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We formulate a general framework to price various forms of European style multi-asset
barrier options and occupation time derivatives with one state variable having the barrier
feature. Based on the lognormal assumption of the asset price processes, we develop
the splitting direction technique for deriving the joint density functions of multi-variate
terminal asset prices with provision of single or double barriers on one of the state variables.
We illustrate a systematic procedure whereby the multi-asset option price formulas can be
deduced in a systematic manner as extensions from those of their one-asset counterparts.
Our formulation has been successfully applied to derive the analytic price formulas of
multi-asset options with external two-sided barriers and sequential barriers, multi-asset
step options and delayed barrier options. The successful numerical implementation of

these price formulas are also demonstrated.
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1. Introduction

Barrier options have become so popular in the financial markets that they are no longer
considered as exotic options. The inclusion of a barrier provision in the option contract
allows the investor to eliminate those unlikely scenarios as viewed by herself, thus achieving
option premium reduction. The analytical valuation of the down-and-out call option first
appeared in the seminal paper by Merton (1973). Since then there have been numerous
articles which consider the pricing of different forms of barrier options (Rubinstein and
Reiner, 1991; Rich, 1994). The barrier provision may take more exotic forms, such as two-
sided barriers (Kunitomo and Tkeda, 1992; Kolkiewicz, 2002), sequential barriers (Sidenius,
1998) and external barrier (Heynen and Kat, 1994).
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The barrier feature is well known to have the undesirable “circuit breaker” effect.
When evaluated at the barrier, the barrier option’s delta is discontinuous and option’s
gamma tends to infinite value, thus causing serious hedging difficulties for option writers
(Linetsky, 1999). Gradual knock-out options are introduced to modify the abrupt one-
touch knock-out feature in traditional barrier options. The terminal payoffs of these options
are parameterized by the occupation time, which is the total time spent by the asset
price process staying in the knock-out region. Hence, these gradual knock-out options
are also called occupation time derivatives. The improvement from the risk management
perspective of these occupation time derivatives over the one-touch barrier option is well
explored in Linetsky’s paper (1999). Using the technique of Laplace transform, Linetsky
(1999) and Davydov and Linetsky (2001) obtained the analytic formulas for these one-
asset gradual knock-out options. The price formulas of other one-asset occupation time

derivatives were also obtained by Douady (1998) and Hugonnier (1999).

Option models that are multi-variate in nature are quite common in the financial
markets. For multi-state options, the option value is determined by the stochastic behav-
iors of several underlying asset price and / or stochastic variables (like interest rates) and
the correlation coefficients between these stochastic quantities. Under the Black-Scholes
assumption of lognormality of the asset price processes, the option value is governed by a
multi-dimensional parabolic diffusion type equation. Unlike the usual diffusion type equa-
tions, the multi-dimensional Black-Scholes option equation contains second order cross
derivative terms due to the non-vanishing of the correlation coefficients among the stochas-

tic state variables.

The analytical valuation of the option price function amounts to the determination
of the transition density function of the terminal asset prices conditional on the values of
the current asset prices. For most one-asset barrier option models, the transition density
functions can be found quite easily using the reflection principle or the method of im-
ages. For multi-state models, the transition density of the terminal asset prices for the
unrestricted processes can be obtained without great difficulty. However, the integration
of the expectation integrals can be quite tedious. By following an ingenious method of
choosing a set of appropriate similarity variables, Johnson (1987) managed to obtain the
price formulas for various European multi-asset vanilla option models. The price formulas

of multi-asset options with one-sided external barrier have also been obtained by Heynen

and Kat (1994), Rich and Leipus (1997) and Kwok et al. (1998).

It is almost analytically intractable to price the multi-state occupation time derivatives
by extending the techniques used by Linetsky (1999), Douady (1998) and Hugonnier (1999)
in their pricing frameworks for one-asset option models. In this paper, we formulate the

splitting direction technique to derive the transition density functions of the restricted
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asset price processes associated with the presence of barriers. With this robust formalism,
one can deduce in a straightforward manner the price formulas for the multi-asset version

of occupation time derivatives from those of their one-asset counterparts.

The paper is organized as follows. In the next section, we state various propositions
which formulate the splitting direction technique. We show how to express the density
of the joint multi-asset price processes as a product of two simpler known factors: the
univariate density of the external barrier variable, and the joint density of the remaining
state variables. In Section 3, we apply the splitting direction technique to derive the price
formulas of multi-asset options with two-sided barriers and sequential barriers. These price
formulas are represented in terms of multi-dimensional cumulative normal distribution
functions. The intracacies in the implementation of numerical valuation of these price
formulas are discussed. In Section 4, we develop the general pricing methodology for
occupation time derivatives with separable barrier variable and payoff variables. The
pricing behaviors of the three-asset proportional step option and the three-asset delayed

barrier option are examined. The paper ends with conclusive remarks in the last section.

2. Formulation of the splitting direction technique

The presence of the drift terms in the governing equation of a multi-asset option model is
one source of complication in the derivation procedure of finding the fundamental solution
of the differential equation. In this section, we present several propositions which show how
to decompose the governing equation into simpler structures. First, we deduce a relation
that connects the density functions of joint Brownian processes with and without drifts.
Next, the splitting direction technique is summarized in Proposition 1. By adopting an
appropriate transformation of the independent variables, we can split the density function
as a product of two density functions, one is the univariate density of the external barrier
variable and the other is the joint density of the remaining variables. We derive several
mathematical identities that are essential in the analytic procedures of deriving various

price formulas in later sections.

