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Abstract

VIX futures and options are the most popular contracts traded in the Chicago Board Options Ex-

change. The bid-ask spreads of traded VIX derivatives remain to be wide, possibly due to lack

of reliable pricing models. In this paper, we consider pricing VIX derivatives under the consistent

model approach, which considers joint modeling of the dynamics of the S&P index and its instan-

taneous variance. Under the affine jump-diffusion formulation with stochastic volatility, analytic

integral formulas can be derived to price VIX futures and options. However, these integral formu-

las invariably involve Fourier inversion integrals with cumbersome hyper-geometric functions, thus

posing various challenges in numerical evaluation. We propose a unified numerical approach based

on the willow tree algorithms to price VIX derivatives under various common types of joint process

of the S&P index and its instantaneous variance. Given the analytic form of the characteristic

function of the instantaneous variance of the S&P index process in the Fourier domain, we apply

the fast Fourier transform algorithm to obtain the transition density function numerically in the real

domain. We then construct the willow tree that approximates the dynamics of the instantaneous

variance process up to the fourth order moment. Our comprehensive numerical tests performed

on the willow tree algorithms demonstrate high level of numerical accuracy, runtime efficiency and

reliability for pricing VIX futures and both European and American options under the affine model

and 3/2-model. We also examine the implied volatility smirks and the term structures of the implied

skewness of VIX options.
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1 Introduction

It is well accepted that volatility of the price process of a financial asset or index is a latent

(hidden) stochastic process that is not directly observable. Market volatility of the S&P index is

a crucial determinant of investment decisions. The volatility index (with the ticker symbol VIX)

of the Chicago Board Options Exchange (CBOE) provides the model free measure of the volatility

implied by the traded market prices of out-of-the-money options on the S&P 500 index (SPX)

over 30 calendar days. Formally, VIX is the square root of the risk neutral expectation of the

integrated variance of SPX over the next 30 calendar days, calculated on an annualized basis and

expressed in percentage point. Investors use VIX as fear gauge (indicator of market confidence) in

the financial markets since VIX tends to stay high after large downward moves of the SPX value.

The volatility index VIX and market index SPX are commonly observed to be negatively correlated

with each other. An interesting account on the history of the construction of VIX can be found

in Carr and Wu (2006). In particular, they discuss the rationale for the replacement of the old

volatility index (now called VXO) by the new VIX (launched since 2003). The old volatility index

is model dependent since its calculation is based on the Black-Scholes pricing model, which was

first computed in 1993 as a linear combination of 8 at-the-money implied volatilities on the S&P

100 options with maturities closest to 30 calendar days. The new VIX is the model free volatility

measure of SPX, which would ease the pricing procedures of VIX futures and option.

Investors may directly invest in volatility as an asset class via VIX derivatives, like VIX futures

and options. Market practitioners use VIX derivatives to hedge the risks of investment in the S&P

500 index and/or achieve exposure to the S&P 500 volatility without having to delta hedge their

S&P 500 option positions. Trading in VIX futures was started in 2004 while that of VIX options

was started in 2006. The contract multiplier for each VIX futures contract is $1,000 while that of

each VIX option contract is $100. The popularity of trading on VIX futures and options has been

growing over the years. On June 24, 2016, in reaction to the Brexit referendum, over 721,000 VIX

futures contracts were traded. On November 9, 2016, the trading volume was 644,892 in reaction

to the surprise outcome of the US presidential election. For trading of VIX options at the CBOE,

the reported record of 2,562,477 contracts were traded on August 10, 2017. Gonzalez-Perez (2015)

presents a comprehensive review on the successes and shortcomings of the use of VIX and derivatives

on VIX in financial markets as market risk measure, financial products to hedge against volatility

risk, and volatility measure to estimate spot volatility dynamics and risk premium.
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There are two popular model approaches for pricing VIX derivatives. In the consistent model

approach, one considers the stochastic dynamics of SPX under stochastic volatility and derives the

dynamics of VIX. The other approach directly models the dynamics of VIX (Psychoyios et al., 2010;

Goard and Mazur, 2013; Park, 2016; Li et al., 2017; Detemple and Kitapbayev, 2018). Menćıa and

Sentana (2013) present an extensive empirical analysis of various VIX derivative valuation models

under direct modeling of the dynamics of VIX. Duan and Yeh (2010) discuss the extraction of

the jump and volatility risk premiums implied by VIX. Kaeck and Alexander (2013) study the

continuous time VIX dynamics and examine the role of stochastic volatility of volatility. Note that

VIX is derived from the prices of options on SPX, so the direct modeling approach may ignore the

linkage between SPX and VIX.

In this paper, we adopt the consistent model approach that involves modeling of the joint

process of SPX and its instantaneous variance. There have been numerous earlier works on pricing

VIX derivatives using the consistent model approach. Zhang and Zhu (2006) first consider pricing

VIX futures under the Heston stochastic volatility model. Later, Zhu and Zhang (2007) propose

the no-arbitrage approach for pricing VIX futures using the term structure of forward variance.

Cont and Kokholm (2013) emphasize the importance of adding jumps in both SPX and volatility.

They argue that adding jumps in volatility is important in order to produce the positive skew of

implied volatilities of VIX options. Under the assumption of the affine stochastic volatility model

with simultaneous jumps, Luo and Zhang (2012) analyze the term structure of VIX. Under the

assumption of zero jump, they show that the square of VIX can be expressed as the weighted

average of the instantaneous variance process and its long term mean. In general, nice analytic

tractability exists under the affine model with simultaneous jumps on the index process and its

instantaneous process, and various forms of price formulas of VIX futures and options in integral

forms can be established (Lin, 2007; Sepp, 2008; Zhu and Lian, 2012; Lian and Zhu, 2013). Wang

et al. (2017) also manage to derive the integral price formula of VIX futures under the Heston-

Nandi GARCH model. To facilitate numerical valuation of VIX derivatives under the affine models,

Barletta and Nicolato (2018) derive the orthogonal expansion series for the price functions of VIX

derivatives. Kaeck and Alexander (2012) examine the volatility dynamics of SPX under 18 different

affine and non-affine stochastic volatility models with jumps on both SPX and its instantaneous

variance. Their studies provide clear evidence that the non-affine models out-perform their affine

counterparts. Branger et al. (2017) use the informational content of VIX derivatives to infer

implications on the non-affine modeling of the SPX returns’ variance dynamics. They find that
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both the non-affine diffusion and jump dynamics are required to capture both the short-term and

long-term implied volatility distribution. Baldeaux and Badran (2014) manage to obtain integral

representation of the price formulas for VIX futures and options under the 3/2-model with jumps

on the index. Based on the 4/2 stochastic volatility model proposed by Grasselli (2017), Lin et

al. (2017) derive the integral price formulas for VIX derivatives under the 4/2 stochastic volatility

plus jump on the index. Later, Lin et al. (2018) derive the price formulas of VIX derivatives

under their free stochastic volatility model, characterized by an arbitrary power parameter of the

instantaneous variance in the dynamic equation of SPX and its instantaneous variance. Their class

of models reduce to the 1/2-model (affine model) and 3/2-model when the power parameter assumes

the value of 1/2 and 3/2, respectively.

