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ABSTRACT

We consider the saddlepoint approximation methods for pricing derivatives whose payoffs de-

pend on the discrete realized variance of the underlying price process of a risky asset. Most

of the earlier pricing models of variance products and volatility derivatives use the quadratic

variation approximation as the continuous limit of the discrete realized variance. However, the

corresponding discretization gap may become significant for short-maturity derivatives. Under

Lévy models and stochastic volatility models with jumps, we manage to obtain the saddle-

point approximation formulas for pricing variance products and volatility derivatives using the

small time asymptotic approximation of the Laplace transform of the discrete realized vari-

ance. As an alternative approach, we also develop the conditional saddlepoint approximation

method based on a given simulated stochastic variance path via Monte Carlo simulation. This

analytic-simulation approach reduces the dimensionality of the simulation of the discrete vari-

ance derivatives; and in some cases, the simulation procedure of the realized variance can be

effectively performed using an appropriate exact simulation method. We examine numerical

accuracy and reliability of various types of the saddlepoint approximation techniques when

applied to pricing derivatives on discrete realized variance under different types of asset price

processes. The limitations of the saddlepoint approximation methods in pricing variance prod-

ucts and volatility derivatives are also discussed.

1 Introduction

Given N monitoring dates 0 = t0 < t1 < · · · < tN = T , the discrete realized variance I(0, T ;N)

of the underlying asset price process St over the time period [0, T ] is defined to be

I(0, T ;N) =
A

N

N∑
k=1

(
ln

Stk
Stk−1

)2

=
A

N

N∑
k=1

(
Xtk −Xtk−1

)2
, (1.1)

where Xt = lnSt is the log asset price process and A is the annualized factor. It is common

to take A = 252 for daily monitoring; and there holds A/N = 1/T . There are various types of

derivatives on discrete realized variance that have been structured and traded in the financial

market. The most basic products include the variance swaps, volatility swaps, and options on

realized variance or volatility. The third generation variance swap products include the gamma

swaps, skewness swaps and conditional variance swaps. Recently, financial institutions offer

more exotic forms of volatility exposure, like the timer options (Bernard and Cui, 2011) and

volatility target options.

In most of the earlier pricing models of variance products and volatility derivatives, the
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discrete realized variance defined in Eq. (1.1) is often approximated by the quadratic varia-

tion of the log asset price process Xt over [0, T ]. The quadratic variation, commonly denoted

by [X,X]T , can be considered to be the asymptotic limit of the discrete realized variance in

probability as N → ∞. In the sequel, we let I(0, T ;∞) = 1
T

[X,X]T . Suppose one fixes the

monitoring frequency of the discrete realized variance to be daily, which means that A is fixed

to be 252. As T and N change in relative proportion, we then expect that the quadratic vari-

ation approximation for I(0, T ;N) is good enough for derivatives on discrete realized variance

with long maturity. The quadratic variation approximation has been widely adopted in pricing

variance products and volatility derivatives in the literature due to its nice analytic tractabil-

ity (Carr et al., 2005). For vanilla variance swaps, the quadratic variation approximation is

known to work well even for short-maturity derivatives (Sepp, 2008). However, accuracy of the

quadratic variation approximation deteriorates for short-maturity derivatives with non-linear

payoffs, like options on the realized variance (Bühler, 2006).

Apart from the quadratic variation approximation to the discrete realized variance, Zhu and

Lian (2011) manage to obtain closed form pricing formulas for variance swaps. Indeed, analytic

tractability can go beyond the vanilla variance swaps to variance swaps with more exotic form

of payoff structures. Crosby and Davis (2010) derive analytic pricing formulas for discretely

sampled gamma swaps and skewness swaps under time-changed Lévy processes. Their pricing

formulas can be decomposed into a term representing the price of the continuously sampled

counterpart plus a correction term that can be shown to be O(N−1), where N is the number of

monitoring instants. Zheng and Kwok (2013) obtain pricing formulas for the corridor variance

swaps and conditional variance swaps under the stochastic volatility model with simultaneous

jumps. Unfortunately, for options on discrete realized variance, analytic pricing formulas can-

not be obtained. As a result, one has to develop various analytic approximation techniques.

Sepp (2012) shows that the discrete realized variance under the Heston model can be approx-

imated in distribution by the continuous realized variance plus a correction term which stems

from an independent log-normal model. However, Drimus and Farkas (2012) argue that Sepp’s

approach only works well for near-the-money options since the discretization effect is indeed

dependent on the continuous variance under stochastic volatility models. Instead, they prove

that conditional on the stochastic variance process, the discrete realized variance is asymp-

totically normal as the number of monitoring instants goes to infinity. By using the limiting

distribution, they are able to derive several pricing formulas of variance options based on a

simulated path of the stochastic variance process as well as a set of non-simulation analytic

pricing formulas with the use of further asymptotic approximations of the conditional mean

and variance. As expected, their approach works well for options with long maturity, under

which a sufficiently large value of N in Eq. (1.1) is ensured. For short-maturity options on dis-

crete realized variance, corresponding to a relatively small value of N , the approximation based

on the central limit theorem would not perform so well and neither would the performance
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of their approximation method. Under the Lévy and more general semimartingale dynamics,

Keller-Ressel and Muhle-Karbe (2010) investigate the asymptotic discretization gap between

the value of an option on discrete realized variance and that on continuous realized variance.

In particular, they manage to find the asymptotic distribution of the discretization gap as

T → 0+ for any payoff that satisfies certain continuity and uniform-boundedness conditions.

For general pricing purpose, it may be preferable to have direct approximation formulas

for pricing derivatives on discrete realized variance rather than deriving the corresponding

continuous counterpart plus a correction term. The derivation of the value of the continu-

ously sampled counterpart may not be an easy task under the general Lévy dynamics. This

procedure alone often requires the Fourier inversion calculations, which can be accomplished

only if the moment generating function is available in closed form. One feasible approach is to

derive the analytic approximation of the Laplace/Fourier transform of the price functions of

volatility derivatives with general payoff structures. The analytic approximation of the relevant

Laplace/Fourier integral can be effectively achieved via the saddlepoint approximation method

by estimating the principal contribution of the integrand in the transform integral under an

appropriately chosen contour of integration in the complex domain.

