, x∗

ef = 1.63. Note that both firms face positive externalities
as di > 0 and de > 0, and there exist no dominant first advantage in both firms as x∗

il ≥ x∗
ef

and x∗
el ≥ x∗

if . According to the analysis in Sec. 4.1, under the scenario of absence of first
mover advantage in both firms, simultaneous equilibrium is resulted at which both firms
enter at the some threshold that equals min{x∗

is, x
∗
es}. The plots of the value functions of

joint optimal entry in Figure 1(d) indicate that x∗
is = 2.41 and x∗

es = 2.11, so the common
simultaneous threshold is given by min{2.41, 2.11} = 2.11.

5.2 Impact of spillovers on optimal entry threshold values

In Figures 2(a) and 2(b), we show plots of the optimal entry threshold values of the two
firms with respect to ĥi and ĥe, respectively. These plots help understand the impact of
spillovers on the strategic equilibria, as depicted by the optimal entry threshold values of
the two firms either as the leader or follower. To generate these plots of the entry threshold
values, we adopt the common set of model parameters in the calculations for generating the
plots in Figures 1(a-d), except for some changes for the parameter values of the hazard rates
and sunk costs of the two firms.

In Figure 2(a), the entry threshold values of the incumbent firm (Firm i) and entrant

20



firm (Firm e) are plotted against ĥi with common hazard rate in the monopoly state (that
is, hi = he). The hazard rates and sunk costs are chosen to be: hi = 0.2, he = 0.2, ĥe = 0.2,
Ki = 5, Ke = 5, and π+

i = πe = 0.8. For this given set of model parameter values, preemptive
equilibrium is always resulted, though the nature of the preemptive equilibrium differs under
different levels of ĥi. When ĥi is sufficiently low, where ĥi ≤ ĥ∗

i (ĥ∗
i is found to be 0.103

based on this given set of parameters), Firm e chooses to preempt Firm i at Firm i’s leader
threshold. In other words, Firm i enters optimally as the follower at its optimal follower
threshold x∗

if while Firm e enters as the preemptive leader at its Firm i’s optimal leader

threshold x∗
il [as illustrated in Figure 2(a) by x

(l)
e = x∗

el and x
(f)
i = x∗

if when ĥi ≤ ĥ∗
i ].

It is seen that an increase in ĥi would cause x∗
il to assume a higher value since Firm i’s

second mover advantage is strengthened with a higher hazard rate under duopoly. When
ĥi increases beyond ĥ∗

i , a new form of preemption equilibrium arises in the leader-follower
game. At an intermediate level of ĥi, where ĥ∗

i < ĥi < ĥ∗∗
i (our calculations give ĥ∗

i = 0.103
and ĥ∗∗

i = 0.355), the competition is relatively keen, so the firm with a higher hazard rate
under duopoly (Firm j) preempts its rival at the rival’s preemption threshold xj′p, j 6= j′.

When ĥi increases further, the preemptive incentive of Firm e is weakened. Once ĥi > ĥ∗∗
i ,

Firm i chooses to preempt at the rival’s leader threshold x∗
el. As illustrated in Figure 2(a),

we have x
(l)
i = x∗

el and x
(f)
e = x∗

ef when ĥi > ĥ∗∗
i . Also, Figure 2(a) reveals that the difference

of the entry thresholds converges as ĥi first increases from a low value, then diverges when ĥi

further increases beyond 0.2. When ĥi increases from low value to 0.2, Firm i is the follower
since ĥi < ĥe = 0.2. Within this range of ĥi, x

(l)
e is not quite sensitive to increasing value of

ĥi while x
(f)
i = x∗

if decreases quite significant with increasing value of ĥi. This is expected
since Firm i responds more strongly by entering at a lower follower entry threshold when
the increase of the incumbent’s hazard rate is higher. This gives the converging trend of the
difference of the thresholds when ĥi increases from low value to 0.2. When ĥi > ĥe = 0.2,
Firm i becomes the leader. As ĥi increases beyond 0.2, x

(l)
i is not quite sensitive to increasing

value of ĥi. However, the incentive for entrant’s entry as the follower is much weakened as
ĥi increases. Firm e chooses to enter at a relatively higher follower threshold. This leads to
the diverging trend of the difference of the thresholds when ĥi increases beyond 0.2.