Though integral price formulas can be derived for VIX derivatives under the affine type con-

sistent models, numerical valuation of these price formulas can be quite cumbersome. Even for

the numerical implementation of the affine Heston model, Barletta and Nicolato (2018) argue that

numerical calculations are not free of complications. Numerical instabilities may arise due to failure

of integrability conditions and inappropriate choice of the branch cuts in the software evaluation

of multivalued complex logarithm functions. Kwok and Zheng (2018) propose the use of the sad-

dlepoint approximation methods to evaluate the integral price formulas of VIX derivatives under

the Heston model. However, numerical accuracy of the saddlepoint approximation may deteriorate

when the jump sizes are significant, options are deep-out-of-the-money and at times close to expira-

tion. Therefore, it is desirable to develop reliable and accurate numerical schemes for pricing VIX

derivatives under popular types of consistent models.

In this paper, we propose a unified numerical pricing method based on the willow tree algorithm

that can be used to price VIX derivatives under common types of joint process of the index and

its instantaneous variance. The willow tree algorithm was first proposed by Curran (2001), which

has been successfully applied to price various path dependent options and structured derivatives

(Xu et al., 2013; Xu and Yin, 2014; Wang and Xu, 2018; Dong et al., 2019). In these research

papers, the willow tree method has been demonstrated to be an effective numerical approach for

pricing exotic financial derivatives in terms of numerical accuracy, runtime efficiency and reliability.

Unlike the finite difference schemes where uniform spacing of layers of nodes is adopted, the first

four order moments of the underlying instantaneous variance process are used to determine the

layers of nodes in the willow tree. The construction of the willow tree is in the real domain and

requires the knowledge of the probability distribution of the underlying instantaneous variance
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process. Since only the characteristic function of the underlying instantaneous variance process in

the Fourier domain is known in analytic form, our proposed willow tree algorithm includes the fast

Fourier transform algorithm to find the first four order moments of the underlying instantaneous

variance process. With availability of analytic form of the corresponding characteristic function

of the underlying instantaneous variance process and coupled with the fast Fourier-cosine series

algorithm (Fang and Oosterlee, 2008), the willow tree approach can be extended to price VIX

products and other exotic derivatives under general Lévy processes and stochastic volatility models.

This paper is organized as follows. In the next section, we discuss the model formulation of VIX

under two choices of stochastic volatility models: (i) affine jump-diffusion model with simultaneous

jumps on both the index and its instantaneous variance, and (ii) 3/2-model with jumps on the index.

We show how VIX2
t can be expressed in terms of the instantaneous variance vt and other relevant

model parameters under these two models. In Section 3, we present the construction of the willow

tree algorithm that price VIX futures and options under the affine model and 3/2-model. We show

how to compute the transition probabilities between the willow tree nodes at successive time steps

based on the conditional distribution of the instantaneous variance using the fast Fourier cosine

algorithm. In Section 4, we present the numerical tests that were performed to assess accuracy,

efficiency and reliability of the willow tree algorithms for pricing VIX derivatives. With availability

of the effective willow tree pricing algorithm, we examine various pricing behaviors of VIX futures

and options, like the implied volatility smirks and the term structure of the implied volatilities of

VIX options.

2 Model formulation of VIX derivatives

Let τ denote the time window of the volatility measure of the index value process St, where τ is

fixed at 30 calendar days by the CBOE. Following Zhang and Zhu (2006), VIX is defined via the

relation:

VIX2
t (τ) = −2

τ
EQt [ln

St+τ
Sterτ

]× 1002, (2.1)

where r is the risk free interest rate and EQt is the expectation under a risk neutral measure Q

conditional on the filtration Ft. The consistent model specifies the joint dynamics of the index

value process St and its instantaneous variance process vt. Baldeaux and Badran (2014) argue that

the stochastic volatility model for St without jumps may not produce the implied volatilities of

VIX options with volatility skew structures that are consistent with market observed implied skew
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structures inferred from traded VIX options.

2.1 Affine jump-diffusion model

For the affine jump-diffusion model, the joint process of St and vt under a risk neutral measure Q

is specified by the dynamic equations:

dSt
St

= (r − λµ̄) dt+
√
vt dW 1

t + (eJ
S − 1) dNt (2.2a)

dvt = η(θ − vt) dt+ σv
√
vt dW 2

t + Jv dNt, (2.2b)

where the Brownian motions W 1
t and W 2

t observe dW 1
t dW 2

t = ρ dt. Here, ρ is the constant

correlation coefficient between dW 1
t and dW 2

t , θ is the constant mean reversion level of vt, σv is

the constant volatility of vt and η is the constant multiplier on the mean reversion drift rate. We

assume simultaneous jumps on St and vt and they are modeled by the common Poisson process Nt

with constant intensity λ. The assumed form of the dynamics of vt with the choice of
√
vt in the

diffusion term exhibits nice analytic tractability of the conditional characteristic function due to its

affine structure (Heston, 1993). It is commonly called the 1/2-model due to the square root term
√
vt. In our later discussion, we use the simplified term “1/2-model” for this affine jump-diffusion

model.