In this paper, we derive various saddlepoint approximation formulas for pricing options

and volatility swaps on discrete realized variance under Lévy models and stochastic volatility

models. We manage to derive the small time asymptotic approximation of the Laplace trans-

form of discrete realized variance and obtain the saddlepoint approximation pricing formulas

for options on discrete realized variance. Also, thanks to the conditional independency of the

log asset price returns given a realization of the stochastic variance path, we develop the con-

ditional saddlepoint approximation method for pricing options on discrete realized variance

and volatility swaps. Using this analytic-simulation approach, the dimensionality of the sim-

ulation procedure of the asset price process is reduced. For some choices of the underlying

variance processes, the simulation procedure of the discrete realized variance can be effectively

performed using an appropriate exact simulation method.

This paper is organized as follows. In the next section, we discuss the appropriate choic-

es of various saddlepoint approximations that can be adopted for pricing options on discrete

realized variance and volatility swaps, assuming that the corresponding cumulant generating

function (CGF) of the discrete realized variance I(0, T ;N) is available. Special precaution is

taken to ensure that the algebraic root of the saddlepoint equation lies inside the domain of

definition of the CGF. In Section 3, we show the detailed mathematical procedure of pricing

options on discrete realized variance using the saddlepoint approximation method under Lévy

models and stochastic volatility models with simultaneous jumps. In Section 4, we develop

the conditional saddlepoint approximation method, so named since this is accomplished by

simulating a random path of the stochastic variance process and followed by applying the ap-
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propriate saddlepoint approximation to derive the semi-analytic approximate pricing formulas.

Numerical tests on the performance and reliability of the saddlepoint approximation formulas

for pricing options on discrete realized variance and volatility swaps are reported in Section 5.

Conclusive remarks are presented in the last section.

2 Saddlepoint approximation methods

The saddlepoint approximation method was first introduced by Daniels (1954) as an analytic

method for approximating the density of the sample mean of a set of independent and identi-

cally distributed random variables whose CGF is known. The derivation and implementation

of the saddlepoint approximation rely on a set of statistical techniques and mathematical

tools, like exponential tilting, Edgeworth expansion, steepest descent, etc. The literature on

the saddlepoint approximation method in statistics is quite voluminous (Lieberman, 1994;

Strawderman, 2000; Studer, 2001). Good comprehensive treatise of the saddlepoint approxi-

mation methods can be found in Jensen (1995) and Butler (2004). Lugannani and Rice (1980)

propose an effective saddlepoint approximation formula for the calculations of the tail proba-

bilities. Wood et al. (1993) argue that the normal base distribution may fail to perform well

in some cases. They propose an extension of the Lugannani-Rice formula that is applicable to

an arbitrary base distribution. More recently, Aı̈t-Sahalia and Yu (2006) and Glasserman and

Kim (2009) use the saddlepoint approximation methods to derive analytic approximations to

the transition densities and cumulative distribution functions of Markov processes and affine

jump-diffusion processes.

The literature on the use of saddlepoint approximation methods in option pricing is rela-

tively thin. Rogers and Zane (1998) apply the saddlepoint approximation to price European

options under Lévy dynamics using the Lugannani-Rice formula. Xiong et al. (2005) extend

Rogers-Zane’s approach to price options under stochastic volatility and stochastic interest

rates. Carr and Madan (2009) manage to represent the call option price as a single tail prob-

ability, which is interpreted as the probability of staying above the log strike price for the log

asset price minus an independent exponential random variable. Based on a similar technique

proposed by Wood et al. (1993), they derive the corresponding Lugannani-Rice saddlepoint

approximation with a non-Gaussian base distribution. Besides pricing European vanilla op-

tions, several papers also adopt the saddlepoint approximation methods to price collateralized

debt obligations (CDOs) (Antonov et al., 2005; Yang et al., 2006; Huang et al., 2011) and

analyze portfolio credit loss distributions (Martin, 2006; Huang et al., 2007).

In the derivation procedure of the saddlepoint approximation of the transition density

function and tail probabilities of a random variable, we commonly assume the existence of an

analytic form of the CGF so that analytic expressions for the derivatives of the CGF of various
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orders can be obtained. Also, it is commonly assumed that the CGF κ(z) is finite in some open

strip {z : α− < Re(z) < α+} in the complex plane that contains the imaginary axis, where

α− < 0 and α+ > 0; and both α− and α+ can be infinite. In this paper, we also develop an

alternative viable approach so that the saddlepoint approximation can be derived even when

κ(z) is defined only in the left half complex plane not including the imaginary axis. When

the analytic expression of the CGF is not available, Aı̈t-Sahalia and Yu (2006) demonstrate

that useful analytic approximations can be obtained by replacing the characteristic function

by an analytic expansion formula in small time. Alternatively, one may follow the numerical

procedure developed by Glasserman and Kim (2009) to obtain the numerical approximation

of the characteristic function.

First, we state several Lugannani-Rice type saddlepoint approximation formulas under the

usual assumption that the domain of definition of κ(z) contains the imaginary axis in the

complex plane. We then illustrate an alternative version of the steepest descent approach

when the algebraic root of the saddlepoint equation lies outside the domain of definition of

κ(z).

2.1 Exponentially tilted distribution

Let κ(θ) and κ0(θ) denote the CGF of the random discrete realized variance I and I − K,

respectively, where K is a fixed constant (related to the fixed strike in the call payoff). The

two CGFs are related by

κ0(θ) = κ(θ)−Kθ.

We write X = I − K and F0(x) as the distribution function of X. Let Fθ(x) denote the

distribution function of the exponentially θ-tilted distribution of X, where

dFθ(x) = eθx−κ0(θ)dF0(x). (2.1)

The CGF of the θ-tilted distribution is related to the original one by

κθ(t) = κ0(t+ θ)− κ0(θ).

We would like to derive the saddlepoint approximation to the tail expectation E[X+] =

E[X1{X>0}]. Note that
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E[X1{X>0}] = E

[
∂

∂θ
eθX1{X>0}

∣∣∣
θ=0

]
=

∂

∂θ

[
eκ0(θ)

∫ ∞
0

eθx−κ0(θ)dF0(x)

] ∣∣∣
θ=0

= κ′0(0)[1− F0(0)]− ∂Fθ(0)

∂θ

∣∣∣
θ=0

. (2.2)

Let F̂θ(x) denote the Lugannani-Rice approximation to Fθ(x), which is defined to be

Fθ(x) ≈ F̂θ(x) = N(wθ) + n(wθ)

(
1

wθ
− 1

uθ

)
, (2.3a)

where N(·) and n(·) denote the standard normal distribution function and density function,

respectively, and

wθ = sgn(t̂x − θ){2[(t̂x − θ)x− κ0(t̂x) + κ0(θ)]}1/2,

uθ = (t̂x − θ)
√
κ

(2)
0 (t̂x).