It is instructive to compare our result with that of Weeds (2002). At ĥi = ĥe = hi =
he = 0.2, we obtain symmetric duopoly similar to the model of Weeds (with zero spillover).
There exist two possible preemption equilibria: (i) Firm i acts as the preemptive leader at

x
(l)
i = xep (same value as xip due to symmetry) and Firm e acts optimally as the follower

at x
(f)
e = x∗

ef . (ii) Firm e acts as the preemptive leader at x
(l)
e = xip = xep and Firm i acts

optimally as the follower at x
(f)
i = x∗

if . This result is consistent with that of Weeds (2002).

In Figure 2(b), the entry threshold values of the two firms are plotted against ĥi with
common hazard rate in the monopoly state (that is, hi = he). The hazard rates and sunk
costs are chosen to be: hi = 0.05, he = 0.05, ĥe = 0.3, Ki = 5, Ke = 5, and π+

i = 0.8,
πe = 0.8. Here, the hazard rates in the monopoly state are chosen to assume a small
value since we would like to demonstrate the occurrence of simultaneous equilibrium under
low hazard rates. When ĥi is lower than some threshold level ĥ∗

i (ĥ∗
i = 0.23 is obtained

based on this set of parameter values), only Firm e has first mover advantage while Firm
i has no preemptive incentive. As a result, Firm e is the leader in the resulting sequential
leader-follower equilibrium. At an intermediate level of ĥi, where ĥ∗

i < ĥi < ĥ∗∗
i (our

calculations give ĥ∗
i = 0.23 and ĥ∗∗

i = 0.42), both firms do not exhibit first mover advantage,
so simultaneous equilibrium is resulted. The simultaneous entry threshold value shared by
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both firms are given by x
(s)
i = x

(s)
e = min(x∗

is, x
∗
es). As ĥi increases beyond ĥ∗∗

i , only Firm i

has first mover advantage while Firm e has no preemptive incentive, so Firm i is the leader
in the resulting sequential leader-follower equilibrium.

5.3 Pattern of strategic equilibria

Lastly, we perform characterization of the strategic equilibria in the parameter space of (i)
d and Ki (where d is the common externality factor), and (ii) h and ĥi (where h is the
common hazard rate under monopoly). The corresponding patterns of strategic equilibria
are illustrated in Figures 3(a) and 3(b), respectively.

In generating the plot in Figure 3(a), the model parameter values are chosen to be
hi = he = 0.05, Ke = 10, π+

i = πe = 0.8. We take ĥi = ĥe, and these two parameters
assume values between 0 to 0.3 to generate the range of values for d as shown in the figure.
According to Proposition 2, under the assumption of negative externalities with d < 0, the
pattern of strategic equilibria can be characterized according to d < d∗ or d > d∗, where d∗

is some threshold value. In our calculations, the critical threshold d∗ is found to be −2.09.
When d < d∗, keen competition arises when Ki is chosen to be close to Ke, where Ke is
chosen to be 10. Under this scenario, we obtain preemptive equilibrium with the lower cost
firm as the preemptive leader. When the difference in sunk costs becomes wider, sequential
equilibrium is resulted. On the other hand, when d > d∗, both firms do not have first
mover advantage when the difference in the sunk costs is small, thus leads to simultaneous
equilibrium. However, the strategic equilibrium pattern changes to sequential equilibrium
when the two sunk costs differ widely. All these observations, as illustrated in Figure 3(a),
agree with the results stated in Proposition 2.

Figure 3(b) shows the pattern of strategic equilibria in the parameter space of h and ĥi.
The model parameter values are chosen to be the same as those in generating Figure 2(a),
expect that Ki = Ke = 5 and ĥe = 0.3. Here, we set the sunk costs of the two firms to
be the same. When the common hazard rate under monopoly h is less than some threshold
value h∗ (in our calculations, h∗ is found to be 0.056), it becomes much likely that both
firms do not have first mover advantage. In particular, this occurs when the two hazard
rates under duopoly of the two firms do not differ widely. Under this scenario, simultaneous
equilibrium is resulted. Otherwise, when the difference in ĥe and ĥi becomes more significant,
sequential equilibrium is resulted, where the firm with the higher hazard rate under duopoly
becomes the preemptive leader. On the other hand, when h > h∗, preemptive equilibrium is
resulted when ĥe and ĥi do not differ widely, and the firm with the higher hazard rate under
duopoly becomes the preemptive leader. Otherwise, sequential equilibrium is resulted when
the difference in ĥe and ĥi becomes sufficiently large.