To enhance analytic tractability, it is common to adopt the following assumption on the jump

distribution of St and vt. Let JS and Jv denote the respective random jump component on St and

vt, where JS and Jv are independent of Nt and both random jump components are correlated with

correlation coefficient ρJ . Furthermore, we assume Jv to be exponentially distributed with mean

µv, where

Jv ∼ exp(µv); (2.3a)

and JS |Jv is normally distributed with mean µS + ρJJ
v and variance σS

2, where

JS |Jv ∼ N(µS + ρJJ
v, σS

2). (2.3b)

It is seen that

µ̄ = E[eJ
S − 1] =

e
σS

2

2
+µS

1− ρJµv
− 1,

and ρJ and µv are chosen to observe the technical condition ρJµv < 1.

Based on the consistent model of the joint process of St and vt under the 1/2-model, we manage

to express VIX2
t (τ) in terms of the instantaneous variance vt and other relevant model parameters.
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This property is highly desirable in pricing VIX derivatives, the proof of which is outlined below.

Firstly, we rewrite (2.2a) in terms of lnSt, where

d lnSt = (r − λµ̄− vt
2

) dt+
√
vt dW 1

t + JS dNt.

Integrating the dynamic equation from t to t+ τ and substituting the above equation into (2.1), we

obtain

VIX2
t (τ) = 2

τE
Q
t [
∫ t+τ
t (vu2 + λµ̄) du− JS dNu]× 1002

=
{

1
τE

Q
t [
∫ t+τ
t vu du] + 2λ[µ̄− (µS + ρJµv)]

}
× 1002.

By solving the dynamic equation for vt in (2.2b), we obtain

vu = e−η(u−t)vt + θ[1− e−η(u−t)] +

∫ u

t
σve
−η(u−s)√vs dW 2

s +

∫ u

t
e−η(u−s)Jv dNs, u > t.

Taking expectation EQt on both sides of the above equation, we have

EQt [vu] = e−η(u−t)vt + θ[1− e−η(u−t)] +
∫ u
t e
−η(u−s)EQ[Jv]EQ[dNs]

= e−η(u−t)vt + θ[1− e−η(u−t)] + λµv
η [1− e−η(u−t)], u > t.

We then integrate EQt [vu] over the time interval [t, t+τ ] and substitute into the equation for VIX2
t (τ)

to give

VIX2
t (τ) =

{
1
τ

∫ t+τ
t EQt [vu] du+ 2λ[µ̄− (µS + ρJµv)]

}
× 1002

=
{

1−e−ητ
ητ vt + (1− 1−e−ητ

ητ )(θ + λµv
η ) + 2λ[µ̄− (µS + ρJµv)]

}
× 1002.

In summary, under the affine 1/2-model, VIX2
t (τ) can be expressed as a linear function in vt in the

form

VIX2
t (τ) = [a0(τ) + a1(τ)vt]× 1002, (2.4)

where the τ -dependent parameters are given by

a0(τ) = (1− 1−e−ητ
ητ )(θ + λµv

η ) + 2λ[µ̄− (µS + ρJµv)],

a1(τ) = 1−e−ητ
ητ .

Under the case of zero jump, where λ = 0, VIX2
t (τ) is seen to be the weighted average of the

instantaneous variance vt and its long term mean θ (Luo and Zhang, 2012). The weight function

a0(τ) depends on η and τ only. Indeed, VIX2
t (τ) is independent of the parameters that characterize

the dynamics of the index process St.
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2.2 3/2-model

Based on the empirical studies on the time series data of S&P 100 implied volatilities as a proxy for

the instantaneous variance, Bakshi et al. (2006) show that nonlinear drift is favored over linear drift

and the variance exponent should be approximately 1.3 in the instantaneous variance dynamics.

Responding to these empirical studies, Baldeaux and Badran (2014) and Detemple and Kitapbayev

(2018) consider pricing of VIX derivatives under the consistent 3/2-model.

Following the formulation of the consistent 3/2-model in earlier works ( Baldeaux and Badran,

2014; Detemple and Kitapbayev, 2018), the dynamics of St assumes the same jump-diffusion dy-

namics as in (2.2a) while the dynamics of vt takes the following diffusion form without jumps as

follows:

dvt = ηvt(θ − vt) dt+ σvvt
3
2 dW 2

t . (2.5a)

The parameters η, θ and σv have similar interpretation as those of the 1/2-model. We emphasize that

St remains to exhibit jumps while vt does not have jump. Thanks to the reciprocal transformation

v̂t = 1
vt

, the dynamic equation of v̂t is governed by

dv̂t = η̂(θ̂ − v̂t) dt+ σ̂vv̂
1
2
t dW 2

t , (2.5b)

where η̂ = ηθ, θ̂ = η+σ2
v

ηθ and σ̂v = −σv. The 3/2-power in vt becomes 1/2-power in v̂t. Working

through a similar derivation, VIX2
t (τ) under the 3/2-model can be expressed as

VIX2
t (τ) =

{
1

τ

∫ t+τ

t
EQt [

1

v̂u
] du+ 2λ(µ̄− µS)

}
× 1002. (2.6)

Unlike the affine 1/2-model, one cannot obtain analytic formula for EQt [ 1
v̂u

], so there is no simple re-

lation between VIX2
t (τ) and vt under the 3/2-model. The integral price formulas for VIX derivatives

under the 3/2-model become highly cumbersome, so numerical valuation of these formulas require

very daunting tasks and numerical implementation becomes unreliable. In Section 3, we show that

an effective willow tree algorithm can be constructed, which requires minimal modification in the

algorithmic design when we move from the 1/2-model to 3/2-model. This is because numerical

valuation of EQt [ 1
v̂u

] can be performed effectively under the framework of the willow tree algorithm.

2.3 VIX futures and options

The exchange traded VIX has fixed τ at the value of 30 calendar days. For notational convenience,

we drop τ in VIXt(τ) in our subsequent discussion if there is no ambiguity on τ . For VIX futures
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maturing at T , the time-t futures price is given by

Ft = EQt [VIXT ]. (2.7)

Similarly, the time-t prices of the European and American VIX call options maturing at T with

strike price K are given by

ct = e−r(T−t)EQt [(VIXT −K)+], (2.8a)

Ct = sup
u∈[t,T ]

EQt [e−r(u−t)(VIXu −K)+], (2.8b)

respectively.