We use κ
(n)
0 (t) to denote the nth order derivative of κ0(t). Here, t̂x denotes the unique solution

(with dependence on x) to the saddlepoint equation:

κ′0(t) = x.

By differentiating Eq. (2.3a) with respect to θ, we obtain

∂F̂θ(x)

∂θ
= n(wθ)

[x− κ′0(θ)]

(
1

w3
θ

− 1

uθ

)
− 1

(t̂x − θ)2

√
κ

(2)
0 (t̂x)

 . (2.3b)

To obtain the analytic expressions for F̂0(0) and ∂F̂θ(0)
∂θ

∣∣∣
θ=0

that approximate the two terms

F0(0) and ∂Fθ(0)
∂θ

∣∣∣
θ=0

in Eq. (2.2), we set θ = 0 and x = 0 in Eqs. (2.3a, 2.3b). Putting these

results together, we obtain the saddlepoint approximation to the tail expectation E[X+]. In a

similar manner, the saddlepoint approximation to the tail expectation at the tail of the other

side is given by

E[(−X)+] ≈ −κ′0(0)F̂0(0)− ∂F̂θ(0)

∂θ

∣∣∣
θ=0

. (2.4)

As a remark, in the context of option pricing, E[ · ] denotes the expectation taken under a risk

neutral pricing measure Q.
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2.2 Approximation to the Fourier inversion integrals

Other types of saddlepoint approximation methods may be derived from the Fourier inversion

representation of the tail expectation. The steepest descent method can then be subsequently

used to find an approximate value of the principal contribution to the Fourier integral. Again,

various approximation approaches may be adopted. Taking the call option on discrete realized

variance as an example, the corresponding tail expectation can be expressed as

E[X1{X>0}] =
1

2πi

∫ τ+i∞

τ−i∞

eκ0(t)

t2
dt, τ ∈ (0, α+), for some α+ > 0. (2.5)

The most popular approach is to expand κ0(t) at its saddlepoint t̂ that uniquely solves the

saddlepoint equation: κ′0(t) = 0. For example, Antonov et al. (2005) derive the following

saddlepoint approximation formula for the tail expectation:

E[X+] ≈ 1

2πi

∫ t̂+i∞

t̂−i∞

eκ0(t̂)+ 1
2
κ

(2)
0 (t̂)(t−t̂)2

t2

[
1 +

1

6
κ

(3)
0 (t̂)(t− t̂)3 + · · ·

]
dt. (2.6a)

In a similar manner, Martin (2006) approximates the local quadratic behavior of the exponent

term around the saddlepoint t̂ and derives the corresponding Lugannani-Rice type formula as

follows:

E[X+] =

µXP (X > 0)− µX
t̂
fX(0) t̂ 6= 0

κ
(2)
0 (t̂)fX(0) t̂ = 0

, (2.6b)

where µX is the mean of X and fX(t) is the density function of X.

The above methods of expanding κ0(t) around t̂ have been widely adopted in the literature.

However, it may occur that the solution t̂ to the saddlepoint equation: κ′0(t) = 0 lies outside

the range in which κ0(t) is defined. In this case, the above mathematical procedure fails.

For instance, suppose κ(t) is defined only for non-positive values of t, the aforementioned

problem arises when we attempt to solve the saddlepoint equation: κ′0(t) = κ′(t)−K = 0 for

K > κ′(0). Fortunately, the difficulty can be resolved by using another version of the steepest

descent method presented below.

Following Yang et al. (2006), we write the integrand as eκ0(t)−2 ln t. The corresponding

saddlepoint equation is modified to the form: κ′0(t)−2/t = 0. Provided that κ(t) is well defined,

the saddlepoint equation now has two roots, one positive and the other negative. Recall that

the contour in Eq. (2.5) is taken to be along a vertical line parallel to the imaginary axis,

one has to choose the positive root if we prefer to follow the usual saddlepoint approximation

procedure. Suppose one is forced to choose the negative root that lies inside the domain of

definition of κ(t), we may transfer the vertical contour to the negative half plane and apply the

usual procedure of performing expansion of the exponent around the saddlepoint to obtain the
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approximation value. As part of the procedure, it is necessary to take care of the contribution

from the residue of the integrand at the origin. As an illustration, we consider the saddlepoint

approximation to the following tail expectations:

Ξ1 = E[X1{X>0}] =
1

2πi

∫ τ1+i∞

τ1−i∞

eκ0(t)

t2
dt, τ1 ∈ (0, α+) where α+ > 0; (2.7a)

Ξ2 = −E[X1{X<0}] =
1

2πi

∫ τ2+i∞

τ2−i∞

eκ0(t)

t2
dt, τ2 ∈ (α−, 0) where α− < 0. (2.7b)

Following the approach in Yang et al. (2006), the saddlepoint approximation to Ξj is given by

Ξj ≈ Ξ̂j =
eκ0(t̂j)/t̂2j√

2π
[

2
t̂2j

+ κ
(2)
0 (t̂j)

] , j = 1, 2, (2.8a)

where t̂1 > 0 (t̂2 < 0) is the positive (negative) root within (α−, α+) of the saddlepoint equation:

κ′0(t)− 2/t = 0.

The second order saddlepoint approximation to Ξj is given by

Ξ̃j = Ξ̂j(1 +Rj), j = 1, 2, (2.8b)

where the adjustment term Rj is given by

Rj =
1

8

κ
(4)
0 (t̂j) + 12t̂−4

j

[κ
(2)
0 (t̂j) + 2t̂−2

j ]2
− 5

24

[κ
(3)
0 (t̂j)− 4t̂−3

j ]2

[κ
(2)
0 (t̂j) + 2t̂−2

j ]3
, j = 1, 2.

