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Abstract. The reload provision in an employee stock option entitles its holder to receive one
new (reload) option from the employer for each share tendered as payment of strike upon the exercise
of the stock option. The number of reloads allowed can be finite or infinite. The shout feature in
a call option allows its holder to reset the option’s strike price to the prevailing stock price upon
shouting. We explore symmetry relationship between the price functions of the employee reload
options and shout call options. When the dividend yield of the underlying stock is zero, the value
of the employee reload option can be expressed in terms of the price functions of a shout call option
and forward contract. For an employee reload option with an infinite number of allowable reloads,
the payoff of the employee reload option can be related to the lookback feature of the stock price
process. We also examine the optimal exercise policies of the multi-reload employee stock options.
The behaviors of the critical stock price at which the holder should exercise optimally are shown to
depend on the relative magnitude of the dividend yield, interest rate and volatility. Our analysis
of multi-reload and multi-shout options contributes to the literature on optimal stopping policies of
contingent claims with multiple stopping rights.
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1. Introduction. With the specific aim to provide better incentive compensa-
tion for the employees, employee stock options are structured to include non-typical
provisions that are not commonly found in conventional exchange-traded or over-the-
counter options. Johnson and Tain [11] examine the incentive effects of five differ-
ent types of non-traditional executive stock option plans, including the performance
vested stock options, repriceable (reset) stock options, reload stock options and oth-
ers. In this paper, we concentrate on the theoretical analysis of the optimal stopping
policies of the reload provision in employee stock options. Our studies reveal the in-
teresting linkage between three types of exotic option features, namely, reload, shout
(strike reset) and lookback features. Under some special cases, we show that the price
functions of reload options are related to those of call options with shout (strike reset)
feature and floating strike lookback options.

The reload provision allows the employee stock option holder to exercise an in-
the-money stock option prior to expiration. The strike is paid using owned shares of
the employee. To compensate for the potential loss of future price appreciation on the
shares tendered for strike payment, the employee is granted with the same number
of new (reload) options as the number of shares tendered. The strike price of the
reload option is then reset at the prevailing stock price at the exercise moment. In
this sense, the employee can lock in the gain on the part that is in-the-money at the
exercise moment while continues retaining the potential upside growth of the stock
price through holding the reload options. For example, suppose the strike price of the
original option is $100, and the prevailing stock price at the exercise moment is $150.
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This means $100/$150 = 2/3 units of owned share would be tendered to pay as strike
upon exercise. Under the reload provision, the holder will be granted 2/3 units of
new option, with the same expiration date as the original option and the strike price
set at $150.

In real practice, more contractual complexities can be incorporated into the reload
provision. The discussion of various types of reload option plans can be found in the
paper by Hemmer et al. [9]. The number of reloads throughout the life of the stock
option can be finite or infinite. Under the time vesting clause, the reload provision
cannot be activated during the early period of the stock options. In addition, after
each reload, the next reload can be activated only after a vesting period has lapsed.
Also, one may include the performance vesting clause whereby the reload provision is
triggered only when the stock price has breached certain threshold value from below.
Actual examples of firms issuing employee reload can be readily obtained by a search
in the National Automated Accounting Search System.

The additive incentive effects of the reload feature in employee stock options ap-
pear to be uncertain and more in-depth theoretical and empirical studies are required
for better understanding. It is generally speculated that the reload feature may lower
the dead weight loss, which is the difference between the cost of granting the option
and the employee’s private value. Also, reload programs are believed to be useful at
increasing company ownership among participants.

The apparent complex structures in the reload provision appear to cause its val-
uation infeasible. In particular, the employee’s private value depends on his own risk
aversion level. This has led the Financial Accounting Standards Board [7] to conclude
that it is not feasible to estimate the value of an option with the reload feature when
the right can be exercised at any time. According to the study made by the manage-
ment compensation consultant company, Frederick W. Cook & Co., “Reloads appear
destined to continue their fate as one of the most misunderstood compensation tools,
utilized by a slowly increasing minority of companies”. The true test of the reload
effectiveness is its survivability, that is, whether reload programs continue to survive
after companies have tried them out. So far, the answer seems to be quite positive,
according to the survey done by Frederick W. Cook & Co. [8].

Several papers have appeared in the literature which consider the numerical algo-
rithms for valuation of employee stock options under the Black-Scholes paradigm. To
price the value of the optimal exercise right embedded in an option using the binomial
scheme, it is well known that one may adopt the dynamic programming procedure of
comparing the continuation value and exercise value in each binomial node. Similar
dynamic programming procedure have been applied to evaluate the optimal exercise
policies and calculate the value of employee stock options with reload rights (Hemmer
et al., [9]; Saly et al., [14]). The employee reload option becomes a compound option
if the right to reload occurs only once on a preset date within the life of the option.
Under such restriction, it becomes straightforward to derive the price formula for the
reload option (Johnson and Tian, [11]).

The paper by Dybvig and Loewenstein [6] contributes to the major breakthrough
on the understanding of the pricing behaviors of employee reload options. They
consider reload options with infinite reload rights and the employee can choose to
exercise at any time during the life of the reload option. Under these assumptions,
they show that the value of the reload option always lies between the value of an
American call and the stock price, even with infinite reloads and perpetual life of
the option. Also, the total number of new shares issued under all exercises is always
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bounded by the initial number of options issued. With infinite reloads allowed, they
prove that the optimal policy is to reload whenever a new maximum value of the
stock price is realized. Accordingly, the value of the reload option is given by the
risk neutral expectation of a payoff function that depends on the maximum of the
original strike and the realized maxima of the stock price over the life of the option.
In addition, they discuss the impact of the time vesting requirement on the price
function and optimal exercise policy of the reload option.