6 Conclusions

Using the real options game approach, we perform analysis of strategic equilibria of optimal
entries into an asymmetric duopoly R&D race in the development of a new product with
both market and technological uncertainty. The types of Markov perfect equilibria include
sequential leader-follower equilibrium, preemptive equilibrium and simultaneous equilibrium.
The relative ordering of the various trigger thresholds with reference to the appropriate
actions taken by the rival firms determines the type of equilibrium that prevails. The final
outcome of equilibrium is related to the interplay between leader’s first mover advantage
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and follower’s second mover advantage. The positivity of the relevant externality factors,
like input spillovers, plays an important role in determining the optimal actions taken by
the rival firms.

Under preemptive equilibrium, real option values are reduced by fear of preemption since
the preemptive leader chooses to enter at the threshold that is below its optimal entry
threshold that is without preemption threat. The two competing forces are characterized
by the loss of real option value due to preemption and delay entry as a follower to take
advantage of the positive input spillover. When positive input spillover is present, it is
interesting to observe that a higher sunk cost of R&D investment or a lower hazard rate
of arrival of innovation of the incumbent firm value may increase its firm value due to the
change from preemptive equilibrium to simultaneous equilibrium. In this sense, delay of
entry into R&D under simultaneous equilibrium is more desirable since keen competition
between the competing firms is avoided.

The analysis of the real options game R&D race model reveals several interesting phe-
nomena. When the input spillover stays positive, preemptive equilibrium is always ruled
out due to the presence of dominant second mover advantage. Also, we show that the two
firms choose optimally to enter simultaneously if the sunk cost asymmetry between them is
relatively small while sequential equilibrium is resulted if otherwise. Dominant second mover
advantage is seen to prevail when the initial hazard rate is low while the input spillover is
sufficiently high, resulting in simultaneous equilibrium. However, the first mover advantage
may become significant when the initial hazard rate becomes sufficiently high. In this case,
simultaneous equilibrium is ruled out even under very high positive input spillover. Suppose
the incumbent’s hazard rate is held fixed while the entrant’s hazard rate increases gradu-
ally, it may occur that preemption action taken optimally by the incumbent is changed to
sequential follower entry since a stronger incumbent’s second mover advantage is resulted.

We have observed how the equilibrium strategies of R&D investment may change from
one type to another type depending on the level of spillovers. Also, we have shown how the
value functions may be enhanced through the avoidance of keen competition (for example,
preemptive entry is not adopted as an optimal entry decision). Our model may provide
insight on finding the optimal level of spillovers that enhance social welfare (like maximizing
the sum of the value functions of the competing firms) while the drive for innovation is not
significantly undermined due to delay in launching the R&D investment.

Our real options game model can be extended in several directions. Normally, R&D
investment may occur in several stages with results on partial success of innovation released
at each stage. The competing firms may modify their strategies based on the relevant
updated information on the potential of successful innovation. Modeling of multistage R&D
races together with information updating would pose interesting challenges. Also, we may
consider a mixed duopoly of R&D race where one firm is a welfare maximizing public sector
firm while the other firm is a profit maximizing private firm. If we allow costless imitation
of the research results from the public sector firm, then this may result in too little research
by the private firm. We may consider various forms of input and output spillovers, and
their appropriate level such that it is socially optimal. That is, there is no over-investment
in R&D under competition on one hand and no under-investment in the economy on the
other hand. The natural question: does the occurrence of the sequential leader-follower
equilibrium represent an ideal outcome of the R&D race, where natural market forces are
in full action without the social planner’s intervention? Next comes the challenge: how to
achieve that?
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Appendix A - Proof of Proposition 2

All the model parameters have been set the same for both firms except the sunk costs. We
concentrate our analysis under Ki ≤ Ke, while the analysis under Ki > Ke can be performed
in a similar manner.

It is instructive to investigate whether there exists dominant first mover advantage, that
is, x∗

il < x∗
ef and/or x∗

el < x∗
if . First, we argue that Firm e has no dominant first mover

advantage by establishing x∗
el ≥ x∗

if when Ki ≤ Ke. This can be shown easily by observing
that the following equation [see also eq. (3.10)]:

d(β̂ − β0)

[x∗
if (Ki)]β̂−1

zβ̂ −
(β0 − 1)hπ

(r − µ)(r − µ+ h)
z + β0Ke = 0

has no root in [0, x∗
if(Ki)] when Ki ≤ Ke.