Note that Ξ1 − Ξ2 = µX , a result that is consistent with the put-call parity in option pricing

theory. Suppose both roots t̂1 and t̂2 exist, we can use either the saddlepoint approximation

Ξ̂1 (Ξ̃1) or µX + Ξ̂2 (µX + Ξ̃2) to approximate the value of the call option. To achieve better

performance, the rule of thumb is to use the former if µX < 0 [equivalently, K > κ′(0)]

or the latter if µX > 0. Apparently, some extra efforts may be required to determine which

saddlepoint to be adopted. As a remark, suppose we only have the CGF defined on the negative

part of the real axis, a vertical contour in the left half complex plane should be adopted for

deriving the saddlepoint approximation.

In a similar manner, Yang et al.’s approach can also be adopted in the valuation of volatility

swaps, thanks to the identity:

E[
√
I] =

1

4
√
πi

∫ τ+i∞

τ−i∞

eκ(t)

t3/2
dt, 0 < τ < α. (2.9)
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Provided that a positive root t̂ > 0 exists which solves the saddlepoint equation:

κ′(t)− 3

2t
= 0,

the corresponding saddlepoint approximation is given by

E[
√
I] ≈

√
2

4

eκ(t̂)/t̂3/2√
κ(2)(t̂) + 3

2
t̂2
. (2.10a)

One can also derive the second order approximation formula:

E[
√
I] ≈

√
2

4

eκ(t̂)/t̂3/2√
κ(2)(t̂) + 3

2
t̂2

(1 +R), (2.10b)

where the adjustment term R is given by

R =
1

8

κ(4)(t̂) + 9t̂−4

[κ(2)(t̂) + 3t̂−2/2]2
− 5

24

[κ(3)(t̂)− 3t̂−3]2

[κ(2)(t̂) + 3t̂−2/2]3
.

Hereafter, we categorize the saddlepoint approximation methods discussed above into two

types based on the form of the corresponding saddlepoint equation. In this paper, the class of

methods associated with the saddlepoint equation, κ′0(t) = 0, are called the classical saddlepoint

approximation (CSPA) methods, while the class of methods whose saddlepoint equation has an

additional right-hand term, like 2
t

or 3
2t

, are called the alternative saddlepoint approximation

(ASPA) methods.

2.3 Further extension of the approximation formulas

There are other alternative approaches of deriving the saddlepoint approximation to the tail

expectations and E[
√
I] that are beyond the methods discussed above. For example, the orig-

inal Lugannani-Rice formula uses the normal distribution as the base distribution. However,

the normal distribution is not always a good choice. In particular, accuracy of approximation

would deteriorate significantly when we consider pure jump processes with no diffusion in the

underlying asset price. One may consider the extension of the Lugannani-Rice formula using

an appropriate base distribution that resembles closer to the underlying asset price process.

Besides, computational efficiency of the saddlepoint approximation method is largely depen-

dent on the root-finding procedure in solving the saddlepoint equation. When the numerical

solution to the saddlepoint equation is time consuming, computational efficiency of the saddle-

point approximation method would be degraded. Lieberman (1994) and Glasserman and Kim
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(2009) provide various analytical approximate expressions for the solution to the saddlepoint

equation of the form: κ′(t)−K = 0. The availability of an improved analytical approximation

formula for the solution to the saddlepoint equation would add versatility to the saddlepoint

approximation method.

3 Small time asymptotic approximation of moment gen-

erating functions

The effective implementation of the saddlepoint approximation methods relies crucially on

the availability of the analytic form of the moment generating function. For most asset price

models, it is in general difficult to derive closed form expression for the moment generating

function or the Laplace transform of the discrete realized variance. In this section, we first

present a brief review of the small time asymptotic approximation (STAA) method due to

Keller-Ressel and Muhle-Karbe (2010). We then explain how it can be applied to derive

accurate approximate moment generating functions (defined in the left half of the complex

plane) for discrete realized variance under the exponential Lévy models and stochastic volatility

models with jumps.

Suppose the log asset price is governed by the following semimartingale process:

dXt = bt dt+ σt dWt +

∫
kt(x)(N(dt, dx)− F (dx)dt), X0 = 0, (3.1)

whereWt is a standard Brownian motion, N(dt, dx) is a Poisson random measure with absolute-

ly continuous compensator F (dx)dt. Also, the parameter functions b, σ and k are predictable

integrands that satisfy the following constraint:∫ T

0

E

[
b2
t + σ2

t +

∫
kt(x)F (dx)

]
dt <∞. (3.2)

When t is small, Xt can be approximated by the square-integrable Lévy process X̄t

dX̄t = b0 dt+ σ0 dWt +

∫
k0(x)(N(dt, dx)− F (dx)dt), X̄0 = 0, (3.3)

obtained from Xt by “freezing” the integrands b, σ and k of Xt at the respective values at time

zero. Under some additional technical assumptions, we have the following theorem that de-

scribes the asymptotic distributional properties of the quadratic variation process and discrete

realized variance of Xt (Keller-Ressel and Muhle-Karbe, 2011).

Theorem. Let Xt be a semimartingale of the form (3.1).
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(a) Suppose the set of payoff functions (indexed by T ) gT : R+ → R, T ≥ 0, are continuous,

uniformly bounded and satisfy ‖gT − g0‖∞ → 0 as T → 0+. Moreover, suppose that g0 is

Lipschitz continuous. We have the following small time asymptotic approximation result:

lim
T→0+

E

[
gT

(
1

T
[X,X]T

)]
= g0(σ2

0). (3.4a)

(b) Suppose that the set of payoff functions (indexed by T ) gn,T : R+ → R, T ≥ 0, n ∈ N,

are continuous, uniformly bounded and satisfy ‖gn,T − gn,0‖∞ → 0 as T → 0+ for each

n. Moreover, suppose that gn,0 is Lipschitz continuous. We observe the following small

time asymptotic limiting property:

lim
T→0+

E [gn,T (I(0, T ;n))] = E[gn,0(Zn)], (3.4b)

where Zn has the gamma distribution with shape parameter n/2 and scale parameter

2σ2
0/n.

Note that the above theorem is applicable to most of the prevailing asset price models,

including the Lévy models and stochastic volatility models. In what follows, we mainly discuss

the application of this small time asymptotic approximation method under the exponential

Lévy models and stochastic volatility models with jumps.