3 Pricing VIX derivatives by the willow tree algorithm

In this section, we discuss how to construct the willow tree structure based on the approximation of

the distribution of the instantaneous variance process vt up to the fourth order moment. These order

moments of vt are computed by the fast Fourier inversion algorithm based on the knowledge of the

conditional characteristic function of vt. We then employ the usual backward induction procedure in

standard lattice tree calculations to price VIX derivatives with their specified terminal payoffs using

the willow tree. To incorporate the American early exercise feature, we employ the usual dynamic

programming procedure of taking the maximum among the intrinsic value and continuation value at

each node. For the 1/2-model, we take the advantage that VIX2
t has the nice analytic representation

in terms of vt [see (2.4)]. However, for the 3/2-model, an additional numerical integration procedure

is required to find VIXt from the willow tree of the instantaneous variance due to the presence of

the term
∫ t+τ
t EQt [ 1

v̂u
]du in (2.6).

3.1 Willow tree of the instantaneous variance

The willow tree construction employs the discrete Markov chain to approximate the continuous

stochastic process. Figure 1 illustrates the typical willow tree structure with 3 time steps and

4 discrete values of the instantaneous variance at each time step, where each node can jump to

one of the four nodes in the next time step. The main challenge is the determination of the

transition probability between two nodes across successive time steps based on the dynamics of the

instantaneous variance.

We divide the time interval [0, T ] into N subintervals with uniform time step ∆t = T/N and

write tn = n∆t, n = 0, 1, · · · , N . With regard to the willow tree structure, we assume that there
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Figure 1: A pictorial representation of the willow tree structure with 3 time steps and 4 discrete

values of the instantaneous variance at each time step.

are m nodes at each time step. At time tn, we employ m discrete values of the instantaneous

variance vni , i = 1, 2, · · · ,m, to approximate the distribution of vtn with initial value v0 at t = 0.

According to the Johnson curve transform (Johnson, 1949), the distribution of vtn conditional on

v0 can be transformed into a standard normal distribution by an appropriate choice of the Johnson

transform function G. More details on the Johnson curve transform can be found in Appendix A.

We sample m points Zi, i = 1, 2, · · · ,m, to approximate the standard normal distribution N(0, 1).

More details on the sampling method can be found in Xu et al. (2013). Conversely, vni can be

obtained by the inverse Johnson curve transform according to the sample points Zi. Using the

inverse Johnson curve transform, we have

vtn = a3 + a4G
−1(

Z − a1

a2
), (3.1a)

where Z ∼ N(0, 1). The constant parameters a1, a2, a3, a4 and function G−1(·) can be determined

from the first four moments of vtn (Hill and Holder, 1976). Accordingly, the discrete values of the

instantaneous variance are given by

vni = a3 + a4G
−1(

Zi − a1

a2
), for i = 1, 2, · · · ,m. (3.1b)

10



Firstly, we present the construction of the willow tree under the affine dynamics of vt as depicted

in (2.2b). The procedure takes advantage of availability of the analytic formula of the conditional

characteristic function of vt (Heston, 1993). Let f(φ; t, τ, vt) denote the conditional moment gener-

ating function of the instantaneous variance vt+τ conditional on vt under the 1/2-model. Lian and

Zhu (2013) manage to obtain the following analytic exponential affine form:

f(φ; t, τ, vt) = EQt [eφvt+τ ] = eE(φ,τ)+D(φ,τ)vt+Γ(φ,τ), (3.2)

where φ is the complex-valued variable and

Γ(φ, τ) = 2µvλ
2µvη−σ2

v
ln
(

1 + (σ2
v−2µvη)φ

2η(1−µvφ) (e−ητ − 1)
)
,

E(φ, τ) = −2ηθ
σ2
v

ln
(

1 + σ2
vφ
2η (e−ητ − 1)

)
,

D(φ, τ) = 2ηφ
σ2
vφ+(2η−σ2

vφ)eητ
.

We set φ = iw, then f(iw; 0, t, v0) becomes the characteristic function of vt conditional on v0. By

taking the inverse Fourier transform, the probability density function of vt conditional on v0 is given

by

g(x|v0) =
1

2π

∫
R
e−iwxf(iw; 0, t, v0) dw. (3.3)

Using the fast Fourier cosine series algorithm (Fang and Oosterlee, 2008), together with the proper

choice of the finite integration interval [A,B], g(x|v0) can be approximated by

g(x|v0) ≈
∑′N

k=0
Fk cos(k

x−A
B −A

π), for x ∈ [A,B], (3.4)

where

Fk =
2

B −A
Re

{
f(i

kπ

B −A
; 0, t, v0)exp(−i kAπ

B −A
)

}
.

Here,
∑′

indicates that the first term in the summation is weighted by 1/2 and Re{•} denotes

taking the real part of the argument.

The jth order moment of the instantaneous variance vt can be computed by

EQ0 [(vt)
j ] =

∫ ∞
0

xjg(x|v0) dx, (3.5a)

which can be approximated by

EQ0 [(vt)
j ] ≈

∑′N

k=0Fk
∫ B
A xj cos(k x−AB−Aπ) dx,

=
∑′N

k=0
2

B−ARe
{
f(i kπ

B−A ; 0, t, v0)exp(−i kAπB−A)
}
ϕj(k),

(3.5b)

where

ϕj(k) =

∫ B

A
xj cos(k

x−A
B −A

π) dx.
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For j = 1, 2, 3, 4, the explicit expressions of these integrals are given by

ϕ1(k) =

 (B−Akπ )2[(−1)k − 1], for k 6= 0,

B2−A2

2 , for k = 0;

ϕ2(k) =

 2(B−Akπ )2[B(−1)k −A], for k 6= 0,

B3−A3

3 , for k = 0;

ϕ3(k) =

 3(B−Akπ )2
{
B2(−1)k −A2 − 2(B−Akπ )2[(−1)k − 1]

}
, for k 6= 0,

B4−A4

4 , for k = 0;

ϕ4(k) =

 4(B−Akπ )2
{
B3(−1)k −A3 − 6(B−Akπ )2[B(−1)k −A]

}
, for k 6= 0,

B5−A5

5 , for k = 0.

According to the inverse Johnson curve transform, the values of nodes in the willow tree of

the instantaneous variance vt conditional on the filtration F0 can be obtained by the following

algorithm:

Algorithm 1

1. Select m sample points Zi, i = 1, 2, · · · ,m, as the approximation of the standard normal

distribution.