In this paper, we consider the valuation of the market value of the employee
reload option and adopt the Black-Scholes pricing framework, which implicitly as-
sumes zero transaction costs and that the stock options can be traded and hedged.
This may be somewhat not reflecting the full nature of employee stock options, where
employees are constrained not to short sell the company stocks and the options are
non-transferable. The market value does provide an upper bound to the value of the
option to the holder. We take advantage of the nice analytic tractability of the Black-
Scholes pricing framework so as to reveal some of the pricing behaviors of the reload
feature. When we consider the private value of the reload option to the employee, it
is necessary to include the risk aversion level of the employee into the pricing frame-
work. For example, an employee who is risk averse would diversify his wealth from
strong dependence on the company fortune by exercising the option at a lower stock
price level. The pricing approach under the utility maximization framework has been
considered by Lau and Kwok [12].

We consider employee reload options where the number of reloads can be finite
or infinite, and the reload can be exercised at any time during the life of the option.
Our analysis of optimal exercise policies of multi-reload options contributes to the
recent literature on valuation of contingent claims with multiple stopping rights [1, 2,
10, 13]. The pricing model in this paper does not include the time and performance
vesting requirements. The analytic tractability will be much reduced when vesting
requirements are included, and only numerical solution of the pricing model is feasible.
The construction of the corresponding numerical algorithm for pricing reload option
with time vesting is considered in our other paper (Dai and Kwok, [5]).

A shout call option refers to a call option with the embedded right that the holder
can choose to shout at any moment during the life of the option to install a lower
strike price, which is set to be the prevailing stock price at the shouting moment
(Thomas, [15]; Dai et al . [4]). The maximum number of resets allowed in a shout
call can be finite or infinite. It is obvious that the holder shouts only at stock price
level that is below the strike price set at the earlier shout. If there has been no shout
commencing throughout the whole life, then the strike price remains at the original
value set at initiation. Without vesting requirement, we illustrate that there exists
symmetry relations between the reload provision and the right held by the holder
to reset the strike price. When the dividend yield of the underlying stock is zero,
we show that the value of the reload option can be expressed in terms of the price
functions of a forward contract and a shout call option.

When the employee stock option contains the provision of infinite reloads, the
corresponding option model can be shown to be related to a floating strike lookback
options. Similar relation is seen for shout options with infinite reset rights (Dai et al .
[4]). These results are obtained by virtue of the linear complementarity formulation
of option pricing model with optimal exercise right. Dybvig and Loewenstein [6]
obtain the valuation formulas of infinite-reload options by assuming reloads to be
allowed at distinct time instants, then taking the number of allowable instants to be
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infinite. They use dominance argument to derive the optimal exercise policy, which
maximizes both the market value as well as the value of holder’s private valuation.
In our work, we start with pricing models for options with finite reloads and take the
limit of number of reloads to infinity to obtain the solution for infinite-reload options.
We also examine the characterization of the optimal reload policies for the employee
options with finite and infinite reloads. The critical stock price at which it is optimal
to exercise the reload right can exhibit different characteristics, depending on the
relative magnitude of the interest rate, dividend yield and volatility. The asymptotic
value of the critical stock price at infinite time to expiry may be finite or infinite.
Under certain set of parameter values in the pricing model, it may be never optimal
to exercise when the time to expiry exceeds certain threshold value.

The paper is organized as follows. In Section 2, we present the linear complemen-
tarity formulation of employee stock options and shout call options with finite number
of reloads/shouts allowed. When the dividend yield of the stock is zero, we derive
the price formula of the reload option in terms of the price function of a shout call
option. The properties of the critical stock price at which the holder should exercise
the reload provision are analyzed. We also explore the monotonicity properties of the
price functions and critical stock prices with respect to the number of reloads. In
Section 3, we analyze the employee stock options with infinite number of reloads, and
in particular, we establish their linkage with the lookback options. We also derive
explicit valuation formulas for the infinite-reload option under different dividend poli-
cies of the underlying stock. In Section 4, we present our numerical calculations that
were performed to verify the theoretical results obtained in Sections 2 and 3. The
paper is ended with conclusive remarks in the last section.

2. Optimal stopping policies with finite reloads and shouts. In this sec-
tion, we consider the pricing models of employee reload options and shout call options
with finite number of reloads or shouts. Let S denote the stock price and assume that
the stock pays dividend at the constant yield q. Let r denote the risk free interest
rate and t be the current time. We adopt the usual Black-Scholes pricing framework.
Under the risk neutral valuation framework, the stock price process is assumed to
follow the lognormal process

dS

S
= (r − q) dt + σ dZ,(2.1)

where σ is the constant volatility and Z is the standard Wiener process. We con-
centrate our analysis on the employee reload options and examine how the pricing
models of the reload options are related to those of the shout call options. Let T
denote the expiration date of the employee option and X denote the original strike
price, and write τ = T − t as the time to expiry. We assume that the option received
in the last reload is European style. Let Vn(S, τ ; X, r, q) denote the price function of
the employee reload option with n reloads allowed throughout the life of the option.
In Sec. 2.1, we determine the price function of the reload option with single reload
and explore in details the corresponding optimal exercise policy. We then generalize
the pricing formulation of reload options with n reloads in Sec. 2.2. We examine the
monotonicity properties of the price functions and the critical stock price S∗

n(τ) at
which it is optimal to exercise. Also, we explore the impact of dividend yield q on
Vn(S, τ ; X, r, q) and S∗

n(τ).

2.1. Single-reload and single-shout call options. Upon the exercise of the
reload right, the employee receives one unit of stock and pays the strike price X . It is
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assumed that the employee uses
X

S
units of owned stock for the strike payment so that

the number of units of new stock received upon exercise is essentially 1− X

S
. Further,

we assume that the employee keeps these new stock so that continuous dividend yields

will be received. In addition, the employee receives
X

S
units of new call option with

strike price set at the prevailing stock price at the exercise moment and same maturity
date T . With the single reload right utilized, there will be no more reload allowed so
that the new option is just the usual European call option. Let c(S, τ ; X, r, q) denote
the price function of a European call. Upon exercise, the value of the reload option

becomes S − X +
X

S
c(S, τ ; S, r, q). By virtue of the Black-Scholes price formula of

European call option and observing the linear homogeneity property of the call price
function with respect to S, we obtain

c(S, τ ; S, r, q) = Sĉ(τ ; r, q),(2.2)

where

ĉ(τ ; r, q) = e−qτN(d̂1) − e−rτN(d̂2).(2.3)

Here, N(x) denotes the cumulative normal distributive function defined by

N(x) =
1√
2π

∫ x

−∞

e−t2/2dt

and

d̂1 =
r − q + σ2

2

σ

√
τ and d̂2 =

r − q − σ2

2

σ

√
τ.

