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Abstract. Liquidity risks arise from the presence of execution time lags on

execution of market orders in trading securities and “quantity” effect (liquida-
tion discount) on security price. In this paper, we consider an investor who

is holding a portfolio of stock and cash (in the form of market money ac-
count) with the objective to unwind his position on the risky asset so that

the expected value of cash at the end of a fixed time horizon is maximized.
Assuming that the executive time lags and liquidation discount are determin-

istic, we construct the numerical algorithms for computing the optimal trading
strategy that maximizes the expected terminal value of cash position in the

portfolio. We also investigate the probability of meeting the target cash level
under different liquidation discount functions.

1. Introduction. Liquidity risks are related to the time delay and price effect of
execution of sell or buy market orders of an asset in the financial market. An
illiquid secondary market may prevent the liquidation or limit the cash that can be
generated from the liquidation of the asset. Institutional traders are often not able
to raise cash within a time constraint by unwinding the portfolio when the markets
have are gradually drying [7].

The competitive market paradigm assumes that the security markets are perfectly
elastic and all market orders can be executed instantaneously. Elastic markets
mean there is no “quantity effect” on the security price. However, in real market
situations, when the market participants detect an unusual high volume of sell
order, they would naturally adjust their bids to a lower level. As a result, there
is a price discrepancy between the price of security at the time when a large trade
order is placed and at the time when the trade order is executed. The difference
in these prices is called the liquidation discount . Also, the transaction may take
a considerable amount of time to complete so that there are execution time lags
in selling a large amount of shares. Assuming that the execution time lags and
liquidation discount are deterministic, the optimal liquidation problem is to develop
an optimal execution strategy such that a trader can unwind a portfolio position
within a fixed time constraint subject to the optimization of certain criteria, like
the minimization of the expected shortfall in value.
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Bertsimas and Lo [4] consider a similar problem where the trader wants to acquire
stocks within a fixed finite time horizon. They define the best execution strategy
in the sense that it provides the minimum expected cost of acquiring the stocks.
In their trading model, they add an impact premium on the execution price of the
trade. Such premium is modeled by a pre-defined price impact function that yields
the execution price of an individual trade as a function of the shares trades. In a
later paper, Bertsimas et al . [3] develop an effective numerical algorithm for finding
the optimal execution strategy of acquisition of a tradeable asset.

Almgren and Chriss [2] extend the work of Bertsimas and Lo [4] in two aspects.
First, they split the total price impact into the temporary and permanent compo-
nents. The temporary impact refers to temporary imbalances in supply and demand
caused by a trade order, and the price drop only has impact on this trade. On the
contrary, the permanent impact refers to price drop that persists for the whole life
of the liquidation period. The temporary and permanent price impacts are both
modeled by deterministic functions, taking the average rate of trading as an input
parameter. Second, their model also incorporates the uncertainty of trading cost.
Under their framework, the optimal execution strategy minimizes the sum of the
expectation and variance of the liquidation discount. In a later work, Almgren [1]
considers optimal trading strategies with a power law function of the trading rate
for liquidation of a large single-asset portfolio that minimize the volatility risk and
market impact costs.

Subramanian and Jarrow [8] incorporate both the execution lags and liquidation
discounts in their liquidation model. To model the execution lags, they impose a
rule to the trader that he is not allowed to place any additional sell order before the
previous sell order is completely executed. The waiting time depends on the number
of shares in previous sell order, and is represented by a pre-defined deterministic
function. In addition, a sell order also generates a permanent price drop whose
magnitude depends on the amount of the sell order. The price drop again is modeled
by a pre-specified deterministic function. An optimal execution scheme is then
developed to maximize the sum of expected utility value gained for each sell order.

Longstaff [7] considers a related problem which he calls an optimal portfolio
choice problem. They consider a portfolio consisting of riskless asset and illiquid
risky securities. Under uncertainty of the stock price dynamics, an investor then
seeks an optimal self-financing rebalance strategy to maximize the expected utility
value of his terminal wealth. Longstaff models the execution time lags of the trading
order by imposing an upper bound on the number of risky assets that the trader
can trade per period. His paper reports an intuitive finding that the investor will
choose a lower initial portfolio weight of risky securities in the presence of liquidity
constraints. Moreover, his results also show that the percentage price discounts for
illiquid stocks can be substantial.