Relation of density functions of joint Brownian processes with and without
drifts

If the density function ¢,, satisfies the following Fokker-Planck equation governing the

density function of n-variate unrestricted joint Brownian processes with drifts

O0n 1w OPn, ;
Wzﬁzz Jax&rj Zﬂjaij t>0,—00 <w; <00,j=1,2,---,n(2.1)
i=1 j=1 ! j=1



where p; is the drift rate of process j and p;; is the correlation coefficient between price

processes 7 and j, then ¢,, can be decomposed into the product of Q) and #,
On = Qi (2.2)

where

Q = exp <_ (x— ,u,t)TR_l(XQt— ut) — XTR_1X>

TR S A

and 1/, satisfies the following Fokker-Planck equation without the drift terms
O 1~ P tn ,
—:—ZZpZ-jT t>0,—oc0o<z;<o0, j=12,--- 0 (2.4)

Here, x = (z1---2,)", ;0 = (p1-+ )", R is the correlation coefficient matrix whose

(6, )"™"
arbitrarily, but an ingenious choice of £ can be shown to simplify derivation procedure in

entry is p;;,4,j = 1,2,--- ,n. Theoretically, the vector £ in Eq. (2.3) can be chosen

later pricing calculations.

The proof of the decomposition (2.2) is argued as follows. In order to eliminate the

drift terms in Eq. (2.1), the usual procedure is to seek a transformation of the form

On(x,1) = T TP Taly, (x,1). (2.5)
1 1 TR—l
The fundamental solution of Eq. (2.4) is ¥, (x,t) = o Vi s exp <_¥>

while that of Eq. (2.1) is ¢n(x,1) = 1 1 <_ (x — Mt)TR—l(x— ,u,t)>‘

(2mt)™/% \/det R P 2t

These two fundamental solutions must observe the relation (2.5), and taking their ratio

leads to the representation shown in Eq. (2.3).

Proposition 1 (Splitting direction technique)

If the density function ¢,, satisfies the forward Fokker-Planck equation with semi-infinite
range in the first independent variable 7 and infinite range in the remaining independent
variables

On 1~ P o —~

L% 5>

1

=1 5= =1

t>0,b) <1 <oo,—00<x; <00,j=2,---,m, (2.6)
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then the following linear transformation of the independent variables

T ifj=1
zj =< Ti— P1T1 =923 .n (2.7)

\/1_;0%7'

leads to the splitting of ¢,, in the following sense
¢n(zlv 225777 5 Pny t) = ¢1(Z17 t)¢n—1(Z27 T Rny t)' (28)

The reduced density functions ¢1(z1,t) and ¢, 1(22,- - , 2,,t) satisfy, respectively, the

following equations

o¢1  10%°¢ IP1
= - —p1—, t>0,b 2.9
at 2 82:% /’Ll 8217 > s V1 < Zl < OO, ( a)
3¢n—1 1 w .0 ¢n—1 - ~ 3¢n—1
ot _222'0”32-&2] "oz
1=2 j=2 7=
t>0,—00< 2z <00,j=2,---,n, (2.90)
where
Pij = Pij — PLiPLj and  Ji; = M7 i,j=2,3,--,n.  (2.9¢)
V=22 p3) 1—pi;
Both ¢1(z1,t) and ¢, (21, - , 2zp, t) share the same absorbing boundary condition at z; =
b;.
Remark

The probabilistic argument for the choice of the transformation (2.7) is presented as follows.
Consider a n-dimensional Brownian motion (X; Xs---X,,) with correlation matrix R

whose entries are p;;,%,7 = 1,2,--- ,n. Suppose we define

X, =1
Z; =< Xj—p1;Xy

\/1_;0%7'

then the joint process (71 Zz--- Zy) remains to be Brownian and COV(Z1,7;) =0,j =
2,--- ,n. This establishes the independence of Z; with Z;,j =2,--- ,n.

j-fj:27”‘ 7n7 (2‘10)
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The proof of Proposition 1 is given in Appendix A. This splitting direction technique is
particularly useful to deal with multi-state option models where only one state variable (say
21) has the barrier feature. Now, the barrier variable z; (21 is set to be x1) is uncorrelated

with 29, -« | 2z, by virtue of the transformation given in Eq. (2.7).

Corollary of Proposition 1
Let v, (x,t; R) denote the fundamental solution of Eq. (2.4), that is

1 XTR_1X>
n(X, 1 R) = exp| ———— | - 2.11
o i) = oo (-5 210

Write z = (29 --- 2,)", where 29,--- , 2, are related to x1,--- ,x, as defined in Eq. (2.7);

and R is the (n—1) x (n — 1) correlation coefficient matrix whose entries are p;;,1,j =

2,-+-,n, as defined in Eq. (2.9¢c). We then have
Un(x — aRei, t; R) = U1 (21 — o, )01 (7, t; R) det J, (2.12)

a(zlv 22, 7ZTL)

where a is any scalar, e; = (1 0---0)" and J = For its proof, see

8(!L’1,[L’Q, T 7$n)
Appendix B.

3. Multi-asset options with external two-sided barriers

We consider the class of multi-asset option models with an external barrier variable. The
barrier variable does not determine the payoff of the option. Rather, it determines whether
the option is knocked out when the value of the barrier variable breaches some pre-
determined level (one-sided barrier) or stays outside a certain range of values (two-sided

barriers).

The valuation of multi-asset options with an external one-sided barrier has been con-
sidered by Heynen and Kat (1994), Rich and Leipus (1997) and Kwok et al. (1998). In this
section, we illustrate how to apply the formalism in Section 2 to derive the price formulas

of multi-asset options whose external barrier variable has two-sided barriers.