Let p(S, τ ; X, r, q) denote the price function of a European put option. In a similar
manner, we have

p(S, τ ; S, r, q) = Sp̂(τ ; r, q)(2.4)

where

p̂(τ ; r, q) = e−rτN(−d̂2) − e−qτN(−d̂1).(2.5)

Linear complementarity formulation
The pricing model of options with reload/shout right can be formulated in terms of
the linear complementarity formulation. We present the corresponding formulation
for (i) single-reload employee option, (ii) single-shout call option.

Single-reload option

The payoff function upon exercise of the single-reload option is S − X + Xĉ(τ ; r, q)
[see Eq. (2.2)], with the presence of the extra term Xĉ(τ ; r, q) in the payoff when
compared with the exercise payoff of an American call. The linear complementarity
formulation for the price function V1(S, τ ; X, r, q) takes the form (Wilmott et al ., [16])

∂V1

∂τ
− Lr,qV1 ≥ 0,

V1(S, τ) ≥ S − X + Xĉ(τ),
[
∂V1

∂τ
− Lr,qV1

]
{V1(S, τ) − [S − X + Xĉ(τ)]} = 0,

S ∈ (0,∞), τ ∈ (0, T ],(2.6)
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where the differential operator Lr,q is given by

Lr,q =
σ2

2
S2 ∂2

∂S2
+ (r − q)S

∂

∂S
− r, r > 0 and q ≥ 0.(2.7)

The terminal payoff condition is given by V1(S, 0) = (S − X)+, where

x+ =

{
x if x ≥ 0
0 if x < 0

.

The domain of the pricing model {(S, τ) : 0 ≤ S ≤ ∞, 0 ≤ τ ≤ T } is divided
into the continuation region C and the stopping region S, which are separated by
the critical boundary S∗

1 (τ), 0 ≤ τ ≤ T . The employee should optimally choose to
exercise the reload right when the stock price is equal to or greater than S∗

1(τ). In
the stopping region, V1 = S − X + Xĉ(τ ; r, q); and accordingly,

(
∂

∂τ
− Lr,q

)
[S − X + Xĉ(τ ; r, q)]

= qS − rX + X
dĉ

dτ
(τ ; r, q) + rXĉ(τ ; r, q).(2.8)

Single-shout call option

Let cshout,1(S, τ ; X, r, q) denote the price function of a single-shout call option. Upon
shouting, the strike price X is reset to the prevailing stock price so that the pay-
off upon shouting becomes a European call option whose price function is given by
c(S, τ ; S, r, q). By virtue of the linear homogeneity property, the payoff can be sim-
plified to become Sĉ(τ ; r, q). The linear complementarity formulation for cshout,1

(S, τ ; X, r, q) is given by

∂cshout,1

∂τ
− Lr,qcshout,1 ≥ 0,

cshout,1(S, τ) ≥ Sĉ(τ ; r, q),
[
∂cshout,1

∂τ
− Lr,qcshout,1

]
[cshout,1(S, τ) − Sĉ(τ ; r, q)] = 0,(2.9)

S ∈ (0,∞), τ ∈ (0, T ].

The terminal payoff condition is given by cshout,1(S, 0) = (S − X)+, like that of the

usual call option. Let Ŝ∗

1 (τ ; r, q) denote the critical stock price of the single-shout call.

The holder of the single-shout call should shout optimally whenever S ≤ Ŝ∗

1 (τ ; r, q).
Next, we will show that the price functions of the single-reload option and single-

shout call option are closely related when q = 0. With the presence of dividend yields,
unfortunately, no simple relation between the price functions can be established.

Zero dividend yield

When the stock pays zero dividend yield, we show that the price function of a single-
reload option can be expressed in terms of the price functions of a forward contract
and the single-shout call option. Since the exercise payoff of the single-reload option
contains the term S − X , we attempt to simplify the pricing formulation through
the subtraction of the price function of a forward contract from V1(S, τ ; X, r, 0). By
defining

U1(S, τ ; X, r, 0) = V1(S, τ ; X, r, 0) − (S − Xe−rτ)(2.10)
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and observing the following relation that arises from the put-call parity

Xĉ(τ ; r, 0) − (X − Xe−rτ) = Xp̂(τ ; r, 0),

one can show that U1(S, τ ; X, r, 0) is governed by

∂U1

∂τ
− Lr,0U1 ≥ 0,

U1(S, τ) ≥ Xp̂(τ ; r, 0),
[
∂U1

∂τ
− Lr,0U1

]
[U1(S, τ) − Xp̂(τ ; r, 0)] = 0,

S ∈ (0,∞), τ ∈ (0, T ],

U1(S, 0) = (X − S)+.(2.11)

Suppose we define

x =
X

S
and W1(x, τ) =

1

S
U1(S, τ).(2.12)

By observing the put-call symmetry relation:

p̂(τ ; r, 0) = ĉ(τ ; 0, r),(2.13)

then W1(x, τ) satisfies the following linear complementarity formulation

∂W1

∂τ
− L0,rW1 ≥ 0,

W1(x, τ) ≥ xĉ(τ ; 0, r),
[
∂W1

∂τ
− L0,rW1

]
[W1(x, τ) − xĉ(τ ; 0, r)] = 0,

x ∈ (0,∞), τ ∈ (0, T ],

W1(x, 0) = (x − 1)+.(2.14)

The payoff upon exercise is xĉ(τ ; 0, r) = c(x, τ ; x, 0, r), which is a European call option
with strike price set at the prevailing stock price. By comparing Eq. (2.14) with
Eq. (2.9), we observe that W1(x, τ) is governed by the same linear complementarity
formulation that is satisfied by the price function of the one-shout call option with
zero interest rate, unit strike price, dividend yield r. In summary, we obtain

V1(S, τ ; X, r, 0) = S − Xe−rτ + cshout,1 (X, τ ; S, 0, r) ,(2.15)

where cshout,1(S, τ ; X, r, q) is the price function of the one-shout call option.
The shout call option is a simpler product compared to the reload option. By

virtue of the above decomposition, analysis of the optimal exercise policy for the
reload option becomes easier by simply analyzing the optimal exercise policy for the
shout call counterpart.

