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Assuming the absence of market frictions, deterministic interest rates, and
certainty in dividend payouts from the stocks in the index basket, an arbi-
trageur can lock in the profit of a positive (negative) arbitrage basis in a stock
index futures by adopting a short (long) futures strategy. In addition, the
arbitrageur may improve the arbitrage profit by adopting the so-called early
unwinding strategy of liquidating the position before maturity, or more ag-
gressively from the long position directly to the short position or vice versa.
In this paper, we examine the optimal arbitrage strategies in stock index
futures with position limits and transaction costs. In our analysis, the in-
dex arbitrage basis is assumed to follow the Brownian Bridge process. The
model formulation of the option value functions leads to a coupled system
of variational inequalities. We determine the values of the arbitrage oppor-
tunities and the optimal threshold values of the arbitrage basis at which the
arbitrageur should optimally close an existing position or open a new index
arbitrage position. In particular, we examine the impact of transaction costs
on the index arbitrage strategies.
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INTRODUCTION

It is well known that the replicating portfolio for a forward contract involves
a buy-and-hold strategy. Assuming the dividend payouts from the stocks in
the portfolio to be deterministic, the forward contract can be fully replicated
by the underlying asset. Therefore, the fair value of a forward contract is
enforceable by no-arbitrage argument. An exchange-traded futures requires
daily settlement through a margin account. Provided that interest rates are
non-stochastic (a sufficient condition), the forward price and futures price
are equal. Theoretically, the linkage in prices between an index futures and
the underlying basket of stocks can be maintained by the actions of the
arbitrageurs. In the idealized scenario, these two instruments are perfect
substitute of each other. The investors’ choice on either one of them will be
dictated by transaction costs and convenience. However, various empirical
studies reveal that substantial and sustained deviations do exist between the
index futures prices and their theoretical values. These differences may arise
from order flow imbalance, different estimations of the dividend payouts,
transaction costs, and many other factors. The study on the dynamics of
stock indexes and the lead-lag relation between the cash market and stock
index futures have been well studied in the literature (Stoll and Whaley,
1990; Brennan and Schwartz, 1990; Chan, 1992; Monoyios and Sarno, 2002;
Fung and Yu, 2007).

Index arbitrage can be defined as a strategy designed to profit from tem-
porary discrepancies between the prices of the stocks comprising the index
and the futures price on that index. The conventional dynamic hedging
strategy of index futures may not be riskfree. For example, there exists
risk of uncertainty of dividends or arbitrageurs may be forced out of poten-
tially profitable position due to further widening of the arbitrage basis. Full
replication of the basket of stocks may be costly in implementation. The
presence of transaction costs may allow the futures prices to fluctuate in a
band around the theoretical values. On the other hand, an opposing factor
that helps narrowing the band is the arbitrageur’s option right to reverse the
position prior to expiration.

Let t denote the current time and T be the futures’ maturity date. We
let Dt denote the present value of the dividends paid by the basket of stocks
in the index within the life of the futures contract. In our present study, the
dividends are assumed to be deterministic. We also assume non-stochastic
interest rates so that the index futures and index forward have the same
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price. The time-t value of the T -maturity unit par discount bond is denoted
by Pt(T ). We use St to denote the time-t index value and write Ft(T ) as the
observed time-t price of the T -maturity futures. By assuming the absence
of market frictions and invoking the standard no-arbitrage argument, the
theoretical no-arbitrage futures price would be given by (St −Dt)/Pt(T ). As
discussed in the above, the observed time-t futures price Ft(T ) may not agree
with this theoretical futures price. We define Gt to be

Gt = Ft(T )Pt(T ) + Dt(T ). (1)

The difference between Gt and St represents the arbitrage profit that can be
exploited by arbitrageurs by taking offsetting positions in the index futures
and the basket of stocks comprising the index. Accordingly, we define the
index arbitrage basis ǫt by

ǫt = Gt − St. (2)