Duffie and Ziegler [5] investigate how common risk measures such as likelihood of
insolvency, value at risk and expected tail loss respond to widening bid-ask spreads
when positions are liquidated within a short period for maintaining capital ratio.
They consider two possible liquidation strategies. The first strategy is to minimize
expected transaction cost by selling liquid assets first. However, this would increase
the tail losses and the probability of insolvency. An alternative strategy is to sell
illiquid asset and keep a cushion of liquid assets, at the expense of increasing the
expected transaction costs.
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In this paper, we consider a liquidation model that extends the models of Longstaff
[7] and Subramanian and Jarrow [8]. Similar to the work by Subramanian and Jar-
row, we model the execution time lags and liquidation discount by deterministic
functions. Assuming that the trader’s objective is to unwind his position of the
risky asset to meet some target cash level at the end of a fixed trading period, we
develop an effective numerical algorithm for finding the optimal execution strategy
of liquidation that maximizes the expected terminal value of cash position in the
portfolio.

This paper is organized as follow. In the next section, we present the formula-
tion of the liquidation model. The assumptions on the price dynamics of the risky
asset, execution time lags and liquidation discount are presented. The objective
of the optimal liquidation procedure is defined. In Section 3, we present the for-
ward shooting grid algorithms for finding the optimal execution strategy and the
probability of meeting a pre-set cash level at the end of the liquidation period.
Numerical calculations of the liquidation procedure are presented in Section 4. In
particular, we explore the impact of varying parameter values in the liquidation
discount function, volatility of asset price and target cash level on the probability
of terminal cash position above the target by the liquidation procedure. The last
section contains conclusive remarks of our liquidation model on optimal execution
strategy of liquidation.

2. Formulation of the liquidation model. Suppose an investor initially holds
a portfolio consisting of risky asset and cash (in the form of money market account)
and he would like to unwind his position on the risky asset so as to meet some
target cash level at the end of the liquidation period. The proceeds from the sale of
the risky asset is added to the cash position and the trading is self-financing. The
stochastic dynamics of the price of the risky asset S and the money market account
B are assumed to be:

dS

S
= µ dt + σ dZ, (1a)

dB

B
= r dt, (1b)

where µ and σ denote the constant drift rate and volatility of S, respectively. The
riskless interest rate r is assumed to be constant.

2.1. Execution time lags and liquidation discount. Following similar assump-
tions as adopted by Subramanian and Jarrow [8], we assume that the trader encoun-
ters liquidity discount on the sale of the risky asset and time lags in the execution
of the selling orders. Both the liquidity discount and execution time lag are defined
exogenously. Suppose the trader places a selling order of s units of the risky asset
in the market at time t, the execution time lag is defined as ∆(s). This means that
the trader cannot make any further sell order within the time interval (t, t + ∆(s)),
and the proceeds of the sale are collected at time t+∆(s). We assume that ∆(s) is a
deterministic and non-decreasing function in s with ∆(0) ≥ 0. The non-decreasing
property is consistent with the intuition that larger sales take more time to exe-
cute. Furthermore, we assume that a selling order of s units of the risky asset will
generate an instantaneous price drop on the asset price as modeled by

S(t+) = α(s)S(t), (2)

where 0 < α(s) ≤ 1, and S(t+) represents the asset price at the moment right after
time t at which the sell order is submitted. The factor α(s) represents the price
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discount due to a selling order of s units of risky asset placed in the market. We
assume α(s) to be a deterministic, non-negative and non-increasing function in s
with α(0) = 1. In our model, the “quantity” impact on price is assumed to be
cumulative and permanent, and the price drop persists for the whole liquidation
period.

2.2. Statement of the problem. Subject to execution time lag and liquidation
discount, the investor’s objective is to seek an optimal execution strategy to unwind
his position on the risky asset within a fixed time period T such that the expected
terminal value of the cash position is maximized. We adopt the self-financing strat-
egy where there is no additional funds added or withdrawn during the liquidation
period, and the proceeds of the sale of the risky asset are added to the cash position.