Properties of the critical stock price S∗

1 (τ ; r, q)
Similar to holding an American call option, the employee chooses to exercise optimally
the reload option when the stock price rises above some critical stock price S∗

1 (τ). The
stopping region and the continuation region correspond to S ≥ S∗

1 (τ) and S < S∗

1 (τ),
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respectively. The characterization of the optimal exercise policy of the single-reload
option is summarized in Theorem 1.

Theorem 1
Let S∗

1 (τ ; r, q) denote the critical stock price of single-reload employee stock option
that separates the stopping and continuation regions. The stopping region and S∗

1 (τ)
observe the following properties.

1. The stopping region is contained inside the region

{(S, τ) : S ≥ X, 0 ≤ τ ≤ T }.

2. At time close to expiry,

S∗

1 (0+; r, q) = X, q ≥ 0, r > 0.

3. When the stock pays dividend at constant yield q > 0, the critical stock price
at infinite time to expiry is given by

S∗

1 (∞; r, q) =
µ+

µ+ − 1
X,(2.16)

where µ+ is the positive root of the equation:

σ2

2
µ2 +

(
r − q − σ2

2

)
µ − r = 0.

4. If the stock pays no dividend, then

(a) for r ≤ σ2

2
, S∗

1 (τ ; r, 0) is defined for all τ > 0 and S∗

1 (∞; r, 0) = ∞;

(b) for r >
σ2

2
, S∗

1(τ ; r, 0) is defined only for 0 < τ < τ∗

1 , where τ∗

1 is the

unique solution to the algebraic equation

−rN

(
−r + σ2

2

σ

√
τ

)
+

σ

2
√

τ
n

(
−r + σ2

2

σ

√
τ

)
= 0,(2.17)

where

n(x) =
1√
2π

e−x2/2.

The proof of Theorem 1 is presented in Appendix A. As a remark, unlike the reset
put option analyzed by Dai et al . [4], the behaviors of the critical stock price of the
single-reload option depend on the relative magnitude of r and σ2/2 instead of r and
q.

2.2. Multi-reload options. Most of the results established earlier for single-
reload options can be extended to multi-reload options. When the stock pays no
dividend, the price function of a n-reload option can be expressed as the sum of
the price functions of the corresponding forward contract and n-shout call option.
Intuitively, one would expect that the holder will exercise their reload right at a lower
critical stock price when there are more reload rights outstanding. In general, it
would be difficult to obtain explicit valuation formulas for the price functions when
the number of reloads is more than one. Without explicit formulas, the proof of
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monotonicity properties on the critical stock prices would be infeasible. We resort
to numerical calculations to verify the optimal exercise policies and monotonicity
properties on the critical stock prices for multi-reload options (see Section 3). For
q > 0, one can derive the recursive relation that relates the critical stock prices for
perpetual multi-reload options [see Eq. (2.21)].

The multi-reload option is a nice example of contingent claims with multiple
stopping rights. Another class of contingent claims with multiple stopping are the
swing options in energy derivatives. Theoretical aspects of optimal stopping policies
of swing options are discussed by Carmona and Touzi [1, 2] while methods of numer-
ical valuation of multiple-exercise contingent claims are presented by Ibanez [10] and
Meinshausen and Hambly [13]. The complementarity formulation for Vn(S, τ ; X, r, q)
takes similar form as that shown in Eq. (2.6)

∂Vn

∂τ
− Lr,qVn ≥ 0,

Vn(S, τ ; X) ≥ S − X + XVn−1(1, τ ; 1),
(

∂Vn

∂τ
− Lr,qVn

)
{Vn(S, τ ; X) − [S − X + XVn−1(1, τ ; 1)]} = 0,

S ∈ (0,∞), τ ∈ (0, T ],

Vn(S, 0) = (S − X)+.(2.18)

The above pricing formulation is valid for n ≥ 1, and for notational convenience, we
assume V0(S, τ ; X, r, q) to be c(S, τ ; X, r, q). Note that Vn(1, τ ; 1) is a time dependent
function that is obtained by setting S = 1 and X = 1 in the price function Vn(S, τ ; X).
As the option with more reload rights outstanding should be more expensive than its
counterpart with less reload rights, we expect that Vn+1(S, τ ; X) > Vn(S, τ ; X) for all
S > 0 and τ > 0.

When the stock does not pay dividend, a simple relation between the price func-
tions of the n-reload option and n-shout call option can be found. We apply the
transformation

Wn(x, τ) =
1

S
[Vn(S, τ ; X, r, 0) − (S − Xe−rτ)] and x =

X

S

to obtain

∂Wn

∂τ
− L0,rWn ≥ 0,

Wn(x, τ) ≥ xWn−1(1, τ),
[
∂Wn

∂τ
− L0,rWn

]
[Wn(x, τ) − xWn−1(1, τ)] = 0,

x ∈ (0,∞), τ ∈ (0, T ],

Wn(x, 0) = (x − 1)+.(2.19)

Like the single-reload option and single-shout call option [see Eq. (2.15)], we can
establish similar symmetry relation