Here, we take a brief review of how to take static arbitrage in an index
forward contract if arbitrage basis exists (recall that the arbitrage procedure
has to be modified slightly for an index futures due to the dynamic margin
requirement). When the basis is positive (negative), the arbitrageur can lock
in the profit ǫt (−ǫt) by adopting the long (short) arbitrage, which means
taking a long (short) position in the underlying basket of stocks and a short
(long) position in the futures contract. Specifically, in the long arbitrage
strategy, the arbitrageur borrows Gt and uses the lesser amount St to acquire
the basket of stocks. The upfront positive cash flow to the arbitrageur is the
arbitrage basis ǫt (positive value). At the same time, the arbitrageur enters
into a short position in futures at no cost. The positions are then being held
until the maturity date of the futures and the basket of stocks are delivered
to the futures’ counterparty at maturity. As a result, the dividends received
during the life of the futures and the futures price received at maturity can
be used to pay back the loan. Theoretically, index arbitrage opportunities
should disappear rapidly once the opportunity can be accomplished without
market frictions and many arbitrageurs act on it. However, variability in the
index arbitrage basis persists in the financial markets. Noises in trading and
market frictions are widely accepted to be the contributing factors for the
existence of basis.

The typical market frictions include transaction costs, taxes, and position
limits. Usually, there exists a limit on the maximum position that can be
taken by an arbitrageur. Since stock index arbitrage involves transaction
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in both the cash stocks and futures markets, finite transaction costs incur
due to the presence of commissions and bid-ask spreads in the two markets.
Under position limits, the closing of an existing position prior to maturity
may provide the possibility of opening of an arbitrage position at a later time
on more favorable scenarios. These early unwinding opportunities may help
improve the exploitation of arbitrage profit. Our model is an extension of
the Brennan-Schwartz model (1990) with the additional flexibility that the
arbitrageur is allowed to switch from the long position to the short position
directly (or vice versa) without going to the zero position first then to the
opposite position at a later time. We observe that the structure of transaction
costs plays an important role in determining whether it may be optimal
to perform the above direct switching into the opposite position in single
transaction. We would like to find the value of the option of closing an
existing position or opening a new position when the arbitrageur is subject
to position limits and transaction costs.

The paper is organized as follows. In the next section, we present the
model setup of the option value of taking an index arbitrage. The option
value function of closing or opening position can be formulated as an op-
timal stopping problem. The underlying force that drives arbitrage is the
stochastic dynamics of the arbitrage basis. From empirical observations, ar-
bitrage basis tends to zero as maturity is approached and exhibits the mean
reversion property. Following Brennan and Schwartz (1990), the Brown-
ian Bridge process is chosen to model the basis dynamics. The Brownian
Bridge process has the desirable property that the arbitrage basis becomes
zero at maturity. We derive the coupled system of variational inequalities
that govern the option value functions. We then present sample calculations
of finding the option values and optimal arbitrage strategies under position
limits. We analyze the characteristics of the arbitrage strategies. In the last
section, we summarize the results and present conclusive remarks about the
index arbitrage strategies on stock index futures under position limits.

MODEL FORMULATION OF OPTION VALUES AS-
SOCIATED WITH ARBITRAGE STRATEGIES

Assuming deterministic dividends, non-stochastic interest rates and the ab-
sence of transaction costs, when under the scenario ǫt > 0, an arbitrageur
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can lock in the arbitrage profit ǫt by taking a long position in the underlying
portfolio, holding it with a short position in the futures contract and holding
the position until the maturity date of the futures contract. This is called
a simple long arbitrage. It is said to be simple since the position is held
until maturity. However, a long or short arbitrage position can be closed out
to zero position prior to maturity by taking an offsetting arbitrage position
or even converting from the long arbitrage position to the short arbitrage
position in a single transaction. Following Brennan and Schwartz (1990),
we investigate the value of the option right to close or initiate an arbitrage
position under position limits, where an arbitrageur is restricted to single
long or short arbitrage position or zero position at any time. With position
limit, suppose an arbitrageur is holding the long arbitrage position, closing
his current position yields an intermediate arbitrage profit. In addition, he is
given the right to initiate a new long or short arbitrage position in the future
when the arbitrage basis reaches some sufficiently deep threshold level.