Let S denote the value of the barrier variable and S? denote the value of asset
2,0 = 2,---,n, at time £. For the multi-asset maximum call option with an external
barrier, the terminal payoff is given by max(max(S],---,ST) — X,0), where X is the
strike price. We adopt the usual Black-Scholes assumptions on the capital market. Under
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the risk neutral valuation framework, we assume St i =1,2,--- ,n to follow the lognormal
diffusion processes
dst

Stzzrdt+ai dz;, 1=1,2,---,n, (3.1)

where 7 is the riskless interest rate, o; is the volatility of asset 7, dz; is the Wiener process

for asset 7,7 = 1,2,--- ,n. Let p;; denote the correlation coefficient between dz; and dz;.
We define
2
1. St r— 2t
z;=—In— and p; = 2 i=1,2,---.,n, (3.2)
oS5 i
where S;,i = 1,2,--- ,n are the asset values at the current time (taken to be time zero).

Let H and L denote the upstream and downstream barriers of the barrier variable. The

call option will be knocked out when S% > H or S < L at any time ¢ during the life of

1 H 1 L
the option. We define My = —In — and m; = — In —.
g1 Sl a1 Sl

3.1 Joint density function with provision of two-sided barrier levels

Let ®(x1, 29, -+ ,2,,t; R) denote the density function of the joint process of the asset prices
and barrier variable with the provision of two-sided barrier levels on x1,m; < x1 < M.
To find ® (21,29, -+ ,2,,t), we apply the splitting direction technique presented in Section

2. First, we consider the following one-dimensional diffusion equation

001 _ 1%,

o1 = 5877 my <zxrp < Ml,t > 0. (3.3)
1

Its fundamental solution is known to be (Kevorkian, 1990)

¢1($17t) = Z [¢1($1 - 2ak7t) - ¢1($1 - 205;67 t)]v (34)

k=—o0

2
where ¥ (21,t) = exp <—$1>, a = k(My —mq) and o), = ai + my. By applying

1
V2t 2t
the formalism in Proposition 1 and its Corollary, the fundamental solution to the following

n-dimensional Fokker-Planck equation

n n 82 N .
ZZ,@Z-- ¢ : my <z < My, —oo <zj<00,j=2,---,n,1>0,(3.5)



is given by

On(x,t) = > [1(21 — 20k,t) — 1 (21 — 204, D)]tbn_1(2, 1; R) det J

k=—o0
D [n(x —2aker,1; R) — ¢ (x — 20je1,1; R)), (3.6)
k=—o0

where 1, (X, t; R) is defined in Eq. (2.11). Let ®(x,?; R) denote the fundamental solution

to the following n-dimensional Fokker-Planck equation

ot 2 Z Z Pij 833283: Z Mj 83:7

i=1 j=1 J=1

my <z <M, —oco<z;<00,j=2,---,n,t>0.(3.7)

By applying relation (2.2) and choosing £ to be 2a;Re; and 2aj Re; successively in the
second form of @ in Eq. (2.3), we obtain

d(x,t; R) = Z {e21orq) (x — 20 Re; — pt, t; R)

k=—o0

— 1%, (x — 204 Rey — pt, 13 R)}. (3.8)

3.2 Option value of maximum call with two-sided external barriers

Following the discounted expectation approach, the value of the multi-asset maximum call

option with two-sided external barrier levels H and L is given by

My
V(Slvsgv"' 7Sn7T) = e_TT/ / ¢($17$27"' 7$n7T; R)
Dn 1

ma

max(max(S9e722 ... S, e ) — X 0) dx,, - - - drodzy, (3.9)

where T is the expiry time and D,,_; is the domain in the (n—1)-dimensional (22, -+, 2,)-
plane inside which max(S5e?2%2 --- S, e7n"n) > X is satisfied.

Theorem 1

The value of the multi-asset maximum call option with two-sided external barrier is found
to be

V(Sl,SQ,“‘, n7 Z fk7 (3.10@)

k=—o0



where
=35 {egmak—%ﬁ [N, (d} — bs RY) — N, (d) — bl RY)]
/=2

— egulak_gﬁij [Nn(dg — be/; Re) - Nn(di - be/; Re)] }
— Xe 7T {19 [N, (d] — by; RY) — N, (dj — by; R)|
— P N (d] b B~ No(dh b RO L. (3100

Here, N, (x; R) is the n-dimensional cumulative normal distribution function and the jth

component of df is

My /NT ifj=1
1 Sy
In — ifj=4¢
dij = oNT X J , (3.11a)
1 Sy
——In— otherwise
UEj\/T Sj

My — My —
di=d! +oVTR'y, di=d' - %el, dl =df - %el, (3.110)
B — 20 Rfe + A pT and b — 204 Rfey + AP pT
g VT ’ VT ’
{=72,--- ,n,k is any integer, (3.11¢)
[’r‘fj] = R! = A'RA"", Bt =100y and  BE =1t ,000. (3.11d)

The proof of Theorem 1 is shown in Appendix C.

3.3 Extension to maximum call with sequential external barriers

Unlike the two-sided barrier provision where the option is knocked out when the barrier
variable hits either H or L, the sequential barrier provision requires the breaching of the
two barrier levels at a pre-determined sequential order, say, up then down. For the one-
asset case, given the asset price S7 at the zeroth time, the density function of the asset
price S} at time ¢ conditional on non-breaching of the sequential barrier provision (first

upstream barrier H then downstream L) is given by (Sidenius, 1998; Li, 1999)

b1 (21,1) = [€H190h) (1 — ag — put, ) — 2190, (21 — afy — i, t)]
— [ty (1) — amg — ity 1) — RO (o — ol — mt, )] (3.12)
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We consider the multi-asset maximum call option with an external barrier S, the
terminal payoff of which is given by max(max(S7,---,S7)—X,0). This barrier call option
is knocked out only if S7 hits the up-barrier H first then the down-barrier L afterwards,
By following similar derivation procedure as that for the two-sided barrier counterpart,
the value of the multi-asset maximum call option with sequential up-then-down barriers is

given by

Vup—down(Slv SQ? T 7Sn7T) = fO - f—lv (313)

where fy and f_, are given by Eq. (3.10b).