Vn(S, τ ; X, r, 0) = S − Xe−rτ + cshout,n(X, τ ; S, 0, r),(2.20)

where cshout,n(S, τ ; X, r, q) is the price function of a n-shout call option.
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Properties of the critical stock price S∗

n(τ ; r, q)
The critical price S∗

n(τ ; r, q) of a n-reload employee stock option exhibits similar be-
haviors as those of the single-reload option. The holder should never exercise at
S < X and S∗

n(τ ; r, q) starts at X as τ → 0+. Also, we observe the monotonic prop-
erty: S∗

n+1(τ ; r, q) < S∗

n(τ ; r, q), an obvious fact from financial intuition (see Dai et

al .’s paper [3] on the discussion of the monotonic properties of the price functions
of options with multiple reset rights). When q = 0, the optimal exercise policy of a
n-reload option can be related directly to that of the n-shout call counterpart. When
q > 0, we obtain the following recursive relation on the critical stock price of the
perpetual n-reload option:

S∗

n(∞)

X
=

µ+

µ+ − 1
− 1

µ+ − 1

[
S∗

n−1(∞)

X

]1−µ+

, n > 1.(2.21)

Further, it can be shown that S∗

n(∞) is monotonically decreasing with respect to n
and lim

n→∞

S∗

n(∞) = X . For the proof of these properties on S∗

n(∞), see Appendix B.

Since S∗

∞
(τ) is a non-decreasing function of τ and S∗

∞
(τ) ≥ X for τ ≥ 0, and

together with S∗

∞
(∞) = X , we deduce that S∗

∞
(τ) = X for τ ≥ 0. This is a striking

result. The optimal exercise policy of an infinite-reload option then becomes deter-
ministic. Hence, the pricing of an infinite-reload option is no longer a free boundary
value problem.

3. Employee stock options with infinite reloads and lookback options.
In this section, we derive the analytic price formula for an infinite-reload option for
q ≥ 0. The success of the analytic tractability of the infinite-reload option as compared
to its finite-reload counterparts stems from the simple exercise policy of the infinite-
reload option — exercise whenever the option is in-the-money. Such optimal exercise
policy has been proven by Dybvig and Loewenstein [6] through the construction of
a portfolio that replicates the infinite-reload option. They derive the price formulas
for the infinite-reload options by assuming that exercise is available only on a set of
preset times, then subsequently deduce the solution for continuous exercise of reloads
by taking the limit of infinite number of exercisable times. By taking the number
of reloads n to be infinite in the linear complementarity formulation, we show that
the resulting pricing formulation becomes closely related to that of a lookback option
model.

We represent the price function of the infinite-reload option by V∞(S, τ ; X, r, q),
which is seen to be lim

n→∞

Vn(S, τ ; X, r, q). Consider the function

F (S, τ) = Se−qτ − Xe−rτ + q

∫ τ

0

(Se−qu − Xe−ru) du,(3.1)

which satisfies the equation

∂F

∂τ
− Lr,qF = q(S − X)

F (S, 0) = S − X.(3.2)

Note that F (S, τ) reduces to the price function of a forward contract when q = 0. We
define the transformation

U∞(S, τ ; X, r, q) = V∞(S, τ ; X, r, q) − F (S, τ),(3.3)
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then U∞(S, τ ; X, r, q) is seen to satisfy the following linear complementarity formula-
tion

∂U∞

∂τ
− Lr,qU∞ ≥ q(X − S),

U∞(S, τ ; X) ≥ XU∞(1, τ ; 1),
[
∂U∞

∂τ
− Lr,qU∞ − q(X − S)

]
[U∞(S, τ ; X) − XU∞(1, τ ; 1)] = 0,

S ∈ (0,∞), τ ∈ (0, T ],

U∞(S, 0) = (X − S)+.(3.4)

Furthermore, we define

W∞(x, τ) =
1

S
U∞(S, τ) and x =

X

S
.(3.5)

The corresponding pricing formulation for W∞(x, τ) can be expressed as

∂W∞

∂τ
− Lq,rW∞ ≥ q(x − 1)

W∞(x, τ) ≥ xW∞(1, τ)
[
∂W∞

∂τ
− Lq,rW∞ − q(x − 1)

]
[W∞(x, τ) − xW∞(1, τ)] = 0,

x ∈ (0,∞), τ ∈ (0, T ],

W∞(x, 0) = (x − 1)+.(3.6)

Let cfloat(S, m, τ ; r, q) denote the price function of a floating strike lookback call option
with terminal payoff S−m, where m is the realized minimum value of the stock price
over the life of the option. Interestingly, W∞(x, τ) is related to cfloat(S, m, τ ; r, q)
through the following relation:

SW∞(x, τ) = cfloat(X, min(S, X), τ ; q, r)

+ q

∫ τ

0

cfloat(X, min(S, X), u; q, r) du;(3.7)

the proof of which is presented in Appendix C.
Collecting all the above relations together, we obtain the price formula for an

infinite-reload option with dividend yield q as follows:

V∞(S, τ ; X, r, q)

= SW∞

(
X

S
, τ

)
+ F (S, τ)

= cfloat(X, min(S, X), τ ; q, r) + (Se−qτ − Xe−rτ)

+ q

∫ τ

0

[cfloat(X, min(S, X), u; q, r) + (Se−qu − Xe−ru)] du.(3.8)

In Appendix D, we show the equivalence of this pricing formula with that given by
Dybvig and Loewenstein [6]. In conclusion, the price function of the infinite-reload
option can be expressed in terms of the price functions of a forward and a floating
strike lookback call option.
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4. Numerical calculations. We performed numerical calculations to check the
validity of the results discussed in the last two sections. Also, we explore monotonicity
properties on the price functions of multi-reload and infinite-reload options. The
numerical results on the critical stock prices and price functions are obtained using the
binomial scheme coupled with the dynamic programming procedure to incorporate the
reload feature. At each binomial node, we take the maximum among the continuation
value and the exercise value (see similar numerical procedures reported by Hemmer
et al . [9] and Saly et al . [14]).