In this section, we construct the model formulation of the option values
associated with arbitrage positions under transaction costs and position lim-
its. Let C1 and C2 denote the associated transaction costs to initiate and
close a position (long or short), respectively. Let C3 denote the transaction
costs to close a long (short) position and initiate the opposite short (long)
position in one single transaction. We expect

C3 = C1 + kC2,

where k ∈ (0, 1]. When k = 1, the transaction costs are considered to
be proportional. If both fixed and proportional costs are involved in the
transactions, then k < 1.

We use U(ǫ, t) and V (ǫ, t) to denote the time-t option value to close a short
arbitrage position and long arbitrage position, respectively, and let W (ǫ, t)
denote the time-t value of the option right to initiate an arbitrage position
(either long or short position). These options resemble an American option
with maturity T coinciding with that of the futures contract. Assuming risk
neutrality of the arbitrageur, and supposing the holder is given the exercise
right at any time and option’s exercise payoff equals f(ǫ, t), the value of the
American style option P (ǫ, t) is given by

P (ǫ, t) = max
t≤t∗≤T

E[e−r(t∗−t)f(ǫt∗ , t
∗)|ǫt = ǫ], (3)

where t∗ ∈ [t, T ] is the optimal stopping time, r is the riskless interest rate,
and E is the expectation under the physical measure.
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To close a short arbitrage position, we can either take one offsetting long
arbitrage position or two long arbitrage positions, the immediate realized
arbitrage profit is ǫ or 2ǫ, while the transaction costs are C2 or C3, respec-
tively. The latter case corresponds to the direct conversion from the short
position to the long position in one single transaction. Also, it opens the
right to initiate a new arbitrage position or close a long arbitrage position
in the future. Accordingly, the corresponding exercise payoff associated with
the option value U(ǫ, t) is given by taking the maximum value among the
above two payoffs

max{(W (ǫ, t) + ǫ − C2)
+, (V (ǫ, t) + 2ǫ − C3)

+},

where the notation x+ denotes max(x, 0). In a similar manner, the exercise
payoff associated with V (ǫ, t) is

max{(W (ǫ, t) − ǫ − C2)
+, (U(ǫ, t) − 2ǫ − C3)

+}.

With no position at the current time, the arbitrageur can initiate a long or
short arbitrage position with transaction cost C1. The respective realized
arbitrage profit is ǫ or −ǫ together with the option right to close the position
in the future. The exercise payoff associated with W (ǫ, t) is seen to be

max{(V (ǫ, t) + ǫ − C1)
+, (U(ǫ, t) − ǫ − C1)

+}.

Dynamics of the arbitrage basis

To evaluate the option value functions U, V and W , it is necessary to prescribe
the stochastic dynamics of the arbitrage basis ǫt. Following Brennan and
Schwartz (1990), the evolution of ǫt under the physical measure is governed
by the Brownian Bridge process as follows:

dǫt = −
µǫt

T − t
dt + γ dWt, (4)

where µ is the speed of mean reversion, γ is the instantaneous standard
deviation of the process, and Wt is the standard Brownian process. Here,
we take µ and γ to be positive constants. The assumption of constancy of
the mean reversion speed parameter µ is not without criticism. For example,
one may expect µ to be dependent on the order imbalance between buying
and selling orders in the cash stock market, which is commonly considered
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as the proxy of the market consensus of the future directional move of the
stock index (Fung and Yu, 2008).

The Brownian Bridge process has the desirable property that it is tied
down to zero at maturity almost surely. As t → T−, the speed of mean
reversion to zero value is very large, so ǫt goes quickly towards its mean level
(which is zero).