Let cT denote the cash value held by the investor at time T . We would like
to maximize the expected value of cT among all possible liquidation strategies.
The expected maximum terminal value of cash at time T has dependence on the
number of units of risky asset n, asset price S and cash level c in the portfolio at
time t, t < T . Let U (S, n, c, t) denote the functional dependence of the expected
maximum value of cT on S, n, c and t. Given that the initial portfolio at t = 0
contains n0 units of risky asset, cash amount c0 and asset price S0, our objective is
to compute U (S0, n0, c0, 0). Let D denote the pre-set target cash level at the end
of the liquidation period. We also compute the probability that the pre-set target
level is met on the terminal date, that is, P [cT ≥ D].

3. Construction of the forward shooting grid algorithm. First, we construct
a trinomial tree to simulate the stochastic movement of the stock price. When we
compute the expected terminal value of cash position, the expectation is taken over
all scenarios of asset price movement and possible inter-temporal selling of stocks.
Upon the sale of certain units of risky asset, the total number of units of risky
asset held has to be adjusted, and the proceeds collected are added to the cash
position. Such complicated path dependence structure can be handled effectively
by the forward shooting grid approach [6].

In the trinomial tree framework, we let Un
j,F denote the numerical approximation

of the expected terminal value of cash position maximized among all liquidation
strategies. The indices n and j denote the nth time step and j upward jumps from
the initial asset value in the trinomial tree. Let x and c denote the number of units
of risky assets and value of cash, respectively, in the prevailing portfolio. These
path-dependent state variables are stored in the augmented vector F, and we write

F = 〈x, c〉. (3)

We discretize the cash variable c so that the value taken on by c are

c(`) = c0 + `∆c, ` = 0, 1, · · · , L, (4)

where c0 represents the initial cash amount.
Let V n,s

j,F denote the numerical approximation of the maximum expected terminal
riskless asset value right after the sell order of s units of shares is placed on the
order book. As the trader would examine all feasible selling orders and select a
trading strategy that generates the maximum expected terminal value of the cash
position, the dynamic programming scheme can be succinctly represented by

Un
j,F = max

0≤s≤x

[
V n,s

j,F

]
, if n∆t + ∆(s) ≤ T. (5)
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Here, we require n∆t + ∆(s) ≤ T since the liquidation process has to be completed
by the terminal date T . Let cn denote the cash value at time step n. We consider
the following two cases.

1. Suppose no sell order is placed by the trader (i.e., s = 0), then the cash value
at the next time step cn+1 is

cn+1 = cn(1 + r∆t). (6)

In general, cn+1 does not fall onto one of the pre-set values in Eq. (4). We
use the quadratic interpolation rule to compute the required nodal value from
neighboring nodal values. Let c`′−1, c`′ and c`′+1 be the neighboring nodes of
cn+1, and let Un+1

j′,〈x,˜̀〉 denote the interpolated nodal value for cash cn+1. The
quadratic interpolation procedure is given by

Un+1

j′,〈x,˜̀〉 = α`′

−1U
n+1
j′,〈x,`′−1〉 + α`′

0 Un+1
j′,〈x,`′〉 + α`′

1 Un+1
j′,〈x,`′+1〉. (7)

After the required nodal values have been computed at time level n + 1, we
then use backward induction to proceed to time level n. As there is no price
impact when s = 0 so that S(n∆t+) = S(n∆t), we then have

V n,0
j,F = E

[
Un+1

j′,〈x,˜̀〉|S(n∆t) = Sj

]

= puUn+1

j+1,〈x,˜̀〉 + pmUn+1

j,〈x,˜̀〉 + pdU
n+1

j−1,〈x,˜̀〉 (8)

where pu, pm and pd are the respective probabilities of upward jump, zero
jump and downward jump in the trinomial tree (see Figure 1).

2. Suppose the trader places a selling order of s units of asset in the market.
The proceeds of the trade are collected at time step n+k, where k∆t = ∆(s).
The cash value cn+k at time step n + k is

cn+k = cn(1 + rk∆t) + sS((n + k)∆t). (9)

The first term in the above equation represents cash (in the form of money
market account) grows at the riskless rate r, and the second term represents
the amount of newly acquired cash as a result of collecting the proceeds of
selling s units of risky asset at time step n + k. Again, cn+k in general does
not fall onto the pre-set nodal values of cash. We use quadratic interpolation
to compute the required nodal values at time step n + k. Let the interpolated
nodal value for cash cn+k be Un+k

j′,〈x−s,˜̀〉 (note that the number of units of asset

drops to x−s). When the interpolated nodal values for cash cn+k at time level
n + k are available, we then perform usual backward induction to time level
n. Since there is an instantaneous price drop on the asset price right after the
selling order of s units of risky asset is placed, we have S(n∆t+) = α(s)S(n∆t)
and so