3.1 Lévy models

Since the Lévy process is known to have independent and stationary increments, so the in-

crements Xtk − Xtk−1
, k = 1, 2, · · · , N , as defined in Eq. (1.1) are independent. In addition,

they become identically distributed when the time step is taken to be uniform. The charac-

teristic function of the underlying Lévy process Xt admits the Lévy-Khinchine representation:

E[euXt ] = etψ(u), where the characteristic exponent ψ(u) is given by

ψ(u) = bu+
1

2
u2σ2 +

∫
R\{0}

[eux − 1− uh(x)]F (dx), u ∈ C, (3.5)

with h(·) being an appropriately chosen truncated function. Moreover, we assume the conver-

gence strip of ψ(u) to be in some open strip {u : α− < Re(u) < α+} in the complex plane,

where α− < 0 and α+ > 0. The Lévy process is fully characterized by the triplet (b, σ2, F )h

with dependence on h. We take the time steps to be uniform, where ti−ti−1 = ∆, i = 1, · · · , N .

Given the independent increment property of Xt, the calculation of the moment generating

function (MGF) of I(0, T ;N) amounts to the calculation of the Laplace transform of the
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squared process X2
t . Observe that

E[e−uI ] = (E[e−uA/NX
2
∆ ])N ,

where X2
∆ denotes the increment of X2

t over time period ∆. For brevity, we write Yt = X2
t

and Y = X2
∆. As a remark, there exists the following integral representation of the Laplace

transform of Yt for all u ∈ R+:

MYt(−u) = E[e−uX
2
t ] =

1√
2π

∫ ∞
−∞

etψ(ix
√

2u)−x2/2dx.

Though the saddlepoint approximation method only requires knowledge of the MGF on the

real axis, the above integral representation is not quite useful since differentiation with respect

to u of the CGF [defined by lnMYt(u)] is quite cumbersome. It would be almost infeasible to

derive any tractable analytical expression for higher order derivatives of the CGF.

To obtain an approximation that is more analytically tractable than the above integral

representation, we make use of the small time asymptotic approximation. Let gT , gn,T : x 7→
eux for any fixed u ∈ C− and consider approximating the Laplace transform of Y by that of

[X,X]∆. Apparently, Y can be regarded as the realized variance over [0,∆] with n = 1. For

each u ∈ C−, we then derive the asymptotic limit of the Laplace transform of [X,X]∆ and

Y as eu∆σ2
and 1

(1−2u∆σ2)1/2 , respectively. To proceed, we define the “discretization ratio” as

follows:

Λn(g) := lim
T→0+

E [exp (uI(0, T ;n))]

E
[
exp

(
u 1
T

[X,X]T
)] = E[exp(uZn)]e−uσ

2

. (3.6)

We assume that this ratio is preserved for different values of T so that it can be used as an

adjustment to deduce the approximate Laplace transform of Y as follows:

M̂Y (u) = M[X,X]∆(u)
e−u∆σ2

(1− 2u∆σ2)1/2
. (3.7)

In particular, when Xt is a pure jump process with σ = 0, Eq. (3.7) reduces to M̂Y (u) =

M[X,X]∆(u). In other words, we take the MGF of quadratic variation directly as an approx-

imation without any adjustment under the pure jump model. Moreover, the STAA becomes

exact if Xt is a Gaussian process. It is well known that the quadratic variation process is still

a Lévy process whose characteristic triplet can be derived from that of the original process.

Indeed, we have

M[X,X]∆(u) = E[eu[X,X]∆ ] = exp

(
∆

[
σ2u+

∫
(eux

2 − 1)F (dx)

])
, (3.8)

where Re(u) ≤ 0 [Kallsen et al. (2009) and Carr et al. (2005)]. Apparently, the MGF of the
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quadratic variation is still not in a closed form representation when the jump integral cannot

be explicitly integrated. In practice, we find that it is more preferable to choose this form

since differentiation with respect to u is rather straightforward when performed under this

representation.

The combination of Eqs. (3.7) and (3.8) naturally leads to an approximate expression for

the CGF of Y :

κ̂(u) = ∆g(u)− 1

2
ln(1− 2∆σ2u). (3.9a)

The corresponding higher order derivatives are given by

κ̂(n)(u) = ∆g(n)(u) +
(n− 1)!

2

(
2∆σ2

1− 2∆σ2u

)n
, n = 1, 2, · · · , (3.9b)

where

g(u) =

∫
(eux

2 − 1)F (dx), g(n)(u) =

∫
eux

2

x2nF (dx), n = 1, 2, · · · .

3.2 Stochastic volatility models with jumps

It is more appropriate to adopt stochastic variance as one of the risk factors in the underlying

asset price process when we consider pricing of variance products and volatility derivatives.

Unfortunately, it is almost intractable to derive an analytic form of the MGF of the discrete

realized variance I(0, T ;N). One primitive approach is to use the quadratic variation I(0, T ;∞)

as a proxy of I(0, T ;N) since the MGF of I(0, T ;∞) under an affine stochastic volatility model

can be derived analytically by solving a Ricatti system of ordinary differential equations.

However, the limitations of this quadratic variation approximation have been discussed earlier.

For more detailed numerical experiments on this issue, see Bühler (2006), Keller-Ressel and

Muhle-Karbe (2010), or Zheng and Kwok (2013).

In what follows, we derive the small time asymptotic approximation of the MGF of I(0, T ;N)

under the general framework of stochastic volatility models with jumps. While different s-

tochastic volatility models have different specifications of the stochastic volatility process Vt,

the log asset price process can be described by the following semimartingale dynamics under

a risk neutral measure Q:

d lnSt = bt dt+
√
Vt dW S

t +

∫
x(N(dt, dx)− F (dx) dt), (3.10)

where W S
t is a standard Brownian motion and

bt = r − d− Vt
2

+

∫
(ex − x− 1)F (dx),
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such that the discounted dividend-adjusted asset price process Ste
−(r−d)t is a Q-martingale.