Variational inequalities formulation

Since index arbitrage is considered in our model, the commonly adopted
no-arbitrage argument cannot be applied to derive the pricing formulation
of these embedded options. We follow the same pricing approach adopted
in the Brennan-Schwartz model (1990), where the values of the options are
determined by discounting their expected payoffs at the riskless interest rate
r. It can be argued that this assumption is consistent with risk neutrality of
the arbitrageur. An alternative justification to the pricing approach is that
we may assume a representative individual model in which innovations in
arbitrage basis ǫt are uncorrelated with those in aggregate consumption in
the financial market. Given the dynamics of ǫt, both U, V and W satisfy the
same governing differential equation in their respective continuation regions
and their values equal to the corresponding exercise payoff in their respective
exercise regions. Similar to an American option model, the option value
function is governed by a set of variational inequalities (Kwok, 2008). Since
the exercise payoff of U involves V and W , and similar dependence on other
value functions is exhibited in V and W also, the corresponding variational
inequalities formulation forms a coupled system between these three option
value functions.

Let τ = T − t denote the time to maturity. The evaluation of the option
value functions U, V and W requires the solution of the following coupled
system of variational inequalities:

min

{

∂U

∂τ
−

γ2

2

∂2U

∂ǫ2
+

µǫ

τ

∂U

∂ǫ
+ rU,

U − max
[

(W (ǫ, t) + ǫ − C2)
+, (V (ǫ, t) + 2ǫ − C3)

+
]

}

= 0

min

{

∂V

∂τ
−

γ2

2

∂2V

∂ǫ2
+

µǫ

τ

∂V

∂ǫ
+ rV,

V − max
[

(W (ǫ, t) − ǫ − C2)
+, (U(ǫ, t) − 2ǫ − C3)

+
]

}

= 0

7



min

{

∂W

∂τ
−

γ2

2

∂2W

∂ǫ2
+

µǫ

τ

∂W

∂ǫ
+ rW,

W − max
[

(V (ǫ, t) + ǫ − C1)
+, (U(ǫ, t) − ǫ − C1)

+
]

}

= 0. (5)

It is relatively straightforward to check that

U(ǫ, t) = V (−ǫ, t) and W (ǫ, t) = W (−ǫ, t). (6)

To avoid the singularity at τ → 0+ in the first order derivative term in
the governing differential equation, we adopt the following transformation of
independent variables:

x = τ−µǫ and s =
1

1 − 2µ
τ 1−2µ,

assuming µ < 1
2
. The governing differential equation can be simplified to

become
∂U

∂s
−

γ2

2

∂2U

∂x2
+ r[(1 − 2µ)s]

2µ

1−2µ U = 0.

Remark

In the Brennan-Schwartz model (1990), the arbitrageur is not allowed to
switch from the long position directly into the short position or vice versa in a
single transaction. Under their framework, the above variational inequalities
formulation reduces to

min

{

∂U

∂τ
−

γ2

2

∂2U

∂ǫ2
+

µǫ

τ

∂U

∂ǫ
+ rU, U − (W (ǫ, t) + ǫ − C2)

+

}

= 0

min

{

∂V

∂τ
−

γ2

2

∂2V

∂ǫ2
+

µǫ

τ

∂V

∂ǫ
+ rV, V − (W (ǫ, t) − ǫ − C2)

+

}

= 0

min

{

∂W

∂τ
−

γ2

2

∂2W

∂ǫ2
+

µǫ

τ

∂W

∂ǫ
+ rW,

W − max[(V (ǫ, t) + ǫ − C1)
+, (U(ǫ, t) − ǫ − C1)

+]

}

= 0. (7)

The numerical solution of the coupled system of variational inequalities
(5) can be effectively obtained using finite difference calculations combined
with the use of the Projected-Successive-Over-Relaxation (PSOR) method
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(Kwok, 2008). We adopt an implicit discretization of the coupled differential
equations in the finite difference scheme. The solution of the resulting alge-
braic system of equations for the option values is then solved by the Gauss-
Seidel iterative scheme. In each of the Gauss-Seidel iterative step in finding
the numerical approximation of the option values in the next iteration, we
apply the dynamic programming procedure of taking the maximum value
among the exercise payoff and the continuation value. The exercise payoff
values can be conveniently computed based on the option values obtained in
the previous iteration.