3.4 Numerical calculations

We performed the numerical valuation of the price formula (3.10a,b) for the three-asset
maximum call option with two-sided barriers L and U, and terminal payoff max(max(SJ ,
ST) — X,0). We obtained option values with varying volatility o) of the barrier variable
and interval width [L,U]. The other parameter values of the option model used in the
calculations are: o9 = o3 = 20%,r = 0.05,7 = 0.5, X = 100,55, = Sy = S5 = 100, p15 =
0.2, pa3 = 0.3 and p13 = 0.3. Table 1 lists the option values for the double-barrier three-
asset call option obtained using different number of summation terms in the price formula
(3.10a,b). In most cases, we observe that 9 terms in the summation are sufficient to achieve
4 significant figures accuracy. The option values are seen to decrease with increasing
volatility of the barrier variable and narrowing of the interval [L,U]. These results are
consistent with the financial intuition that the option is worth less if the chance of knock-

out is higher.

In the numerical procedure of computing the values of the 3-dimensional cumulative
normal distirbution functions in the price formula, we adopted the effective numerical
algorithm proposed by Genz (1992). The Genz algorithm consists of three transformations
that are used to transform the original integral into an integral over a unit hypercube,
then the efficient valuation of the transformed integral can be achieved using either Monte
Carlo or subregion adaptive numerical integration algorithms. In computing option prices
for multi-asset options, the availability of the effective algorithms for evaluating N, (x; R)
partially relieves the curse of dimensionality. This would give the numerical valuation of
analytic price formula significant computational advantage over other common numerical

methods, like Monte Carlo simulation or finite difference methods.
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parameter values N=1 N=3 N=5 N=7 N=9
o1 =20%,L =90,U =110 3.1016 2.1881 2.1872 2.1872 2.1872
o1 =20%,L =92,U = 108 1.9034 1.1947 1.1856 1.1856 1.1856
o1 =20%,L =92,U =105 1.3311 0.8381 0.7969 0.7968 0.7968
o1 =30%,L =92,U =108 0.7931 0.5123 0.4130 0.4114 0.4114
o1 =30%,L=92,U =105 0.5411 0.4464 0.2999 0.2885 0.2884
o1 =40%,L =92,U = 108 0.4013 0.3618 0.2088 0.1878 0.1871

Table 1 The table lists the option values for the double-barrier three-asset maximum
call option that were obtained from the numerical valuation of the price formula
(3.10a,b) using N terms in the summation. The other parameter values used
in the calculations are: o9 = 03 = 20%,r = 0.05,7 = 0.5, X = 100,5; = S, =
S3 = 100, p12 = 0.2, pa3 = 0.3 and p13 = 0.3. The option values are seen to
decrease with increasing volatility of the barrier variable and narrowing of the

interval [L, U].

4. Multi-asset occupation time derivatives

We consider the pricing of multi-asset occupation time derivative where the terminal payoff
depends on the terminal asset prices and the occupation time associated with a barrier
variable. We start with the review of some of the results about the one-asset occupation
time derivatives and examine how the pricing formulation of the multi-asset models of

occupation time derivatives can be inferred from their one-asset counterparts.

4.1 Review on the results for one-asset occupation time derivatives

Let SY be a stochastic variable with the barrier level B. We assume that St follows the
lognormal diffusion process as defined in Eq. (3.1). The occupation times of the stochastic
variable S; staying below and above the barrier level B from the zeroth time to time ¢ are

random variables defined by
t t
T35 :/ H(B—S%) du and 7% :/ H(SY — B) du, (4.1)
0 0

respectively, where H(z) is the Heaviside function. The occupation time of the stochastic
variable above (below) the barrier level B is the total amount of time that the value of the
stochastic variable stays higher (lower) than B. The differentials of 75 and Tj_g are given
by

drz=H(B—SY)dt and drj} = H(S}— B) dL. (4.2)
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Consider an occupation time derivative whose terminal payoff function takes the form
F(S1,75). Let V(S1,75,t) denote the derivative value at time £. Assuming the usual
Black-Scholes assumptions, the governing equation for V(S1,75,1) is given by (Linetsky,
1999)

OV 0? PV oV oV
g2 S S H(B—S))—— — 1V =0
ot T2 Sige Troigg THIB=SUg=mrv =0,
t>0,0<5 <oo, 75> 0. (4.3)

oV
Note that an additional term H(B — S;)—— is added in the usual Black-Scholes equation

-
B
to reflect the dependence of the derivative value on the occupation time 75;. We write
1.8 1. S
) = —In==2 and & = —In —1, where S and S! are the respective asset prices at
on B o, B

the current time (taken to be zero) and future time ¢. The transition density function
Y(x1, Ty, t; &) satisfies the following forward Fokker-Planck equation

op _10% o 0y )
o = 2o Moy, Mg >0 o< <oy >0 (44)

B
The associated initial conditions at £ = 0 and 75 = 0 are
P(w1,75,0;61) =6(x1 —&§1)0(T) and  P(21,0,;61) = YB(21,1 1), (4.5)

respectively. Here, ¥p(x1,1;&1) is the transition density function of the corresponding
restricted asset price process without crossing the down barrier B. The condition 75 =0
is equivalent to the situation where the asset price never breaches the down barrier B.
Hence, the value of ¥(z1,75,%:&1) at 75 = 0 is equal to ¥p(x1,£;&1). Also, the initial
condition ¥(x1,75,0;¢1) is derived from the observation that S and 75 start at ¢ = 0

with certainty at S7 and zero value, respectively.