Here, r is the constant risk-free rate and d is the constant continuous dividend yield. By

assuming that Vt follows the square root process with Poisson jumps, we can retrieve the

following familiar form of Heston’s stochastic volatility model with simultaneous jumps in

asset returns and variance (SVSJ model):
dSt
St

= (r − d− λm) dt+
√
Vt(ρ dW V

t +
√

1− ρ2 dBt) + (eJ
S − 1) dNt,

dVt = κ(θ − Vt) dt+ ε
√
Vt dW V

t + JV dNt,
(3.11)

where W V
t and Bt are a pair of independent standard Brownian motions, Nt is a Poisson

process with constant intensity λ that is independent of the two Brownian motions, ρ is the

correlation coefficient between St and Vt, ε is the volatility of Vt, κ is the drift parameter and

θ is the long-term mean of the variance process Vt. We let JS and JV denote the random

jump sizes of the log asset price and its variance, respectively. These random jump sizes

are assumed to be independent of W V
t , Bt and Nt. While one has the freedom to specify

the customized jump distributions, we would like to proceed with the canonical jump size

distributions: JV ∼ exp(1/η) and JS|JV ∼ N (ν + ρJJ
V , δ2). These distributions correspond

to the exponential distribution with mean η and the Gaussian distribution with mean ν+ρJJ
V

and variance δ2 conditional on JV , respectively. Also, we take m = E[eJ
S − 1] so that the

process Ste
−(r−d)t is a Q-martingale. In Eq. (3.11), we have used the distributional equivalence:

dW S
t = ρ dW V

t +
√

1− ρ2 dBt and the compound Poisson jump term is written as∫
xN(dt, dx) = JSdNt.

We now apply the small time asymptotic approximation to the MGFs of the quadratic vari-

ation process I(0, T ;∞) = 1
T

[lnST , lnST ] and the discrete realized variance I(0, T ;N). Recall

that the asymptotic limit of I(0, T ;N) as T → 0+ is a gamma distribution with shape pa-

rameter N/2 and scale parameter 2V0/N . The corresponding MGF is given by
(
1− 2V0u

N

)−N/2
.

Therefore, for any u ≤ 0, we obtain

lim
T→0+

MI(0,T ;∞)(u) = euV0 , (3.12a)

lim
T→0+

MI(0,T ;N)(u) =

(
1− 2V0u

N

)−N/2
. (3.12b)

Assuming that the difference MI(0,T ;N)(u)−MI(0,T ;∞)(u) is invariant with respect to T , we use

the above difference as a control and propose the following approximate MGF formula:

M̂I(0,T ;N)(u) = MI(0,T ;∞)(u) +

(
1− 2V0u

N

)−N/2
− euV0 , u ∈ C−. (3.13)
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Note that the above approximation formula holds under the general stochastic volatility frame-

work as specified by Eq. (3.10). Here, we do not use the same ratio adjustment as we did in

Eq. (3.7), though it is less cumbersome with regard to the computation of the CGF and its

derivatives. The reason for adopting the approximation in Eq. (3.13) instead of the alternative

approximation in Eq. (3.7) is explained as follows. From the perspective of computational

stability, when u takes a very negative value, e−u∆σ2
grows exponentially and this leads to

erosion of the approximation in Eq. (3.7). Under the Lévy model, there is a canceling factor in

M[X,X]∆(u) and the approximation remains to be stable. Unfortunately, we do not have such

a property under the stochastic volatility models. As a result, approximation formulas like

Eq. (3.7) may likely blow up for very negative values of u.

After some tedious calculations, the approximate CGF and its higher order derivatives are

given by

κ̂I(0,T ;N)(u) = ln M̂I(0,T ;N)(u),

κ̂′I(0,T ;N)(u) =
M ′

I(0,T ;∞)(u) + f1(u)

MI(0,T ;N)(u)
,

κ̂
(2)
I(0,T ;N)(u) =

M
(2)
I(0,T ;∞)(u) + f2(u)

M̂I(0,T ;N)(u)
−

[M ′
I(0,T ;∞)(u) + f1(u)]2

[M̂I(0,T ;N)(u)]2
,

where

fn(u) = V k
0

N
2

(
N
2

+ 1
)
· · ·
(
N
2

+ n
)(

N
2

)n (
1− 2V0u

N

)−N/2−n
, n = 1, 2, · · · .

Higher order derivatives are also available, except that they involve more tedious expressions.

Given the analytic expression of the MGF of I(0, T ;N), one faces the question of choosing

which saddlepoint approximation method to be used. As mentioned before, since the CGF

of I(0, T ;N) is only defined on the left half plane, the CSPA methods have no saddlepoint

on (−∞, 0) when K > κ′(0), and hence this approach may not work for all range of strikes.

On the other hand, the ASPA methods can work effectively under this unusual scenario since

a negative saddlepoint is guaranteed. In other words, we may conclude that the saddlepoint

approximation formulas shown in Eqs. (2.8a, 2.8b) are better choices that work for all range

of strikes.
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4 Enhanced simulation methods under stochastic volatil-

ity models with jumps

Despite the merits of the small time asymptotic approximation method for the MGF of

I(0, T ;N) under the stochastic volatility models as shown in Section 3.2, the successful imple-

mentation of the saddlepoint approximation method also relies crucially on the existence of the

analytic form of the MGF of I(0, T ;∞). For a more general stochastic volatility model with

non-affine structure, there is no guarantee for a tractable form of the MGF of I(0, T ;∞). As a

result, we may encounter difficulty in applying the above results presented in Section 3.2. As

an alternative approach, we would like to introduce the conditional saddlepoint approximation

approach that makes use of the conditional MGF of I(0, T ;N) given a realization path of the

stochastic volatility process. The success of this approach relies on the property of conditional

independency of the log asset price returns given a realization of the stochastic volatility path.

Suppose the joint dynamics of St and its instantaneous variance Vt under a risk neutral

pricing measure Q is specified by the following generalized stochastic differential equations:
dSt
St

= (r − d− λm) dt+
√
Vt(ρ dW V

t +
√

1− ρ2 dBt) + (eJ
S − 1) dNt,

dVt = α(Vt) dt+ β(Vt) dW V
t + JV dNt,

(4.1)

where α(·) and β(·) are twice differentiable functions on R+, and β(·) is a nonzero function.

The SVSJ model as specified in Eq. (3.11) is a special case under the above generalized model.