Critical stock prices
We calculated the critical stock price S∗

n(τ ; r, q), n = 1, 2, 3, under the following three
cases (i) q = 0, r > σ2/2, (ii) q = 0, r ≤ σ2/2, and (iii) q > 0. In Figure 1, we
plot S∗

n(τ ; r, q) against τ for options with one, two and three reloads. The parameter
values used in the calculations are: q = 0, r = 0.1, σ = 0.3 and X = 1. When the
stock does not pay dividend and r > σ2/2, there exists a threshold value τ∗

n such
that the holder never exercise when the time to expiry exceeds that value. Given
the same time to expiry, options with more reload rights should be exercised at a
lower critical stock price. Hence, we would expect the monotonicity property: τ∗

1 <
τ∗

2 < τ∗

3 . From the plots in Figure 1, these threshold values of time to expiry are
found to be τ∗

1 = 6.78, τ∗

2 = 12.38 and τ∗

3 = 17.86. In Figure 2, we show the plot of
S∗

n(τ ; r, q), n = 1, 2, 3, against τ corresponding to q = 0 and r ≤ σ2/2. The parameter
values used in the calculations are: q = 0, r = 0.04, σ = 0.3 and X = 1. Apparently,
these plots agree with the result that S∗

n(τ ; r, q) tends to infinity at infinite time to
expiry. Also, we observe the monotonicity property: S∗

1 (τ) < S∗

2 (τ) < S∗

3 (τ) for all
τ > 0. When the stock pays dividend, the critical stock price is defined for all τ > 0,
and according to Eq. (2.21), S∗

n(∞) is finite. Based on the set of parameter values:
q = 0.03, r = 0.04, σ = 0.3 and X = 1, we obtained S∗

1(∞) = 3.45, S∗

2(∞) = 1.99 and
S∗

3 (∞) = 1.59, using the recursive relation (2.21). The curves of S∗

n(τ), n = 1, 2, 3,
against τ in Figure 3 reveal the validity of these theoretical results. In all the plots of
the critical stock price in the above three figures, we observe that S∗

n(τ) always starts
at X at τ → 0+ and increases monotonically with respect to τ .

Monotonicity properties of the price functions
We also performed numerical calculations on the dependence of the price functions
of employee stock options on stock price volatility. The plots of the option value
against volatility are shown in Figure 4. The set of parameter values used in the
calculations are: q = 0.03, r = 0.04, τ = 10 and S = X = 1. The price functions
are monotonically increasing with respect to the number of reloads outstanding and
volatility. Our calculations reveal that the infinite-reload option can be 20−25% more
expensive than its one-reload counterpart.

5. Conclusion. In this paper, we derive some interesting symmetry relations
between the three exotic option feature: reload, shout and lookback. Our theoretical
studies contribute to a broader understanding of the pricing behaviors under the
Black-Scholes paradigm of the employee stock options with finite or infinite number
of reloads. The analysis of optimal policies of multiple stopping of contingent claims is
mathematically challenging. We unravel the linkage between the reload provision in an
employee stock option and the strike reset right in a shout call option. By establishing
symmetry relation between the price functions of reload option and shout call option,
we show that the optimal stopping policies of the reload options are identical to those
of the shout call options.
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For employee options with finite reloads, we give detailed characterization of
the optimal exercise policies and examine the monotonicity properties of the price
functions and critical stock prices with respect to the number of reloads. When the
stock pays no dividend, it is interesting to observe that the optimal stopping policy
depends on the relative magnitude of the riskless rate and volatility. When the square
of volatility is less than twice the value of riskless interest rate, the holder should never
exercise at any stock price level when the time to expiry is above certain threshold
level. Such behaviors of optimal stopping of the reload options distinguish from those
of the reset put options, whose optimal stopping policies have dependence on the
relative magnitude of the dividend yield and riskless interest rate only. When the
dividend yield is non-zero, we obtain explicit formulas for the critical stock price of
perpetual multi-reload options. We also illustrate through numerical experiment that
reload options with more reload rights outstanding should be worth more and the
holder should exercise the reload right at a lower critical stock price. The infinite-
reload employee options and lookback options are seen to be closely related. We
provide valuation formulas for infinite-reload options with or without dividend yield
of the underlying stock.

The relation between the infinite-reload (infinite-shout) right and lookback feature
exhibits interesting mathematical characteristics. With finite reloads, the pricing
model is one-dimensional but non-linear due to the presence of the free boundary as
exemplifed by the non-deterministic critical stock price. However, when we take the
limit of infinite reloads, the pricing model becomes linear since the critical stock price
always equals the original strike price. However, the dimension of the model increases
by one due to the inclusion of the extra lookback variable in the model formulation.
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APPENDIX A — Proof of Theorem 1
1. When the single-reload option exercises its reload right, it reduces to its Eu-

ropean call counterpart. To show that it is never optimal to exercise when
S < X , it suffices to prove that when S < X , the exercise payoff is al-
ways less than the value of the European call option [which in turn less than
V1(S, τ ; X, r, q)]. Consider the difference

D(S, τ) = c(S, τ ; X, r, q)

− [S − X + Xĉ(τ ; r, q)],

we observe that

∂

∂S
D(S, τ) = N(d1) − 1 < 0

and

D(S, τ)

∣∣∣∣
S=X

= 0,

where

d1 =
ln S

X +
(
r − q + σ2

2

)
τ

σ
√

τ
.

This gives D(S, τ) > 0 for S < X . Hence, the stopping region is contained in
{(S, τ) : S ≥ X and 0 ≤ τ < T }.

2. According to the linear complementarity formulation in Eq. (6), the difference

D̂(S, τ) = V1(S, τ ; X, r, q) − [S − X + Xĉ(τ ; r, q)]

should be always positive for all τ > 0 in the continuation region. We prove
the result: S∗(0+; r, q) = X by contradiction. Suppose S∗(0+) > X and for

S ∈ (X, S∗(0+)), we observe D̂(S, 0) = 0 and

∂D̂

∂τ
(S, 0+) = −X

[
dĉ

dτ
(0+; r, q) + rĉ(0+; r, q)

]
< 0.

This leads to D̂(S, τ) < 0, for τ close to 0+. A contradiction is encountered,
so we should have S∗(0+) ≤ X . Together with the result: S∗

1 (τ) ≥ X proved
in part (1), we conclude that S∗(0+) = X .