Linetsky (1999) obtained the solution to ¥(x1, T3, t; &) corresponding to the zero drift
case [that is, setting p1 = 0 in Eq. (4.4)]. The solution takes different forms in different

domains €2;, 2 =1,...,4, namely,

L O ={(21,81): 61> 0,21 >0 and § + 21 > 0}

t—7 45 2
B S 5 1+ & (z1+&)
Y =wui(x1,7p,461) = /0 ol — w2 exp <_T du. (4.6a)

2. Q9 = {(1’1,51): 51 <0and z; > 0}
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¢ - uQ(xlvTévt; 51)

_ /t—TB x <1 - %) +& <1 — %) exp <_ﬁ B i) . (4.60)
0

27 (t — u)3/2u3/? 2u 2t —u)

3. Q3 ={(21,&4): &4 > 0,27 <0}

Y =wuz(x1, 7, ;&) =ua(—x1,t — 75,1 —=&1). (4.6¢)

4. Q4 = {(1’1,51):51 < 0,1’1 >0 and 51 +x1 < 0}

P =ug(x1, 75, ;&) =ui (=21, t — 75,1 =&1). (4.6d)

When 75 =0 or 75 =1, we have

¥ =1vp(@,68) = \/% [exp <—W> — exp <—Wﬂ . (4.6e)

Remark

1. For the non-zero drift case, we can apply the decomposition rule (2.2) to obtain the

corresponding solution for . For example, with gy # 0,41 becomes

_ _ x1 — uit)? — 22
w (1,7, 661, ) = w (21,75, 1561) exp <—( ! /gt) 1>- (4.7)

2. Suppose we count the occupation time starting at an earlier time ¢5 with 5 < 0, that
is, before the current time. The accumulation of occupation time from ¢4 to the current
time is a known quantity since it can be evaluated from the already known realization
of the asset price path. The terminal payoff of any occupation time derivative can be
modified so that the payoff depends on the occupation time counting from the current
time to maturity. Without loss of generality, it suffices to consider pricing models

where the counting of the occupation time starts at the current time.

3. Successive Laplace transforms on 75 and ¢ are applied to obtain the above solutions for
Y(z1,75,t; &1). The imposition of the initial condition: ¥(z1,0,t;&1) = ¥z, 4 &)
seems to lead some complexity in the derivation procedure. Fortunately, ¥ g(x1,t;¢1)
does not enter into the equation for the Laplace transform function since the factor
H(—x1) becomes zero when 75 = 0. This is because S? is guaranteed to stay above

B when the occupation time 75 is zero.
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4.2 Multi-asset occupation time derivatives

We would like to examine how the splitting direction technique can be applied to obtain
the price formulas for multi-asset occupation time derivatives. Let S! denote the value of
the barrier variable at time ¢ and B be the constant down-barrier level associated with
St. We consider the pricing of multi-asset options whose terminal payoff depends on the
terminal asset values S7,--- .87 and the terminal value of the occupation time variable.

The occupation time variable 75 associated with the barrier variable S% is defined by Eq.

(4.1a).

We assume that the asset price processes St, i =1,2,--- , n, follow the joint lognormal
t

diffusion processes as defined in Eq. (3.1). Similarly, we define ; = —In S—J, ]=2,---,n,
9 J

where S;’- and S; are the value of asset j at the future time and the current time (taken to
be zero), respectively. The valuation of a multi-asset occupation time derivative requires
the determination of the transition density function ¥ (x,75,%;&1) of the joint process of
the asset values and the occupation time, where x denotes the vector (x1 2 - - -a:n)T. The

forward Fokker-Planck equation that governs ¥(x, 75, &1) takes the form

np
Zzngaxzm Zﬂjaxj )E7

=1 j_

—oo<w;<o0,j=1,2,---,n1>0,75>0. (4.8)

Here, p;; is the correlation coefficient between dz; and dz;, and p; =

,n. The initial conditions at ¢ = 0 and 75 = 0 are given by
’Lb(Xa TB? 0) 51) = 6($1 - 51)6($2) e 6($n)6(7—§) and ’Lb(Xa 07 tv 51) == wB(Xv tv 51)7 (49)

St

T n

where 1 p(x, t;£1) is the transition density function of the joint process of S%, S,
with S! staying above B at all times.

The splitting direction technique stated in Proposition 1 can be applied to solve for
P(x,75,t;&1). We employ the linear transformation of the independent variables as given
in Eq. (2.7), and this leads to the splitting of

¢(Z7 TB? t) 51) = ¢1(Z17 TB? t) 51)¢n_1(227 Tt 5 Zn, t) 51)- (4.10@)

The procedure is motivated by observing that the function in the boundary condition in

Eq. (4.9) can be splitted by the same linear transformation, i.e.

Yp(x,t;61) = ¥B(21, 681 )¢n—1(2, 1). (4.100)
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The governing equations and auxiliary conditions for ¥1 (21,75, ¢; &) and ¥,—1(22,- - , 2n,

t;&1) are given by
(i) I 18 I

= - — —H(—2)——, t>0,75>0,—00 < 2z <00, (4.11a
o 202 Moz (=21 - B 1 ( )

Pi(r1,75,0;61) = 0(21 — £1)6(T5), P1(21,0,81) = vp(r1,461),

) a¢1

(11) a¢n 1 1 N 8 ¢n 1 ~ a¢n 1
ot 2 z:; z:; E Bzz&z] ; 10z
t>0,—00 < 24 <oo,j:2,---

77Dn—1(27 Tgv 0; 51) = 6(2)7

1, (4.11d)

respectively. The correlation coefficients p;; and the drift parameters ji; are defined in Eq.