V n,s
j,F = E

[
Un+k

j′,〈x−s.˜̀〉|S(n∆t+) = α(s)Sj

]
. (10)

In general, α(s)Sj does not fall onto the pre-set discrete set of nodal asset
values, so we need to perform the quadratic interpolation procedure again
for the asset value α(s)Sj at time step n. The details of the interpolation
procedure are illustrated in Figure 2.

The dependency of V n,s
j,F=〈x,`〉 on the nodal values computed at a later time level

n + k (for k ≥ 1) are revealed by Eqs. (8) and (10). It follows that U0
0,F=〈n0,0〉 can



6 KA WO LAUa, YUE KUEN KWOKb,1 3

be computed by backward induction starting at time level N . At the end of the
liquidation period, we have

UN
j,〈x,`〉 = c(`), (11)

where the terminal value depends only on the cash amount.
In summary, suppose the trader at the current time holds a portfolio composition

of x units of risky asset and cash that is worth cn, he now places a selling order
of s units of asset in the market. To compute the maximum expected terminal
cash value for this action, we first compute Un+k

j′,〈x−s,˜̀〉 by quadratic interpolation

for cash amount cn+k [see (Eq. (9)], where k∆t = ∆(s) represents the execution
time lag for this sell order. We then perform backward induction from these nodal
values at time level n + k to time level n. After backward induction procedure is
completed, we perform interpolation again for the asset price α(s)Sj as a result of
the instantaneous price drop due to the sell order.

4. Numerical results. The parameter values used in our calculations (unless oth-
erwise specified) are listed in Table 1. In Figure 3, we show the plot of the percentage
loss of the liquidation process against the price drop parameter a at varying level
of initial number of units of risky asset n0 and liquidation time period T . The
percentage loss of the liquidation process is defined by

n0S0 − E(cT )
n0S0

× 100%

where E(cT ) represents the maximum expected terminal value of cash following the
optimal liquidation strategy. As expected, the percentage loss is shown to be higher
when the price drop parameter a is larger. Moreover, due to the cumulative nature
of the price drop effect embedded in the model, the percentage loss is seen to be
larger when the initial number of units of risky asset is larger.

We also compute the probability of meeting the target cash level at the end of
the liqudation period at different levels D and price drop parameter values a. To
compute such probability, we simply modify the terminal payoff condition to the
following form

UN
j,〈x,`〉 =

{
1 if c(`) − D ≥ 0
0 otherwise. (12)

The algorithm seeks for an optimal trading strategy that maximizes the probability
of meeting the target cash level D.

From the plots in Figure 4, our numerical results agree with the intuition that the
probability decreases as the target level D increases, and the probability becomes
lower when the price impact is higher.

We also compare the probability of meeting the target against target cash level
with varying values of stock price volatility. The parameter a is chosen to be 0.015.
At a higher target level, our calculations show that the probability becomes higher
when the asset price volatility assumes a higher value. On the contrary, at a lower
target level, it is seen that the probability becomes smaller when the volatility of
the asset price is larger (see Figure 5).

5. Conclusion. Execution time lag exists since a larger sale size requires a longer
time to execute the selling order. The “quantity” effect on the asset price is char-
acterized by the liquidation discount, which refers to the difference between the
market value of the asset and its value when liquidated. Under the assumption of
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initial asset price, S0 100
annualized volatility, σ 30%
annualized drift rate, µ 5%
riskless interest rate, r flat at 2% per annum
initial number of units of asset, n0 50
liquidation period, T 5 days
execution time lag function, ∆(s) 0.1 × s (days)

instantaneous price drop function, α(s)
0.5

1 − 0.5e−as

instantaneous price drop parameter, a 0.02
number of time steps used, N 10 per day

Table 1. List of parameter values used in our sample calculations.

deterministic execution time lags and liquidation discount, we present a numeri-
cal algorithm for computing the optimal liquidation strategy which maximizes the
expected terminal value of cash position in a trading portfolio. Such liquidation
problem is related to those faced by traders who may need to meet some target
cash payment by liquidating the asset in his portfolio. Our algorithm also com-
putes the probability of terminal cash level being above the target.