2. According to (3.5b), calculate the approximate values of the first four moments of vtn. The

parameters a1, a2, a3, a4 and function G−1(·) using the Johnson curve transform are then

determined.

3. Use the inverse Johnson curve transform [see (3.1b)] to obtain

vni = a3 + a4G
−1(

Zi − a1

a2
).

4. Steps 2 and 3 are repeated to obtain vni , i = 1, 2, · · · ,m and n = 1, 2, · · · , N .

Once the node values on the willow tree structure of the instantaneous variance have been

determined, we then compute the transition probability between any two nodes across consecutive

time points in the willow tree. According to (3.3), given vtn = vni , the conditional probability

density function of vtn+1 is given by

g(x|vni ) =
1

2π

∫
R
e−iwxf(iw; tn,∆t, v

n
i ) dw.

Using the fast Fourier cosine series algorithm [ see (3.4)], g(x|vni ) can be approximated by

g(x|vni ) ≈
∑′N

k=0
Fk cos(k

x−A
B −A

π), x ∈ [A,B],
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where the discrete Fourier cosine series coefficients are given by

Fk =
2

B −A
Re

{
f(i

kπ

B −A
; tn,∆t, v

n
i )exp(−i kAπ

B −A
)

}
.

The corresponding conditional cumulative distribution function over the interval [C,D] is given by

P [C < vtn+1 ≤ D|vni ] =
∫ D
C g(x|vni ) dx

≈
∑′N

k=0Fk
∫ D
C cos(k x−AB−Aπ) dx

=
∑′N

k=0
2

B−ARe
{
f(i kπ

B−A ; tn,∆t, v
n
i )exp(−i kAπB−A)

}
ϕ0(k),

(3.6)

where

ϕ0(k) =

∫ D

C
cos(k

x−A
B −A

π) dx =

 B−A
kπ [sin(kπC−AB−A)− sin(kπD−AB−A )], for k 6= 0,

D − C, for k = 0.

Next, the transition probability between any two nodes across two consecutive time points in

the willow tree can be computed systematically by the following numerical procedures.

Algorithm 2

1. Let En+1 denote the (m+ 1)-dimension column vector (En+1
1 , En+1

2 , · · · , En+1
m+1)T, where

En+1
i =


0, for i = 1,
vn+1
i−1 +vn+1

i

2 , for i = 2, 3, · · · ,m,

∞, for i = m+ 1.

The transition probability from node vni at tn to vn+1
j at tn+1 is given by

pnij = P [En+1
j < vtn+1 ≤ En+1

j+1 |v
n
i ], for i, j = 1, 2, · · · ,m, (3.7)

where P [En+1
j < vtn+1 ≤ En+1

j+1 |vni ] is computed using (3.6).

2. By repeating step 1 for each tn, n = 1, 2, · · · , N , we obtain the transition probability matrix

Pn = [pnij ]m×m of the willow tree for the instantaneous variance at tn.

3. At the initial time t0, the transition probability matrix P0 is reduced to the row vector [p0
j ]1×m,

where

p0
j = P [E1

j < vt1 ≤ E1
j+1|v0], for j = 1, 2, · · · ,m.

As a remark, when the instantaneous variance process has no jump, Algorithm 2 can be simplified

since the first four order moments of the instantaneous variance and the transition matrices of the
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willow tree of the instantaneous variance can be evaluated directly [similar to the order moments

calculation performed for the CIR process of the short rate in Wang and Xu (2018)] without the

necessity of finding numerical approximation values using the Fourier cosine series expansion.

Next, we show how to relate the corresponding dynamics of VIX to the willow tree of instanta-

neous variance for 1/2- and 3/2-models in order to price the VIX derivatives.

3.2 Pricing VIX derivatives under the 1/2-model

Once the willow tree structure of the instantaneous variance has been constructed, the corresponding

value of VIXt whose underlying SPX follows the 1/2-model as depicted in (2.2) can be computed

by [see (2.4)]

VIXn
i =

√
a0(τ) + a1(τ)vni × 100, for i = 1, 2, · · · ,m and n = 1, 2, · · · , N. (3.8)

The transition probability from node VIXn
i at tn to node VIXn+1

j at tn+1 is pnij [see (3.7)], which

is the same as that of the instantaneous variance. In other words, the willow tree of the VIX for

the affine model (1/2-model) is almost the same as the one for instantaneous variance, except for

updating the tree node values of VIX using (3.8).

The prices of VIX futures and the European VIX call option with strike price K can be computed

by the standard backward induction procedure based on the available willow tree structure of VIX.

The algorithm is summarized as follows.

Algorithm 3

1. Given VIXtN = VIXN
i on the maturity date T , the terminal value of the VIX futures is

FNi = VIXN
i ,

and the terminal value of the European VIX call option is

cNi = max(VIXN
i −K, 0).

2. The usual backward induction procedure is adopted. At tn, n = N − 1, N − 2, · · · , 1, the

numerical value of VIX futures Fni is computed by the expectation of VIX futures prices Fn+1
j

at tn+1, where

Fni =
m∑
j=1

pnijF
n+1
j .
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For the European VIX call option, its numerical value cni is computed by the discounted ex-

pectation of the European VIX call option numerical values cn+1
j at tn+1, where

cni = e−r∆t
m∑
j=1

pnijc
n+1
j .

3. At the initial time t0, the numerical value of VIX futures and the European VIX call option

are computed by

F0 =
m∑
j=1

p0
jF

1
j ,

and

c0 = e−r∆t
m∑
j=1

p0
jc

1
j ,

respectively.

For the American VIX call option, the early exercise feature is incorporated by following the

usual dynamic programming procedure of taking the maximum of the intrinsic value and continu-

ation value at each node. It suffices to modify step 2 in Algorithm 3 by the dynamic programming

procedure as follows:

Cni = max{e−r∆t
m∑
j=1

pnijC
n+1
j , (VIXn

i −K)+}.