(2.9¢).

We let R™™1 denote {(z3,...,2,) : —00 < z; < 00,7 = 2,...,n} and define the
domains Q7,4 = 1,...,4, to be O = Q; x R"!, where ;’s are defined in Eqs. (4.6a-
d). The solution to the transition density function ¥(x,75,t;¢1) in different domains QF,

1=1,...,4, are summarized in Theorem 2.

Theorem 2

Let %} be the solution to the joint transition density function 1 (x,75,¢;¢;) in the domain
Qr,1=1,...,4. We have

’¢(X7 Tgvt; 51)
= 1iom V7" + Liam ¥y + Liam s + Liam ) + [0(75) + (75 — )]5, (4.12)

where

n [t ‘ s w44 (r1—&)*  (t1+&)°
VI =\ gp¥n(x = Gier —pt 6 R) /0 (= w2 &P < % 2u > i,

2 =\/3 % x —&1e; — put, t; R)

/0 5 (1= &) + & (14 4] - <<x1 ;t&)g I >du,

(25—u)3/2u3/2 2u 2t —w)
¢g($17$27 T 7$n77—§7t; 51) = ¢g(_$17$27 T 7$n7t - Tgvt; _51)7
¢Z($17$27 T 7$n77—§7t; 51) = 'Qb?(_mlvav T 7$n7t - Tgv 3 _51)7
U = Py (x — 1oy — pt, 15 R) — €151, (x — §e1 — pt — 261 Rey, 1 R), (4.13)

and ¥, (X, t; R) is the fundamental solution defined in Eq. (2.11).
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Let V(S1,...,5,,T) denote the value of the n-asset occupation time derivative with

the down barrier B on S% and terminal payoff function Vip(x,75). The price function
V(S1,..., Sp,T) is given by
(1) S1>B
V(Slv"'vsan)

o0 T oo
=e 77 / / Vir(x,0)y dx +/ / / Vi (x, 75 )YT dxdrg
R»—1J0Q 0 Rn—1J0

T 0
+ / / / Vir(x, 75 )¢5 dxdrg ¢; (4.14a)
0 R 1.J—c0
B
V(Slv LR STL?T)

0 T oo
=T / / Vir(x, T2 dx+/ / / Vip(x, 75 )05 dxdrg
R-1J o 0o Jrn-1Jo
T 0
+/ / / Vir(x, 75 )0y dXdTg}. (4.14d)
0 R"1Jc

In particular, we can apply the above formula to compute the price of the propor-
tional step options, simple step options and delayed barrier options (or called the cumu-
lative Parisian options). They are occupation time derivatives with terminal payoff of the
separable form: f(75)G(x).

1. Proportional step option:

flrg) =e7Tn,

where s is called the killing rate.

2. Simple step option:

f(rg) = max(1 — s75,0).

3. Delayed barrier option:
f(TE) - 1{T];<QT}7

where « is a parameter satisfying 0 < o < 1.

Consider the maximum call option with S; as the external barrier variable and the

associated occupation time 75. Suppose the terminal payoff takes the separable form:

T
f(r5) max(max(Sz,--- ,5,) —K,0). We define F(T') = / f(u) du. The corresponding
0
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price formula of this n-asset occupation time derivative with the maximum call payoff is
found to be

(i) $i> B

V(Slv .- '7Sn7T)
= f(O) Cgown(slv LRRE S’FHT)

T e’}

+/ / F(T_ ma:c(ng ) 7San;xl)ul(xlvt;Tvglvul) dlL’ld’LL
0 0

+/ / [F(T) - F(u)] ma:c(ng : 7STL7T;$1)U3($1vt; T? 517/1“1) dZL’ld’LL (415@)
0 —o0

(i) S1 < B

<3 Sn, T)

V(S,..
/ / F ma:c(ng ,Sn,T;IL’l)UQ(lL’l,t;T,Sl,/Ll) d[L’ld’LL

+ / / [F(T) = F@)leid (So, Sy T30 ua(ws, T €1, 1) devydus(4.150)
0 —o0

where -1 (S5, -+ | S,,,T) denotes the price function of a (n—1)-asset European maximum
call option and CZZO wn(S1s -+, S, T) denotes the price function of the corresponding down-
and-out maximum call option. The functions w;,j = 1,...,4 are given in Eq.(4.6a-d),

modified according to Eq. (4.7) under non-zero drift p;.
Remark

For different types of occupation time derivatives with separable terminal payoff function,
the function F'(1'— 75) takes different forms.

1. Proportional step option

1— e—s(T—T];)

T—T
F(T —13) = / T e dy = . (4.164)
0

S

2. Delayed barrier option
T—7g
PO =r5) = [ Lucar du
0

= . (4.16b)



3. Simple step option

T—7g
F(T—15)= / max(1 — su,0) du
0

4.3 Numerical calculations

We performed the numerical valuation of the three-asset proportional step call option,
delayed barrier call option and down-and-out call option with one-sided down barrier
B. The terminal payoff takes the form: f(75)max(max(Ss,S53) — X,0), where 75, =

T
/ H(B — 5}) du. We have f(15) = e *"5 for the proportional step option, f(75) =
0

1 (7, <aT} for the delayed barrier option and f(75) = 1 for the down-and-out option.