SAMPLE CALCULATIONS ON OPTIMAL ARBITRAGE
STRATEGIES

We performed the sample calculations to find the option value functions U, V
and W . The optimal threshold values for the arbitrage basis at which the
arbitrageur should optimally choose to change from one state of position
to another state are also obtained as part of the solution of the optimal
stopping model. We let ǫ∗W (t) and ǫ∗V (t) denote the exercise boundaries for the
option price functions W and V , respectively. In our numerical calculations,
we choose the parameter values: γ = 0.6, µ = 0.3, r = 0.07, T = 1, C1 =
1.2, C2 = 0.5 and C3 = 1.5. In Figure 1, we show the plot of the value
functions U(ǫ, t), V (ǫ, t) and W (ǫ, t) at t = 0 as a function of ǫ. The plots
verify the symmetric properties of the value functions as stated in eq. (6).
Obviously, U(ǫ, t) assumes a small value where ǫ is negative since it is much
unlikely to close the short arbitrage position by taking the long arbitrage
position when the arbitrage basis is negative. Also, W should have a very
small value when |ǫ| is less than the transaction cost to initiate an arbitrage
position.

The optimal arbitrage strategies can be revealed by finding the critical
threshold values ǫ∗W (t) and ǫ∗V (t) for the arbitrage basis so that one can
identify the continuation region and stopping region of W and V . In Figure 2,
we show the plot of ǫ∗W (t) and ǫ∗V (t) against t [by symmetry, ǫ∗U(t) = −ǫ∗V (t)].
The upper and lower solid curves show the two branches of ǫ∗W (t). When ǫt

lies above the upper branch of ǫ∗W (t), the arbitrageur who is holding the zero
position should initiate a long arbitrage position (as signified by W → V
in Figure 2). By symmetry, when ǫt lies below the lower branch of ǫ∗W (t),
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the arbitrageur should optimally swap from the zero position to the short
arbitrage position (W → U). As t → T−, |ǫ∗W (T−)| tends to the value that
equals the transaction cost C1 required for initiating an arbitrage position.
The upper (lower) branch of ǫ∗W (t) decreases (increases) with an increasing
value of t since a higher absolute value of the arbitrage basis is required to
initiate an arbitrage position with a higher value of time to maturity τ . As
ǫt is tied down to the zero value as t → T−, it is likely that there will be no
change in the position as time is approaching maturity.

When the arbitrageur is currently holding a long arbitrage position, he
can either close the long arbitrage position to the zero position (V → W )
or convert directly to the short arbitrage position (V → U). The latter case
occurs when the arbitrage basis is sufficiently deep in negative value [see
the lower dotted curve ǫ∗V (t) in Figure 2]. In our sample calculations, we
have chosen C3 < C1 + C2. With a lower value of single trip transaction
cost C3 as compared to the sum of two transaction costs C1 + C2, the
arbitrageur has a higher incentive to choose the direct conversion to the
opposite arbitrage position (V → U) instead of taking V → W first and
W → U subsequently. When the time to maturity becomes shorter, it is now
optimal for the arbitrageur to close the long position to the zero position
(that is, V → W ) at some threshold value of the arbitrage basis which is less
deep (in negative value) when compared with that required for the direct
conversion V → U . The stopping region of V within which it is optimal
to take the action V → W is the region bounded by the two dotted curves
shown in Figure 2.

What would happen when C3 = C1 + C2, that is, there is no savings on
the transaction costs in taking a single transaction into the opposite position
directly instead of taking the sequential two-step transactions. We performed
similar calculations with the same set of parameter values as those used for
plotting Figure 2, except that C3 = C1 + C2 = 1.7. The new set of optimal
exercise boundaries ǫ∗V (t) and ǫ∗W (t) are plotted against time t in Figure 3.
We observe that the exercise region corresponding to V → U does not appear
and the exercise boundary for V → W becomes one single curve (shown as
the dotted curve in Figure 3). Suppose C3 = C1 + C2, when the arbitrageur
is currently in the long position, he chooses to convert optimally from the
long position into the zero position when ǫ falls in negative value to the
exercise boundary ǫ∗V (t) (dotted curve) and from the zero position into the
short position at a later time instant when ǫ falls further in negative value
to the exercise boundary ǫ∗W (t) (lower solid curve). These new results under
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C3 = C1 + C2 reveal that our optimal stopping model as governed by the
set of variational inequalities in (5) reduces to the Brennan-Schwartz model
shown in (7). To establish the above statement mathematically, let U, V and
W be the solution to the system in (7). It suffices to show that