3. When τ → ∞, we observe that ĉ(τ ; r, q) −→ 0 for q > 0 and r > 0 so that the
exercise payoff for the perpetual single-reload option is the same as that of the
perpetual American option. Since the governing equation and all auxiliary
conditions of the two perpetual options are identical, the corresponding price
functions are equal. It is well known that the price function of an American
perpetual option is given by

V ∞

A (S) =

(
S∗

A,∞

µ+

)(
S

S∗

A,∞

)µ+

,

where S∗

A,∞ =
µ+

µ+ − 1
X . It then follows that

S∗

1 (∞; r, q) =
µ+

µ+ − 1
X for q > 0
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4. First, we consider the optimal exercise policy of the single-shout call option,
whose price function is denoted by cshout,1(S, τ ; X, r, q). A necessary condi-
tion for the point (S, τ) to lie in the stopping region of the single-shout call
is given by (Dai et al ., [4])

d

dτ
[e−qτ ĉ(τ ; r, q)] = ĉ′(τ ; δ, 0) > 0

where δ = r − q. Simple calculations show that

ĉ′(τ ; δ, 0) = e−δτf(τ)

where f(τ) = δN(d2) +
σ

2
√

τ
n(d2) and d2 =

δ − σ2

2

σ

√
τ . The sign behaviors

of ĉ′(τ ; δ, 0) and those of f(τ) are identical.
For δ ≥ 0, we have f(τ) > 0 for all τ > 0. However, when δ < 0, it can

shown that f(τ) may be strictly positive for all τ > 0 or remains positive only
for certain interval of τ . Note that f(0+) = ∞. We observe that d2 → −∞
as τ → ∞ and δ < 0, and consider

lim
d2→−∞

N(d2)
n(d2)

d2

= lim
d2→−∞

−N(d2) − d2n(d2)

−d2n(d2)
= −1

so that f(τ) ∼ δ + σ2

2

2
N(d2) as d2 → −∞. We then have f(∞) → 0− if

δ < −σ2

2
, and f(∞) > 0 if −σ2

2
≤ δ < 0. To examine the properties of the

turning points of f(τ), we need to compute the derivative of f(τ) and obtain

f ′(τ) =
σ2

4
√

τ

(
δ2 − σ4

4

σ2
− 1

τ

)
n(d2).

The derivative f ′(τ) has the following properties:

(i) If δ < −σ2

2
, then there is a unique solution to f ′(τ) = 0 over (0,∞).

(ii) If 0 < δ ≤ −σ2

2
, then f ′(τ) ≤ 0 over (0,∞).

Combining all the above results together, we can conclude that

(a) If δ = r − q ≥ −σ2

2
, then f(τ) > 0 for all τ > 0.

(b) If δ = r − q < −σ2

2
, then there exists a unique value τ∗

1 ∈ (0,∞) such

that f(τ) > 0 when τ < τ∗

1 and f(τ) ≤ 0 when τ ≥ τ∗

1 .
Referring back to the single-reload option, by virtue of Eq. (13), the roles of

the dividend yield and interest rate in the price functions of the shout call and
reload option are interchanged. With zero dividend yield and interest rate r
in the reload option, the corresponding value of δ in the shout call becomes
−r. Hence we interpret the above results with respect to the single-reload
option as follows:

(a) When r ≤ σ2

2
, S∗

1 (τ ; r, 0) is defined for all τ > 0. Also, we have

lim
q→0+

µ+ = 1 so that lim
q→0+

S∗

1 (∞; r, q) = ∞.
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(b) When r >
σ2

2
, S∗

1 (τ ; r, 0) is defined only for τ < τ∗

1 ∈ (0,∞) where τ∗

1 is

the unique solution to

f(τ) = −rN

(
−r + σ2

2

σ

√
τ

)
+

σ

2
√

τ
n

(
−r + σ2

2

σ

√
τ

)
= 0.

APPENDIX B: Properties on S∗

n(∞; r, q), q > 0

Let V ∞

n (S; X) denote the price function of the perpetual n-reload option, where q > 0.
The governing equation for V ∞

n (S; X) is given by

σ2

2
S2 ∂2V ∞

n

∂S2
+ (r − q)S

∂V ∞

n

∂S
− rV ∞

n = 0, 0 < S < S∗

n(∞).

The auxiliary conditions are

V ∞

n (0) = 0,

V ∞

n (S∗

n(∞)) = S∗

n(∞) − X + XV ∞

n−1(1; 1),

dV ∞

n

dS
(S∗

n(∞)) = 1.

The solution to the above equation is given by

V ∞

n (S) =

(
S∗

n(∞)

µ+

)(
S

S∗

n(∞)

)µ+

,

where

S∗

n(∞) =
µ+X

µ+ − 1
[1 − V ∞

n−1(1; 1)].

Knowing that

S∗

1 (∞) =
µ+X

µ+ − 1
,

we can deduce the recursive relation:

S∗

n(∞)

X
=

µ+

µ+ − 1
− 1

µ+ − 1

[
S∗

n−1(∞)

X

]1−µ+

, n > 1.

One can easily establish

X < S∗

n−1(∞) < S∗

n(∞), n > 1,

so that lim
n→∞

S∗

n(∞) exists. Let L denote lim
n→∞

S∗

n(∞). From the above recursive

relation, we deduce that L satisfies

L

X
=

µ+

µ+ − 1
− 1

µ+ − 1

(
L

X

)1−µ+

, L ≥ X.

The unique solution to the above algebraic equation is L = X .
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APPENDIX C: Proof of Eq. (3.8)

Let cshout,n(S, τ ; X, r, q) denote the price function of the n-shout call option. We take
the limit n → ∞ and define the price function of an infinite-shout call option by

c∞shout(S, τ ; X, r, q) = lim
n→∞

cshout,n(S, τ ; X, r, q).