Our numerical results indicate that the percentage loss of the liquidation process
depends significantly on the choice of the price impact function. When the price
impact is larger, the percentage loss is shown to be more significant. Furthermore,
based on the assumption that the price impact is permanent and cumulative, the
percentage loss increases considerably with the number of units of asset in the
portfolio. In addition, the probability of meeting the target level is seen to be
smaller when the target level and price impact are larger. Depending on the target
level, the asset price volatility can have different effects on the probability of meeting
the target. When the target level is relatively high, the probability becomes higher
when the asset price becomes more volatile. On the contrary, when the target level
is relatively low, the probability becomes smaller when the asset price volatility
is high. This result seems to differ from other results in the literature that the
expected value of the terminal cash position is relatively insensitive to asset price
volatility.

REFERENCES

[1] R.F. Almgren, Optimal execution with nonlinear impact functions and trading-enhanced risk.
Applied Mathematical Finance, 10 (2003), 1–18.

[2] R. Almgren, N. Chriss, Optimal execution of portfolio transactions, Journal of Risk, 3(2)
(2000), 1–30.

[3] D. Bertsimas, P., Hummer, A.W. Lo, Optimal control of execution costs for portfolios, Com-
puting in Science and Engineering, 1 (2000), 40–53.

[4] D. Bertsimas, A.W. Lo, Optimal control of execution costs, Journal of Financial Markets, 1
(1998), 1–50.

[5] D. Duffie, A. Ziegler, Liquidation risk, Financial Analysts Journal, May/June issue, (2003),
42–51.

[6] Y.K. Kwok, K.W. Lau, Pricing algorithms for options with exotic path dependence, Journal
of Derivatives (Fall, 2001), 28–38.

[7] F.A. Longstaff, Optimal portfolio choice and the valuation of illiquid securities, Review of
Financial Studies, 14(2) (2001), 407–431.



8 KA WO LAUa, YUE KUEN KWOKb,1 4

[8] A. Subramanian, R.A. Jarrow The liquidity discount, Mathematical Finance, 11(4) (2001),
447–474.

V

j
S

n+1
Uj, <x, l>

S

time step

n+1n

j, <x, l>

j+1, <x, L>
n+1

p
m

p
d

p
u

U

n, 0

U j−1, <x, l>
n+1

Uj+1, <x, l>
n+1

cn+1

cash dimension

Uj+1, <x, 0>
n+1

Figure 1. When there is no sale of risky asset, we compute
Un+1

j+1,<x,˜̀> by employing the quadratic interpolation of cn+1 at the

(n + 1)th time level.



OPTIMAL EXECUTION STRATEGY OF LIQUIDATION 9

time step
n+kn

cash dimension

S

V

j(s) S

jS n+kc

Uj’, <x−s, 0>
n+k

Uj’, <x−s, L>
n+k

Uj’, <x−s, l>
n+k

j, <x, l>
n, s

to the order book

price impact as a result
of placing a selling order 

V j’, <x−s, l>
n, s

V j’+1, <x−s, l>
n, s

V j’+2, <x−s, l>
n, s

Figure 2. Illustration of the backward induction calculations from
the (n + k)th time level to the nth time level and the implementa-
tion of the quadratic interpolation procedure for the cash variable
cn+k.

0.015 0.017 0.019 0.021 0.023 0.025
15

20

25

30

35

40

45

a

pe
rc

en
ta

ge
 lo

ss

n
0
=30; T=3 

n
0
=50; T=50

n
0
=70; T=7

Figure 3. Comparison of the percentage loss at varying values of
initial number of units of risky asset n0, liquidation time period T
and price drop parameter a.



10 KA WO LAUa, YUE KUEN KWOKb,1 5

3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

pr
ob

ab
ili

ty a=0.015 

a=0.020 

a=0.025 

Figure 4. Comparison of the probability of terminal cash level
above the target level with varying target values D and price drop
parameter a.

3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

pr
ob

ab
ili

ty

Figure 5. Comparison of the probability of terminal cash level
above the target level with varying target values D and asset price
volatility level σ. The volatility values corresponding to the ‘×’-
curve, ‘∗’- curve and ‘+’-curve are 20%, 30% and 40%, respectively.