Next, we show that Firm i holds dominant first mover advantage when Ki is sufficiently
low. Recall that x∗

il satisfies the following equation [see also eq. (3.10)]:

g(z;Ki) =
d(β̂ − β0)

(x∗
ef)

β̂−1
zβ̂ −

(β0 − 1)hπ

(r − µ)(r − µ+ h)
z + β0Ki = 0.

It is easily seen that g(z;Ki) possesses the following properties:

(i) g(z;Ki) is increasing with respect to Ki;

(ii) when Ki = Ke, g(z) > 0 for all z ∈ [0, x∗
ef);

(iii) when Ki = 0, g(z) ≤ 0 for some z ∈ [0, x∗
ef).

One can then deduce that there exists kl ∈ (0, Ke) such that

(i) when 0 < Ki ≤ kl, g(z;Ki) = 0 has at least one root in [0, x∗
ef);

(ii) when kl < Ki ≤ Ke, g(z;Ki) > 0 for all z ∈ [0, x∗
ef).

We then have (a) x∗
il < x∗

ef when 0 < Ki ≤ kl; and (b) x∗
il ≥ x∗

ef when kl < Ki ≤ Ke.
When Ki > Ke, by performing a similar analysis, we deduce that there exists ku ∈

(Ke,∞) such that (a) x∗
el < x∗

if when Ke < ku < Ki, and (b) x∗
el > x∗

if when Ke < Ki < ku.
From the above results, the strategic equilibrium can be deduced as follows:

(i) 0 < Ki ≤ kl, where kl ∈ (0, Ke)
Firm i exhibits dominant first mover advantage as x∗

il < x∗
ef . Preemptive equilibrium is

ruled out under positivity of d, so sequential equilibrium is resulted with Firm i acting
as the dominant leader (see Sec. 4.1).

(ii) kl < Ki < ku, where kl ∈ (0, Ke) and ku ∈ (Ke,∞)
Both firms do not hold dominant first mover advantage, so simultaneous equilib-
rium is resulted (see Sec. 4.2). Both firms choose to enter into R&D investment
at min{x∗

is, x
∗
es}.

(iii) Ki > ku, where ku ∈ (Ke,∞)
Sequential equilibrium is resulted with Firm e acting as the dominant leader.
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Appendix B - Proof of Proposition 3

It is necessary to consider the two separate cases: (i) d∗ < d < 0 and (ii) d < d∗ < 0.
The proof for the results in case (i) follows a similar analysis as depicted in Appendix A.
However, it is necessary to consider the possibility of ǫ-preemption in the resulting leader-
follower equilibrium due to the existence of the preemption trigger threshold. The detailed
discussion on the occurrence of either the preemptive equilibrium or sequential equilibrium
with various selected ranges of various choices of the cost parameters can be found in Leung
(2011).

For case (ii), we start the proof by showing that dominant first mover advantage always
exists in at least one firm so the R&D game always results in leader-follower equilibrium.
We then consider the two separate cases, either only one firm has dominant first mover
advantage or both firms hold dominant first mover advantage. In the first case, the analysis
that determines whether preemption equilibrium or sequential equilibrium occurs is similar
to part (a). In the second case, it is necessary to determine which firm emerges as the
eventual leader by analyzing the relative positions of the preemption thresholds and leader
entry thresholds of both firms with respect to the cost parameters. Detailed discussion of
the relevant procedures can be found in Leung (2011).

Appendix C - Proof of Proposition 4

When the two firms are symmetric, we deduce from Propositions 1 and 2 that (i) simultaneous
equilibrium is resulted if d ≥ d∗, and (ii) preemptive equilibrium is resulted if d < d∗. We
would like to examine the conditions on h and ĥ that lead to the above two cases.

Here, we write the functional dependence of d on ĥ as d(ĥ). First, we establish the
following results [see Leung (2011)]:

(a) If h
r−µ+h

β̂2−β̂

β̂2−β0

≥ 1
2
, then d(ĥ) < d∗ for ĥ ≥ 0.

(b) If h
r−µ+h

β̂2−β̂

β̂2−β0

< 1
2
, then there exists ĥ∗ (as defined in Proposition 3) such that d(ĥ) ≥ d∗

if and only if ĥ ≥ ĥ∗.