3.3 Pricing VIX derivatives under the 3/2-model

When the index value dynamics follows the 3/2-model, VIX2
t (τ) cannot be expressed explicitly in

terms of vt [see (2.6)]. As a result, numerical integration procedure is required to estimate the

conditional expectation
∫ t+τ
t EQt [ 1

v̂u
] du based on the willow tree of v̂t. Unlike the 1/2-model, we

construct the willow tree for the dynamics of the reciprocal of the instantaneous variance v̂t over the

extended time interval [0, T + τ ] for the computation of the conditional expectation. The extended

time interval [0, T + τ ] is divided into N1 uniform subintervals with t0 = 0 < t1 < t2 < · · · < tN =

T < tN+1 < · · · < tN1 = T + τ , tn = n∆t, where N1 = T+τ
∆t and l = τ

∆t . The nodes on the willow

tree at tn are denoted by v̂ni , i = 1, 2, · · · ,m, while the transition probability matrix between tn

and tn+1 on the willow tree is denoted by Pn = [pnij ], i, j = 1, 2, · · · ,m. We compute VIX at time

tn as follows:

VIX2
tn = { 1

τ

∫ tn+τ
tn

EQtn [ 1
v̂u

] du+ 2λ(µ̄− µS)} × 1002,

≈ { 1
τ

∑l+n
k=n E

Q
tn [1

2( 1
v̂tk

+ 1
v̂tk+1

)]∆t+ 2λ(µ̄− µS)} × 1002,

= { 1
τ (1

2
1
v̂tn

+
∑l+n

k=n+1 EQ[ 1
v̂tk
|v̂tn ] + 1

2E
Q[ 1

v̂tl+n+1
|v̂tn ])∆t+ 2λ(µ̄− µS)} × 1002.

(3.9)
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The next step is to perform numerical computation of the conditional expectation EQ[ 1
v̂tk
|v̂tn ],

k = n+ 1, n+ 2, · · · , l + n+ 1. Given v̂tn = v̂ni on the willow tree of v̂t at tn, we first compute

EQ[
1

v̂tn+1

|v̂ni ] ≈
m∑
j=1

pnij
1

v̂n+1
j

,

where pnij is the transition probability between v̂ni and v̂n+1
j on the willow tree. Next, we compute

EQ[ 1
v̂tn+2

|v̂ni ] ≈
∑m

j=1 P [v̂n+1
j |v̂ni ]EQ[ 1

v̂tn+2
|v̂ni , v̂

n+1
j ],

=
∑m

j=1 p
n
ijEQ[ 1

v̂tn+2
|v̂n+1
j ],

=
∑m

j=1 p
n
ij

∑m
k=1 p

n+1
jk

1
v̂n+2
k

.

(3.10)

Writing pni = [pni1, p
n
i2, · · · , pnim]T and vn+2 = [ 1

v̂n+2
1

, 1
v̂n+2
2

, · · · , 1
v̂n+2
m

]T, we rewrite (3.10) in the matrix

form as follows:

EQ[
1

v̂tn+2

|v̂ni ] = (pni )TPn+1vn+2.

Recursively, the conditional expectation of 1
v̂tk

given v̂ni can be expressed in the form

EQ[
1

v̂tk
|v̂ni ] = (pni )TPn+1Pn+2 · · ·Pk−1vk, k = n+ 1, n+ 2, · · · , l + n+ 1.

In summary, the conditional expectation in (3.10) can be calculated as

EQ[
1

v̂tk
|v̂ni ] = (pk−1

i )Tvk, k = n+ 1, n+ 2, · · · , l + n+ 1,

where pni = [pni1, p
n
i2, · · · , pnin]T and (pki )

T = (pk−1
i )TPk.

Therefore, we manage to obtain the value of VIXn
i given v̂tn = v̂ni . The willow tree of VIX is also

constructed after we repeat the above procedure for all v̂ni for i = 1, 2, · · · ,m and n = 1, 2, · · · , N ,

using the transition probability matrices Pn, Pn+1, · · · ,Pn+l.

Once we have obtained VIXtN = VIXN
i , the pricing schemes for VIX futures and options are

essentially the same as those performed for the 1/2-model in the previous subsection.

4 Numerical tests

This section presents numerical results that assess accuracy, efficiency and reliability of the willow

tree algorithms for pricing VIX derivatives under the 1/2-model and 3/2-model. In our numerical

tests, we take τ = 1
12 , the convention of 30 calendar days adopted in CBOE. In our construction of

the willow tree structure, the number of spatial nodes m and time step ∆t are chosen to be 200 and

1/12, respectively. In order to obtain the values of the first four order moments of the instantaneous
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variance and determine the transition probability matrices of the willow tree of the instantaneous

variance, the Fourier-cosine series algorithm is used based on the knowledge of the conditional

characteristic function of the instantaneous variance under the CIR process in the Fourier domain.

In our numerical tests, the interval of integration [A,B] of the Fourier-cosine series expansion is

determined by

[A,B] :=

[
max(c1 − L

√
c2 +

√
c4, 0), c1 + L

√
c2 +

√
c4

]
with L = 10,

where c1, c2 and c4 are the respective first, second and fourth order cumulants of instantaneous

variance vt [see (3.5b)]. More details on the discussion of the interval of integration can be found

in Fang and Oosterlee (2008). Since the value of variance should not be negative, the lower bound

of the integration is chosen to be the maximum value between c1 −L
√
c2 +

√
c4 and 0. We set the

number of summation terms N in (3.5b) to be 1,000, which is sufficiently large for L = 10.

To provide the benchmark comparison for our willow tree calculation results, we also performed

the Monte Carlo simulation to price VIX derivatives. We adopt the Euler-Maruyama discretization

for the instantaneous variance dynamics. Under the 1/2-model, since VIX2 can be expressed as a

linear function in vt [see (2.4)], we simulate the path of vt from t = 0 to t = T . As a result, the

value of VIX at t = T can be obtained using (2.4). The prices of VIX futures and the European

VIX call option can be obtained based on the Monte Carlo simulation procedure. Here, we set the

number of simulation paths to be 10,000. However, under the 3/2-model, we cannot obtain the

closed form formula for VIX. We have to employ the nested Monte Carlo simulation to price VIX

derivatives under the 3/2-model. Similar to the numerical calculations under the 1/2-model, we

first simulate 10,000 paths of vt from t = 0 to t = T . For each simulated path, as an additional

numerical expectation procedure, we simulate 100,000 paths of vt from t = T to t = T + τ and

estimate the value of VIX at time T using (2.6). Once the numerical estimate value of VIX under

the 3/2-model at time T is available, VIX derivatives can be priced in a similar manner.