In Figure 1, we plot the option prices of these occupation time derivatives against the
barrier variable S;. The parameter values of the option models used in the calculations
are: 01 =09 =03 = 0.2,7 =0.05, T'=0.5,p120 = 0.2, p13 =0.3,p23 = 0.3, B =80, X =
90,5, = 53 = 100,s = 25, = 0.5. The price of the European two-asset maximum
call option is also included for comparison. The price functions are seen to be increasing
functions of S;. The prices of the proportional step option and delayed barrier option
are included between those of the non-barrier option and the one-touch barrier option
counterparts. Such results are obvious from financial intuition. For the given choices of
s and a, the proportional step option is always worth less than its delayed barrier option

counterpart.
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Figure 1 We show the plots of the price functions of the proportional step call option
(lower solid curve), delayed barrier call option (upper solid curve) and down-
and-out call option (lowest dot-dashed curve) against the barrier variable 5.
The plot of the price of the European two-asset maximum call option is in-
cluded for comparison (shown as the top horizontal dot-dashed line). The
parameter values of the option models are: 07 = 09 =03 = 0.2,7 =0.05,T =
0.5,p12 =0.2,p13 =0.3,p23 = 0.3, B=80,X =90,5, =53 =100,s =25, a =
0.5.

In Figure 2, we show the plots of the delta of the option price against S; of the
proportional step call options with varying yearly killing rate s. The same set of parameter
values as those used in Figure 1 are chosen in the calculations. Both the top dot-dashed
delta curve (corresponds to s = 20) and the middle dashed delta curve (corresponds to
s = 40) have their peak value at the barrier level B = 80 and decrease in value when S

moves downstream from B. The option deltas of the one-touch down-and-out call option
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(shown as solid curve) is also plotted for comparison. The delta value of the down-and-out
call has a discontinuous jump at B = 80, a manifestation of the undesirable curcuit breaker
effect.

Option Delta
o]
w
T

06 S -

///
///‘
7,
0.4+ e -
a7
- # ///

0.2+ u# // |

0 s _

| | | | | | | | |
70 72 74 76 78 80 82 84 86 88 90

Figure 2 The plots of the delta of the option price of the proportional step call options
with varying yearly killing rate s against the barrier variable S; are shown.
The top dot-dashed delta curve and the middle dashed delta curve correspond
to s = 20 and s = 40, respectively. The solid curve corresponds to the option
delta of the down-and-out barrier option, which exhibits a jump of value at

the barrier level, B = &0.

5. CONCLUSION

Since option prices are given by the discounted expectation of the terminal payoff under
the risk neutral valuation framework, the derivation of the analytic price formulas of exotic

option models amounts to the analytical evaluation of expectation integrals. A typical form
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of the integrand in an expectation integral is given by the product of the transition density
function and the terminal payoff function. For multi-asset barrier type options and occu-
pation time derivatives, the derivation of the associated density function has been known
to be mathematically challenging, due primarily to the presence of the cross-diffusion
terms in the Fokker-Planck equation. In this paper, we develop the splitting direction
technique which leads to a systematic derivation approach to find the density functions
of multi-asset option models from the extension of their one-asset counterparts. Analytic
price formulas of European style multi-asset options with external two-sided barriers and
sequential barriers, multi-asset step options and delayed barrier options are obtained in
their most succinct forms. Though the analytic price formulas are expressed in terms
of multi-dimensional cumulative normal distribution functions (may even involve infinite
summation), their numerical valuation has been shown to be viable by virtue of the ef-
fective numerical algorithm proposed by Genz. Compared to common numerical schemes
like finite difference methods, the curse of dimensionality becomes less severe when dealing

with numerical valuation of analytic price formulas.
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Appendix A - proof of Proposition 1

Let Vx = (0py - - &Cn)T and let J7 denote the matrix representing the linear transforma-

tion between x = (z,---2,)" and 2z = (21 --- 2,,)7 as defined in Eq. (2.7), that is,z = J ' x.

ANzy, e 2,
We have J = M, so that Vx = JV,. Also, we write gt = (g1 - fin)". Now,
8($17 e 7$n)
Eq. (2.6) can be expressed as
8¢n 1 T T
o o RV x¢, — xPn
or 5 VxltVxdn — p Vxo

= %vj (JTRIV 30, — (J" 1)V 1. (A1)

Let p;; denote the (i,j)th entry of JTR.J and ft; denote the M entry of JT p. We observe
that
1 ifie=75=1
Pij = 0 ifi=1,#1lori#1,57=1 (A.2)
py HiAL A
- {Ml J=1
Hi = ~ . ’
pio J#F1
where p;; and fi; are defined in Eq. (2.9¢). In terms of z1,---,2,, Eq. (2.6) can be

expressed as

n

0b,  [10%¢, I, I nn . 00, _ Oy
o= | | + 32 2 P~ 2, |

1=2 j=2
1>0,b) <z <oo, —00<z<00,j=2,---,n. (A.3)
The auxiliary conditions of ¢, (21,29, -+, 2,,1) are given by
On(b1, 22, ,2n,t) =0 (absorbing boundary condition at z; = by)

€bn(217 225777 5 2ny 0) = 6(Z1)6(Z2) T 6(Zn)v

where 6(z;) is the Dirac function, j =1,2,--- ,n. We explore the feasibility of the decom-
position of ¢,, into the form as specified in Eq. (2.8). Suppose ¢ and ¢, satisfy Eq.
(2.9a) and Eq. (2.9b), respectively; in addition, ¢4 (z1,1) satisfies the auxiliary conditions
(1) ¢1(b,t) = 0 and (ii) ¢1(21,0) = 8(21), while ¢,,_1(22, - - - , 2, 1) satisfies the initial con-
dition: ¢2(z2,- -, 2n,0) = 6(22) - 6(2,), then the product ¢1¢,_1 satisfies the same set

of governing equation and auxiliary conditions of ¢,. By uniqueness of solution, ¢, must
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be equal to the product ¢1¢,,—1. This is the decomposition of ¢,, as specified by Eq. (2.8).
Now, ¢ is the univariate density function for the Brownian motion in the semi-infinite
range by < z1 < oo subject to the absorbing boundary condition ¢1(b1,%) = 0. Also, ¢,—1

is the free space density function for the remaining varibales zo, - - - , z,.