Next, for h < r−µ, it is easily seen that h
r−µ+h

β̂2−β̂

β̂2−β0

< 1
2
, so by the result in part (b) above,

we obtain the result in Proposition 3(a). Lastly, by observing

lim
h→∞

h

r − µ+ h

β̂2 − β̂

β̂2 − β0

= 1 and
h

r − µ+ h

β̂2 − β̂

β̂2 − β0

|h=0 = 0,

we deduce that there exists h∗, where h∗ > r − µ, such that h
r−µ+h

β̂2−β̂

β̂2−β0

≥ 1
2
. By the result

in part (a) above, we obtain Proposition 4(b).
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Figure 1a: Plot of the leader and follower value functions under sequential equilibrium with
Firm e as the leader. Though both firms hold dominant first mover advantage as revealed by
x∗
il < x∗

ef and x∗
el < x∗

if , Firm i has no preemption incentive as demonstrated by Li(x) < Fi(x)
for x < x∗

ef . As a result, Firm e enters optimally at x∗
el as leader while Firm i enters optimally

at x∗
if as follower.
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Figure 1b: Plot of the leader and follower value functions under preemptive equilibrium with
Firm e as the preemptive leader. Both firms have preemption incentive since preemption
thresholds exist for both firms. Since Firm e has lower preemption threshold, where xep < xip,
Firm e chooses to preempt its rival at the rival’s preemption threshold xip.
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Figure 1c: Plot of the leader and follower value functions under preemptive equilibrium with
Firm e preempting the rival firm at the rival’s leader threshold x∗

il. The functions Li(x) and
Fi(x) do not intersect while the functions Le(x) and Fe(x) intersects only once at xep. The
competition for leader’s entry is less keen since preemption incentive exists only in Firm e.
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Figure 1d: Plot of the leader and follower value functions of each of two firms, and the value
functions of joint optimal entry of the two firms under simultaneous equilibrium.
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Figure 2a: Plot of the optimal entry threshold values of the two firms with respect to ĥi

with common hazard rate in the monopoly state, hi = he. The thick curves (dotted curves)
show the entry threshold values of the incumbent (entrant). At a lower value of ĥi, the
entrant enters as the preemptive leader at either Firm i’s optimal leader threshold x∗

il or

Firm i’s preemption threshold xip. As ĥi increases, the incumbent becomes the preemptive

leader. At ĥi = ĥe = hi = he = 0.2, we recover the symmetric duopoly model of Weeds; and
preemption equilibrium prevails in this case. Due to symmetry, either firm may become the
preemptive leader entering at the rival’s preemption threshold; the other firm serving as the
follower would enter at its own optimal follower threshold.
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Figure 2b: Plot of the optimal entry threshold values of the two firms with respect to ĥi

with common hazard rate in the monopoly state, hi = he. The thick curves (dotted curves)
show the entry threshold values of the incumbent (entrant). At a lower value of ĥi, Firm e

is the leader under the resulting sequential leader-follower equilibrium since it has stronger
first mover advantage. At an intermediate value of ĥi, both firms do not exhibit first mover
advantage, so simultaneous equilibrium is resulted. At a higher value of ĥi, Firm i is the
leader under the resulting sequential leader-follower equilibrium since only Firm i has first
mover advantage.
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Figure 3a: Characterization of the pattern of strategic equilibria in the d-Ki plane. When
d < d∗, where d∗ = −2.09, we obtain preemptive equilibrium (with the lower cost firm as
the leader) when the sunk costs are close to each other (representing keen competition).
Otherwise, sequential equilibrium is resulted when the sunk costs become wider apart. On
the other hand, when d > d∗, simultaneous (sequential) equilibrium is resulted when the
sunk costs differ narrowly (widely).
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Figure 3b: Characterization of the pattern of strategic equilibria in the h-ĥi plane. When
h < h∗, where h∗ = 0.056, we obtain simultaneous equilibrium when ĥi is close to ĥe, where
ĥe is set to 0.3 (both firms have no first mover advantage). Otherwise, sequential equilibrium
is resulted and the firm with the higher hazard rate under duopoly becomes the leader. On
the other hand, when h > h∗, preemptive equilibrium (sequential) equilibrium is resulted
when the two hazard rates under duopoly differ slightly (significantly).
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