In this section, we present the numerical pricing results of VIX derivatives using the willow tree

(WT) algorithm and Monte Carlo (MC) simulation method under the 1/2-model and 3/2-model.

For the 1/2-model, we also give the pricing results using the numerical integration (NI) of the

Fourier integral price formulas for the VIX futures and the European call option as an additional

benchmark calculations. As a remark, the saddlepoint approximation methods proposed by Kwok

and Zheng (2018) can also be used to find accurate approximation values of VIX derivatives based

on the available integral price formulas. However, the saddlepoint approximation methods may fail
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to give sufficiently accurate results when the option are sufficiently deep-out-of-money or very near

to maturity. Since there is no corresponding analytic integral price formulas for VIX derivatives

under the 3/2-model, we can only compare the pricing results of VIX derivatives by WT algorithm

with those of MC simulation calculations. In addition to the assessment of numerical accuracy, we

examine the impact of various model parameters, like σv and λ, on the pricing behaviors of the

European VIX call options. We also examine the implied volatility smirks and the term structures

of the implied skews of the European VIX call options under both the 1/2 model and 3/2-model.

Lastly, we compute the American VIX call option prices and observe significant early exercise

premium when compared with those of the European vanilla options.

4.1 1/2-model

Table 1: Parameter values for the 1/2-model.

r v0 η θ σv µS σS λ ρJ µv

0.0319 0.0076 3.46 0.008 0.14 -0.0865 0.0001 0.47 -0.38 0.05

Table 2: Pricing results of VIX futures with varying maturities under the 1/2-model.

Maturity Price CPU time (second)

(month) WT MC (standard error) NI WT MC

1 12.0765 12.0895 (0.0269) 12.0747 0.663 7.641

2 12.3793 12.3816 (0.0339) 12.3788 3.942 15.177

3 12.6240 12.6426 (0.0379) 12.6246 7.197 22.701

4 12.8185 12.8209 (0.0396) 12.8199 10.459 30.289

5 12.9712 12.9778 (0.0411) 12.9733 13.641 37.928

6 13.0899 13.0938 (0.0417) 13.0926 17.179 45.501

7 13.1816 13.1766 (0.0420) 13.1847 20.534 53.028

8 13.2520 13.2582 (0.0424) 13.2555 23.443 60.531

9 13.3058 13.3221 (0.0426) 13.3095 26.875 68.239

10 13.3467 13.3615 (0.0427) 13.3507 30.390 75.632

In our numerical experiments, we used the same set of parameters of the 1/2-model showed
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Table 3: Pricing results of 3-month European VIX call options with varying strike prices under the

1/2-model.

Strike price
Price CPU time (second)

WT MC (standard error) NI WT MC

10.5 2.2310 2.2391 (0.0364) 2.2353 6.723 22.856

11.0 1.8646 1.8659 (0.0356) 1.8690 6.689 22.890

11.5 1.5572 1.5527 (0.0345) 1.5615 6.826 22.841

12.0 1.3082 1.3057 (0.0335) 1.3125 6.688 22.867

12.5 1.1121 1.1218 (0.0328) 1.1164 6.698 22.856

13.0 0.9607 0.9574 (0.0312) 0.9649 6.863 22.871

13.5 0.8446 0.8428 (0.0304) 0.8487 6.831 22.842

14.0 0.7549 0.7590 (0.0294) 0.7590 6.656 22.847

in Table 1 (unless otherwise stated) as reported in Lian and Zhu (2013). In Table 2, we present

the numerical results of VIX futures using the willow tree (WT) algorithm, Monte Carlo (MC)

simulation method with standard errors and direct numerical integration (NI). The VIX futures

values obtained by WT algorithm are seen to be very close to those obtained using NI, and the

difference between VIX futures prices obtained by the WT algorithm and MC simulation is typically

less than the standard error of MC simulation. Comparing the CPU times required by the WT

algorithm and MC simulation, the former is typically much less, even for long-maturity futures. This

reveals that the WT algorithm is accurate and more computationally efficient than MC simulation

when pricing VIX futures. Table 3 presents the pricing results of the 3-month European VIX call

option with varying strike prices. Similar high level of numerical performance of the WT algorithm

in terms of accuracy and computational efficiency is observed.

4.2 3/2-model

For the 3/2-model, we choose some of the parameters of the 3/2-model in Lin et al. (2017). In

their set of parameters, the jump in the index process is quite small, so we modify the index jump

component to be the same magnitude as those in the 1/2-model. The values of parameters for the

3/2-model used in our numerical tests are listed in Table 4.

Tables 5 and 6 present the pricing results of VIX futures and 3-month European VIX call
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Table 4: Parameter values for the 3/2-model.

r v0 η θ σv µS σS λ

0.05 0.0076 26.3189 0.0935 9.2499 -0.0865 0.0001 0.47

Table 5: Pricing results of VIX futures with varying maturities under the 3/2-model.

Maturity Price CPU time (second)

(month) WT MC (standard error) WT MC

1 11.5464 11.5306 (0.0098) 3.924 3904.024

2 12.2835 12.2857 (0.0166) 7.265 3891.672

3 13.0314 13.0289 (0.0231) 10.472 3899.843

4 13.7724 13.7754 (0.0296) 14.041 3891.363

5 14.5091 14.5556 (0.0341) 16.994 3925.915

6 15.2182 15.1781 (0.0407) 20.259 3982.429

7 15.8632 15.7306 (0.0439) 23.737 3998.580

8 16.4325 16.4850 (0.0475) 27.032 4012.579

9 16.9226 16.8488 (0.0509) 30.488 4013.147

10 17.3262 17.4298 (0.0510) 34.239 4042.311

Table 6: Pricing results of 3-month European VIX call options with varying strike prices under the

3/2-model.