Remark

The above proof is based on semi-infinite range and absorbing boundary condition for
the barrier variable. By following similar idea of proof, the decomposition of the density
function remains plausible for cases with barrier variable having a finite range and other

set of boundary conditions.

Appendix B - proof of Eq. (2.12)

Let ¥1(21,t) and ¥,,—1 (2, t; E) denote the respective fundamental solutions to the following
Fokker-Planck equations

oy 10%Y
= - t >0 —x o0 B.1
ot 2020 T TS ASe (B.1)
a"#n—l 1 - - ~ aQ'an—l .
= — ii———, t>0,—00 < 00,) =2,--- ,n. B.2
R Y e e e (T

As deduced from relation (2.8), the fundamental solutions ,,(x, ¢; R), ¥1(21,t) and v,,_1(zZ,
t; E) are related by

Un (%, t; R) = 01(21,)1bn_1(2, t; R) det J. (B.3)

a(zlv e 7Zn)
8($17 e 7$n)

vector of independent variables from x to z.

Note that the Jacobian, det.J = ‘ , 1s included due to the change of the

Suppose we apply a shifting transformation on x: X, = Xo1q — @Req, where a is
any scalar, then Z,e, = J ' Xpew = J | (Xo1g — @RRe1) = zyq— ae;. We observe that z,e,, is
obtained from z,;4 by changing only the first component z; to z; — « while keeping all the
other n — 1 components in z,;y unchanged. Accordingly, the relation for the fundamental

solutions as stated in Eq. (B.3) is modified as
Un(x — aRei, t; R) = U1 (21 — o, )01 (7, t; R) det J, (B.4)
where z and the Jacobian remains unchanged under this shifting transformation on x.
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Appendix C - proof of Theorem 1

Let D’ | denote the domain inside which Spe”*™ is the maximum among the n — 1

-+, 8,77 The representation of D?_| is given by

41 - ago
quantities: Spe?2%2 .

1 X
Dt = ceeLan) iy > —In =
n—1 {(ZL’Q, s L ) Ty =2 o0 n Sg?
; 1 S
a:gz—Uja:j——ln—g,jZQ,---,nbutj;éﬁ}J:Q,---,n. (C1)
oy or S

The terminal payoff becomes Spe?*®¢ — X inside the domain D? The integral in Eq.

n—1-
(3.9) can be decomposed into the sum of n — 1 integrals. The integration domain of a

typical term I, is [my, M1] x D?_,. Now, I, is formally represented by

) M
I =7 / / (Spee™ — X)
k:z—:oo mi DfL*l

[y, (x — 20 Rey — T, T; R) — €#1%kh, (x — 20, Rey — pT, T; R)]
dx, - - drodxy. (€-2)

To facilitate the integration in I,, we apply the following linear transformation of the

independent variables: y* = A’x, where

T ifj=1
J ’ :
i <$j — 2,1’5) otherwise
Ujg Uj

with U?e = U? — 2pjp0j00 + U%. The integration domain for I, becomes

1 Sy
(mlle)XDfL—lz{(yfvygv"'7yi):m1<y§<M17y§§ In b
gy X
1 S,
7 7 . .
< — In — =2, d £, c4
ys g gy =2 man J#} (C4)

Also, we have

(x — 20 Rey — puT)" R (x — 203, Rey — )
= (y* — 204 R'e; — A'uT)" (R "1 (y* — 20, R'e; — A*pT), (C.5)
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where RY = A*RA’T. Consider the typical term in I, [see Eq. (C.2)]

My
1% :/ / (Sge("‘f‘“Z — X)p(x — 2a. Rey — uT,T; R) dx,, - - - dzodz

a In 2£ SQ Ul_z In % le In g—i P
% w T Re) dyt, - - dybdy’, (C.6)

where w’ = y* — 2a,R%e; — A’uT. For the term involving X, it is straightforward to

observe that

My In 3£ - Lot
— X/ / 72 " 5 AU U U (WE T3 RY) difl - - dyfldy)?
mi — 00 —0o0 —0o0
XN - b ), )

where df and bi are defined in Eq. (3.1a,b,c). To deal with the integration with respect
to the integrand Sge_(’fyf Pn(wh, T RY), we consider the following identity

(W’ + osTR%p)" (RO (W' + 04T R'ey)
= w'T(R) ™ w’ 4+ 20,T(y" — 204, Re; — A*pT) e, + O‘?TQ(Reeg)Teg

W (RO W + 200y5T — 4,090 T + 2rT? (C.8)
so that
My - 1nzt Lin 3t s In £
/ / o / ‘ .. / ‘ Spe=Yip, (wh,T; RY) dyl. - - dy’
mi —o0 —o0 —o0
S/M1 élng—g a1n§( ﬁlnﬁ—ﬁ
pr e ... PR
mi —o0 — o0 o
P (Wh 4 00T R ey, T Re)e_grjlzf”akerrr dyl - dyt
= Spe"Te 2PN, (d5 — bl RY), (C.9)

where df and Bﬁ are defined in Eq. (3.1b,d). Combining all the results, we obtain the
price formula (3.10a,b).
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