Drimus and Farkas (2012) show that conditional on a realization path of Vt the log returns

under the simple Heston stochastic volatility model are independent to each other and follow

the normal distribution. In fact, the same property still holds under the asset price dynamics

specified by Eq. (4.1). It can be shown that (see Appendix A)

ln
Stk
Stk−1

=

∫ tk

tk−1

(
r − d−mλ− Vt

2

)
dt+

√
1− ρ2

∫ tk

tk−1

√
Vt dBt +

N∆tk∑
m=1

JSm

+ ρ

{
f(Vtk)− f(Vtk−1

)−
∫ tk

tk−1

[
f(Vt)α(Vt) +

1

2
f ′′(Vt)β

2(Vt)

]
dt

}

− ρ
∫ tk

tk−1

[f(Vt + JV )− f(Vt)] dNt,

(4.2)

where ∆tk = tk − tk−1, the random varaibles JSm are independent copies of Js, and

f(x) =

∫ x

0

√
z

β(z)
dz.
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Assuming the usual canonical jump size distribution as specified in Section 3.2, and conditional

on FVT (σ-algebra generated by Vt, 0 ≤ t ≤ T ), we have

ln
Stk
Stk−1

∣∣∣
FVT
∼ N (µk, σ

2
k). (4.3)

The respective conditional mean and variance are given by

µk =

∫ tk

tk−1

(
r − d−mλ− Vt

2

)
dt− ρ

∫ tk

tk−1

[f(Vt + JV )− f(Vt)] dNt

+ ρ

{
f(Vtk)− f(Vtk−1

)−
∫ tk

tk−1

[
f ′(Vt)α(Vt) +

1

2
f ′′(Vt)β

2(Vt)

]
dt

}

+

N∆tk∑
m=1

(ν + ρJJ
V
m),

σ2
k = (1− ρ2)

∫ tk

tk−1

Vt dt+ δ2N∆tk ,

where JVm are independent copies of JV .

Since the log returns are conditionally normal and independent, the discrete realized vari-

ance is given by the sum of a sequence of independent squared normal random variables. By

virtue of the normality property, its CGF can be calculated analytically. In fact, the MGF of

I(0, T ;N) is given by

M(u) =
N∏
k=1

exp( u
T
µ2
k(1− 2σ2

k
u
T

)−1)

(1− 2σ2
k
u
T

)1/2
, u < min

1≤k≤N

{ T

2σ2
k

}
. (4.4)

It is relatively straightforward to find the corresponding CGF and its higher order derivatives,

where

κ(u) =
N∑
k=1

µ2
ku/T

1− 2σ2
ku/T

− 1

2
ln(1− 2σ2

ku/T ); (4.5a)

κ(n)(u) =
N∑
k=1

(
nµ2

k/T

1− 2σ2
ku/T

+ σ2
k/T

)
(n− 1)!(2σ2

k/T )n−1

(1− 2σ2
ku/T )n

, n = 1, 2, · · · . (4.5b)

Following a similar idea originated in Drimus and Farkas (2012), the key simulation procedures

in the conditional saddlepoint approximation method are summarized as follows:

1. Simulate a path of the stochastic variance process {Vt : 0 ≤ t ≤ T}.

2. Compute the quantities µk and σ2
k.
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3. Apply the saddlepoint approximation method to derive the price of the volatility deriva-

tive.

4. Repeat steps 1 to 3 for a sufficiently large number of simulation runs and take the sampled

average price.

Unlike the direct Monte Carlo simulation method under the stochastic volatility model, the

conditional saddlepoint approximation method achieves dimension reduction of the simulation.

This analytic-simulation approach improves computational efficiency of the simulation method

significantly. Moreover, when the stochastic variance is specified as Heston’s square root process

or the 3/2 stochastic volatility model, one can make use of the computational advantages of

the exact simulation methods [Broadie and Kaya (2006) and Baldeadux (2012)].

Heston’s model with jumps

In Heston’s stochastic volatility model with jumps, the variance process is given by

dVt = κ(θ − Vt)dt+ ε
√
VtdW

V
t + JV dNt, (4.6)

which implies that α(Vt) = κ(θ − Vt), β(Vt) = ε
√
Vt and f(Vt) = Vt/ε. Consequently, the

simplified conditional mean and variance are given by

µk = (r − d−mλ)(tk − tk−1) +
ρ

ε

[
Vtk − Vtk−1

− κθ(tk − tk−1)
]

+
(ρκ
ε
− 1

2

)∫ tk

tk−1

Vt dt+ νN∆tk +
(
ρJ −

ρ

ε

)N∆tk∑
m=1

Jvm,

σ2
k = (1− ρ2)

∫ tk

tk−1

Vt dt+ δ2N∆tk .

The simulation procedures for the above µk and σ2
k are summarized as follows. In the first step,

we simulate a Poisson process with arrival rate λ and record all the jump times till T . Suppose

we are now at time tk and have already simulated µj and σ2
j for 1 ≤ j ≤ k. To proceed with

µk+1 and σ2
k+1, we perform the following steps:

1. Set τ0 = tk and I = 0.

2. Determine the next jump time τ . If τ > tk+1, then set τ = tk+1.

3. Disregard the jump part, and subsequently simulate the variance value Vτ and the in-

tegrated variance
∫ τ
τ0
Vt dt given Vτ0 using the exact simulation method as described in

Broadie and Kaya (2006). Update the integrated variance by setting I = I +
∫ τ
τ0
Vt dt.
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4. When τ = tk+1, compute µk+1 and σ2
k+1 using the simulated values of Vtk+1

and I. Oth-

erwise, generate JV by sampling from an exponential distribution with mean η. Update

the variance value by setting Vτ = Vτ + JV . Set τ0 = τ and Vτ0 = Vτ . Go to step 2.

3/2 stochastic volatility model

In the 3/2 stochastic volatility model, the variance process is governed by (Drimus, 2012)

dVt = κVt(θ − Vt)dt+ εV
3/2
t dW V

t , (4.7)

which corresponds to α(Vt) = κVt(θ − Vt), β(Vt) = εV
3/2
t , and f(Vt) = lnVt

ε
. In general, one

can make a simultaneous jump model extension as we did for Heston’s model with jumps. The

conditional saddlepoint approximation framework can be generalized to accommodate jumps

in the asset price process in a similar manner. However, the inclusion of the jump component

may prevent one from constructing an exact simulation scheme. To illustrate the effective

use of exact simulation, we consider the jump-free 3/2 stochastic volatility model. Under this

scenario, the expressions of µk and σ2
k can be simplified as follows:

µk =

∫ tk

tk−1

(
r − d−mλ− Vt

2

)
dt

+
ρ

ε

{
lnVtk − lnVtk−1

−
∫ tk

tk−1

[
κ(θ − Vt)−

ε2

2
Vt

]
dt

}
,

σ2
k = (1− ρ2)

∫ tk

tk−1

Vt dt.