U(ǫ, t) ≥ (V (ǫ, t) + 2ǫ − C3)
+ (8a)

and
V (ǫ, t) ≥ (U(ǫ, t) − 2ǫ − C3)

+. (8b)

To show inequality (8a), we consider

U(ǫ, t) ≥ W (ǫ, t) + ǫ − C2

≥ V (ǫ, t) + ǫ − C1 + ǫ − C2

= V (ǫ, t) + 2ǫ − (C1 + C2)

= V (ǫ, t) + 2ǫ − C3.

Inequality (8b) can be established in a similar manner. Therefore, the option
value functions U, V and W also satisfy the system in (5). By virtue of
uniqueness of solution, the two systems of variational inequalities shown in
(5) and (7) are equivalent.

Our model formulation can be extended from one position limit to multi-
ple position limits, say, the number of positions i can be n, n−1, · · · , 1, 0,−1,
· · · ,−n, where n > 1. The general model formulation should allow the arbi-
trageur to change his position from i to j, where i and j can be any integer
between −n and n. The amount of computational effort only grows linearly
with the number of positions. In summary, the Brennan-Schwartz formula-
tion allows the following transactions in the position limit: −1 → 0, 0 →
1, 1 → 0, 0 → −1 while our model in (5) allows the additional flexibility of
taking −1 → 1 and 1 → −1, provided that there exist savings in the trans-
action costs in taking direct conversion from the long to short or the short
to long.

CONCLUSION

We construct an optimal stopping model that analyzes the optimal index ar-
bitrage strategies in stock index futures with position limits and transaction
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costs. Instead of adopting the simple arbitrage strategy where the arbitrage
position is held until the maturity date of the futures contract, we examine
the option value associated with the long or short arbitrage position which
can be closed out or converted into the opposite position prior to maturity.
By solving a coupled system of variational inequalities that govern these op-
tion value functions, we obtain the optimal arbitrage basis threshold level at
which it is optimal for the arbitrageur to change from one arbitrage position
to another position. Depending on the arbitrage basis level, time to maturity
and transaction costs structure, the arbitrageur may choose to close the long
position to the zero position or convert from the long into short position
in a single transaction. This index arbitrage model provides an interesting
example of analyzing the associated optimal stopping policies that allow an
interchange between the multiple states in the system.
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Figure 1 Option value functions U, V and W are plotted against arbitrage
basis ǫ at t = 0. We observe that W is an even function in ǫ, and the pair
of the value functions U and V are symmetric about the vertical line ǫ = 0.
When the absolute value of arbitrage basis is smaller than the transaction
cost of opening a new position, the option value W has an insignificantly
small value.
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Figure 2 The optimal exercise boundaries ǫ∗V (t) and ǫ∗W (t) of V and W are
plotted against time t, assuming C3 < C1 + C2. There are two branches of
ǫ∗W (t) (shown by the two solid curves) which end at ǫ∗W (1) = ±1.2. When the
arbitrage basis ǫ stays above (below) the upper (lower) branch, it is optimal to
open the long (short) arbitrage position corresponding to W → V (W → U).
When the arbitrageur is currently in the long position, it may be optimal to
close the long position (V → W ) when ǫ falls within the region bounded by
the two dashed curves or convert from the long to short position (V → U)
when ǫ falls below the dotted curve.
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Figure 3 The optimal exercise boundaries ǫ∗V (t) (shown as the dotted curve)
and ǫ∗W (t) (shown as the solid curves) of V and W are plotted against t,
assuming C3 = C1 + C3. The exercise region corresponding to V → U does
not appear since there are no savings in transaction costs associated with the
direct conversion from the long position into the short position in a single
transaction. The conversion from V → U has to be accomplished in two
sequential steps: V → W then W → U in response to falling value in the
arbitrage basis ǫ.
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