Strike price
Price CPU time (second)

WT MC (standard error) WT MC

10.5 2.5380 2.5477 (0.0231) 10.552 4115.228

11.0 2.1045 2.1107 (0.0227) 10.752 4101.472

11.5 1.7166 1.7015 (0.0219) 10.682 4084.472

12.0 1.3816 1.3880 (0.0217) 10.817 4098.624

12.5 1.1007 1.0975 (0.0204) 11.183 4083.217

13.0 0.8705 0.8743 (0.0192) 10.724 4091.092

13.5 0.6855 0.6904 (0.0174) 10.695 4078.079

14.0 0.5385 0.5364 (0.0156) 10.713 4092.423
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option under the 3/2-model, respectively, obtained by WT and MC. We also compare the CPU

times required by these two methods. Similar to the 1/2-model, we observe good agreement of

the numerical values obtained using WT and MC, while the CPU time required by the former is

typically less than 1% of that of MC method. The advantage of the willow tree algorithms over the

Monte Carlo simulation is more obvious under the 3/2-model since there is no closed form formula

for VIX2 in terms of the instantaneous variance as in the 1/2-model.

4.3 Impact of the volatility of instantaneous variance

In this subsection, we analyse the impact of the parameter σv in the instantaneous variance process

on the prices of the European VIX call option with strike price equals 13, while the other model

parameters remain unchanged.
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Figure 2: Pricing results of the European VIX call option with strike price K = 13 under different

values of σv.

Figure 2 shows the plots of the values of the European VIX call option with varying values of

σv under the 1/2-model and 3/2-model. The plots show that the value of the European VIX call

option increases with the increase of σv for the 1/2-model while the option value is a decreasing

function of σv for the 3/2-model. The phenomena under the 3/2-model are similar to those reported

in Yuen et al. (2015) for variance swaps and the same explanation of the pricing behavior that VIX

option price is decreasing with respect to σv under the 3/2-model can be applied.

21



4.4 Impact of jumps in index value and its instantaneous variance

We also performed numerical tests to study the impact of jumps on the European VIX call option

prices with different levels of jump intensity under both 1/2-model and 3/2-model. The other model

parameters used in our numerical tests remain unchanged.
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Figure 3: Pricing results of European VIX call option with strike price K = 13 under different

values of λ.

Figure 3 shows the plots of the prices of the European VIX call options against the jump intensity

λ with varying maturities under the 1/2-model and 3/2-model. We observe that the price of the

European VIX call option increases quite significantly with increasing jump intensity under both

1/2-model and 3/2-model.

4.5 Implied volatility

We performed numerical tests to examine the behaviors of implied volatility of the European VIX

call options with respect to strike price and maturity under the 1/2-model and 3/2-model. Figures 4

and 5 show the plots of the implied volatility of the European VIX call option with respect to strike

price and maturity under both stochastic volatility models with different values of v0. The implied

volatility values exhibit the smile pattern under the 1/2-model but downward sloping pattern under

the 3/2-model. On the other hand, the implied volatility values are decreasing with respect to

maturity under both stochastic volatility models.
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Figure 4: Plot of the implied volatility values of 3-month European VIX call option with respect to

strike price (left figure) and maturity with strike price K = 13 (right figure) under varying values

of instantaneous variance v0 in the 1/2-model.
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Figure 5: Plot of the implied volatility values of 3-month European VIX call option with respect to

strike price (left figure) and maturity with strike price K = 13 (right figure) under varying values

of instantaneous variance v0 in the 3/2-model.
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4.6 American VIX option

In Figure 6, we show the plots of the time-0 prices of the European and American VIX call option

with varying values of VIX0 under the 1/2-model and 3/2-model, where VIX0 is the prevailing VIX

value at the current time at t = 0. The intrinsic value is the exercise payoff (VIX0−K)+, where the

strike K equals 13. We observe that the early exercise premium of the American VIX call option

can be more significant compared with that of vanilla call option counterpart. These observations

are consistent with those reported in Detemple and Kitapbayev (2018).
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Figure 6: Plots of the European and American VIX call option values against VIX0 with strike

price K = 13 and maturity T = 3 months under the 1/2-model and 3/2-model.

5 Conclusion

We present the willow tree algorithms for pricing VIX derivatives under the 1/2-model and 3/2-

model under the joint dynamics of the S&P index and its instantaneous variance processes. The

construction of the willow tree for the instantaneous variance involves finding the positions of the

nodes on the willow tree structure and the transition probability matrices between the nodes of

successive time steps using the information of the first four order moments of the instantaneous

variance. Based on the closed form representation of the characteristic function of the instanta-

neous variance under the CIR process, we can employ the Fourier cosine transform algorithm to

compute these higher order moments effectively. We have performed comprehensive numerical tests

to demonstrate that the willow tree algorithms compete well with the Monte Carlo simulation in

terms of accuracy, efficiency and reliability. In particular, significant improvement on computation-
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al efficiency is seen when we consider pricing VIX derivatives under the 3/2-model. While pricing

VIX derivatives under the 1/2-model enjoys nice analytical tractability, there is no closed form

representation of VIX in terms of the instantaneous variance under the 3/2-model. This lack of

analytical tractability under the 3/2-model only poses minor additional computational efforts under

our willow tree algorithms while much added efforts are required in other numerical schemes. In

our numerical tests, we also examine the pricing behaviors of VIX futures and VIX call options

under the 1/2-model and 3/2-model. We observe quite different pricing behaviors under the two

stochastic volatility models. Similar discrepancies of pricing behaviors are also reported in other

papers on related variance and VIX products.
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Appendix A Johnson curve transform

The Johnson curve transform (Johnson, 1949) states that any probability distribution can be trans-

formed into a standard normal distribution. By inverting the transformation, we can obtain the

approximate distribution that matches the first four order moments of the original distribution.

There are three choices of the Johnson curves:

• lognormal system (or SL): Z = a+ b ln(v − c), v > c,

• unbounded system (or SU ): Z = a+ b sinh−1(v−cd ),

• bounded system (or SB): Z = a+ b ln( v−c
c+d−v ), c < v < c+ d,

where Z ∼ N(0, 1), v can be any distribution and the parameters a, b, c, d, are determined by the

first four order moments of v.

Hill and Holder (1976) propose a method that decides which transformation in the above to be

employed for a specified distribution. Let

γ = ω4 + 2ω3 + 3ω2 − 3,

where ω is the solution of following equation:

(ω − 1)(ω + 2)2 = κ2
3.

Here, κ3 is the skewness of the specified distribution. Let κ4 be the kurtosis of the specified

distribution. We choose SB or SU according to γ < κ4 or γ > κ4, respectively. Specifically, when

γ = κ4, SL is the appropriate choice. More details can be found in Hill and Holder (1976).
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