The governing equation for c∞shout(S, τ) is given by

∂c∞shout

∂τ
− Lr,qc

∞

shout = 0,

S > S∗

shout,∞(τ), τ > 0,

with auxiliary conditions:

c∞shout(S
∗

shout,∞(τ), τ) = S∗

shout,∞(τ)c∞shout(1, τ ; 1),

∂c∞shout

∂S
(S∗

shout,∞(τ), τ) = c∞shout(1, τ ; 1),

c∞shout(S, 0) = (S − X)+.

The infinite-shout call has a simple exercise policy: the holder shouts when the option
becomes in-the-money, that is, S∗

shout,∞(τ) = X for all τ ≥ 0.
On the other hand, we consider the following pricing model of a floating strike

lookback call option, whose price function is represented by cfloat(S, m, τ ; r, q):

∂cfloat

∂τ
− Lr,qcfloat = 0, S > m, τ > 0,

with auxiliary conditions:

∂cfloat

∂m

∣∣∣∣
S=m

= 0,

cfloat(S, m, 0) = S − m.

We apply the following transformations

cfloat(y, τ) =
cfloat(S, m, τ)

m
, y =

S

m
,

so that the governing equation of the pricing model of the lookback option can be
transformed into

∂cfloat

∂τ
− Lr,qcfloat = 0, y > 1, τ > 0,

with auxiliary conditions:

∂cfloat

∂y

∣∣∣∣
y=1

= cfloat(1, τ),

cfloat(y, 0) = y − 1.

Comparing the pricing formulations of the infinite-shout call and the floating strike
lookback call option, we then conclude that
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(a) when S > X ,

c∞shout(S, τ ; X)

= Xc∞shout

(
S

X
, τ ; 1

)

= Xcfloat

(
S

X
, τ

)
= cfloat(S, X, τ).

(b) when S ≤ X ,

c∞shout(S, τ ; X)

= Sc∞shout(1, τ ; 1)

= Scfloat(1, τ) = cfloat(S, S, τ).

Combining the above results, we obtain

c∞shout(S, τ ; X) = cfloat(S, min(X, S), τ).

Next, we rewrite the pricing formulation of W∞(x, τ) into the following alternative
form:

∂W∞

∂τ
− Lq,rW∞ = q(x − 1), x > 1, τ > 0,

∂W∞

∂x
− W∞

∣∣∣∣
x=1

= 0,

W∞(x, 0) = x − 1.

Comparing the above formulation with the formulation of cfloat(y, τ), we then deduce
that

W∞(x, τ)

= cfloat(S, min(S, X), τ ; q, r)

+ q

∫ τ

0

cfloat(S, min(S, X), u; q, r) du.

Lastly, the price function of the infinite-reload option is given by

V∞(S, τ ; X, r, q)

= SW∞

(
X

S
, τ

)
+ F (S, τ)

= cfloat(S, min(S, X), τ ; q, r) + (Se−qτ − Xe−rτ)

+ q

∫ τ

0

[cfloat(S, min(S, X), u; q, r) + (Se−qu − Xe−ru)] du.

APPENDIX D: Proof of equivalence of the price formulas for infinite
reload option
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Dybvig and Loewenstein [6] present the following price formula for an infinite-reload
option:

V∞(S, T ; X, r, q)

= e−rT EST

[
ST

(
1 − X

MT

)+
]

+ q

∫ T

0

e−ruESu

[
Su

(
1 − X

Mu

)+
]

du

where the current time is taken to be the zeroth time and Mu is the realized maximum
value of the stock price over (0, u). To prove the equivalence of their price formula
with ours [see Eq. (3.8)], it suffices to show that

G0 = e−rT EST

[
ST

(
1 − X

MT

)+
]

= cfloat(X, min(X, S0), T ; q, r) + S0e
−qT − Xe−rT .

We apply the transformations:

H0 =
G0

S0
, xt =

X

St
and mt =

X

Mt

so that

H0 = e−rT EQ
xT

[(1 − mT )+].

We recognize H0 as the value of a fixed strike lookback put option. By recalling the
following parity relation between fixed strike lookback put and floating strike lookback
call

pfix(x0, m0, T ; q, r)

= cfloat(x0, min(1, m0), T ; q, r) − (x0e
−rT − e−qT ),

we deduce that

H0 = cfloat(x0, min(1, x0), T ; q, r) − (x0e
−rT − e−qT ).

Lastly, we obtain

G0 = S0[cfloat(x0, min(1, x0), T ; q, r) − (x0e
−rT − e−qT )]

= cfloat(X, min(X, S0), T ; q, r) + S0e
−qT − Xe−rT .
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FIG. 1 Plots of critical stock price against time to expiry for employee options

with one, two and three reloads

(
q = 0, r >

σ2

2

)
. The parameter values used in the

calculations are: q = 0, r = 0.1, σ = 0.3 and X = 1. The critical stock price S∗

n(τ ; r, q)
is defined only for τ < τ∗

n , n = 1, 2, 3. These threshold values on time to expiry are
found to be: τ∗

1 = 6.78, τ∗

2 = 12.38 and τ∗

3 = 17.86; and they observe the monotonic
property: τ∗

1 < τ∗

2 < τ∗

3 .
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FIG 2. Plots of critical stock price against time to expiry for employee options

with one, two and three reloads

(
q = 0, r ≤ σ2

2

)
. The parameter values used in the

calculations are: q = 0, r = 0.04, σ = 0.3 and X = 1. Apparently, the critical stock
price is defined for all values of time to expiry and there is no asymptotic value for
the critical stock price at infinite time to expiry.
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FIG 3. Plots of critical stock price against time to expiry for employee options
with one, two and three reloads (q > 0). The parameter values used in the calculations
are: q = 0.03, r = 0.04, σ = 0.3 and X = 1. The asymptotic values for the critical
stock price at infinite time to expiry are found to be: S∗

1 (∞) = 3.45, S∗

2(∞) = 1.99
and S∗

3 (∞) = 1.59.
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FIG 4. Plots of option value against interest rate for employee options with one,
two, three and infinite reloads. The parameter values used in the calculations are:
q = 0.03, r = 0.04, τ = 1.0, S = X = 1. The price functions always increase in value
with increasing volatility and increasing number of reloads outstanding.