Here, µk and σ2
k have similar structural properties as those under Heston’s model. That is, µk

and σ2
k depend on the variance process via the values of Vtk−1

, Vtk and
∫ tk
tk−1

Vt dt. To perform

exact simulation of the above quantities, we follow the approach due to Baldeadux (2012) and

consider the reciprocal process Ṽt = 1/Vt. By Itô’s Lemma, it is easy to derive the dynamics

of Ṽt:

dṼt = κθ

(
κ+ ε2

κθ
− Ṽt

)
− ε
√
Ṽt dW V

t , (4.8)

which happens to take the same form of the square root process in Heston’s model. As a result,

we can perform exact simulation of the values of Ṽtk , k = 1, 2 · · · , N , from the non-central chi-

square distribution. To generate a sample of
∫ tk
tk−1

Ṽ −1
t dt given Ṽtk−1

and Ṽtk , we can use the

conditional Laplace transform of
∫ tk
tk−1

Ṽ −1
t dt derived in Baldeadux (2012). Indeed, the whole

procedure resembles a close analogy to the exact simulation scheme for the square root process

in Broadie and Kaya (2006).
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5 Sample calculations and comparison of numerical ac-

curacy

In this section, we present various numerical tests that were performed for the assessment

of accuracy of our saddlepoint approximation formulas. We consider pricing put options on

discrete realized variance and volatility swaps under Kou’s double exponential model and the

stochastic volatility model with simultaneous jumps (SVSJ). In Section 5.1, we show the per-

formance of the saddlepoint approximation formulas tested under Kou’s model with different

contractual specifications on the sampling frequency, strike rate, maturity and different values

of the model parameters σ and λ. Moreover, we also present the results of the small time

asymptotic approximation (STAA) by Keller-Ressel and Muhle-Karbe (2010) for comparison

of accuracy. In Section 5.2, we consider pricing of put options on discrete realized variance

and volatility swaps under the SVSJ model. We present the numerical tests performed using

both the saddlepoint approximation method and the analytic-simulation conditional saddle-

point approximation approach. The numerical results obtained from the conditional central

limit theory approximation (CLTA) by Drimus and Farkas (2012) are used for comparison of

accuracy.

5.1 Kou’s double exponential model

Kou’s double exponential model is adopted for the underlying asset price process in our numer-

ical tests that were performed to assess accuracy of the ASPA methods. We consider a wide

range of maturities and strikes of the put options on daily sampled realized variance. In our

sample calculations, we take the riskfree interest rate to be r = 3% and the initial stock price

to be S0 = 1. We use the Monte Carlo simulation results as the benchmark for comparison

of accuracy. The number of simulation paths was taken to be 106. As an effective method

to reduce the standard derivation in the Monte Carlo simulation results, we adopt a control

variate technique where the realized variance is taken to be the control variate.

The risk neutral dynamics of St under Kou’s double exponential model is specified by

dSt
St

= (r −mλ)dt+ σ dWt + (eY − 1) dNt, (5.1)

where Nt is a Poisson process with intensity λ that is independent of Wt, and Y denotes the

independent random jump size that has an asymmetric double exponential distribution as

specified by

Y =

ξ+ with probability p

−ξ− with probability 1− p
,
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where ξ± are exponential random variables with means 1/η±, respectively. By the martingale

property of the underlying asset price process, one can easily infer that

m = E[eY − 1] =
p

η+ − 1
− 1− p
η− + 1

.

The MGF of the log return ln St+∆

St
is known to be

M∆(u) = exp

(
∆

[
(r −mλ− σ2/2)u+

σ2u2

2
+ λu

(
p

η+ − u
− 1− p
η− + u

)])
, (5.2)

for −η− < u < η+. The Lévy measure is given by λfY (x) dx, where

fY (x) = pη+e
−η+x1{x≥0} + (1− p)η−eη−x1{x<0}.

The model parameter values of Kou’s model listed in Table 1 are taken from Sepp (2004).

σ λ η+ η− p

0.3 3.97 16.67 10 0.15

Table 1: Model parameter values of Kou’s double exponential model.

Numerical results

In Table 2, we present the prices of one-year deep out-of-the-money, at-the-money and deep

in-the-money put options on discrete realized variance with different sampling frequencies. The

rows labelled “SPA1” and “SPA2” list the option prices calculated with the use of the first

order ASPA [formula (2.8a)] and the second order ASPA [formula (2.8b)], respectively, both

with the choice of j = 2. The row labelled “STAA” presents the numerical results obtained

from the small time asymptotic approximation. The last two rows labelled “MCS” and “SE”

show the Monte Carlo simulation results and the corresponding standard errors (shown as

bracket quantities), respectively. Both the STAA and MCS results are used for comparison of

accuracy.

It is obvious that the ASPA methods (both the first order and second order) perform well

under Kou’s double exponential model. We do observe a deterioration of accuracy when the

sampling frequency becomes lower and the option becomes more out-of-the-money for all the

approximation methods that have been tested. Surprisingly, the first order ASPA performs

better than the second order ASPA in some cases. As a positive remark to the saddlepoint

approximation approach, the second order ASPA method consistently outperforms the STAA

method across all sampling frequencies and strike rates.
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frequency (N) weekly (52) daily (252)

strike 0.1295 0.1618 0.1942 0.1294 0.1618 0.1941

SPA1 1.2373 3.0351 5.3350 1.1637 3.0299 5.3649

SPA2 1.2461 3.0255 5.2777 1.1546 2.9740 5.2461

STAA 1.1496 2.9636 5.2441 1.1308 2.9611 5.2409

MCS 1.3332 3.1425 5.4032 1.1729 2.9998 5.2748

(SE) (0.0015) (0.0022) (0.0027) (0.0013) (0.0020) (0.0025)

Table 2: Comparison of numerical results obtained using different approximation methods for

the prices of one-year put options on discrete realized variance with various strike rates and

sampling frequencies under Kou’s double exponential model. The strike rates are chosen to

be 0.8µ, µ, 1.2µ, where µ is the at-the-money strike. All put option prices are multiplied by a

notional value of 100. The corresponding standard errors (SE) in the Monte Carlo simulation

are shown in brackets.

Next, we examine the performance of these approximation methods for pricing put op-

tions on discrete realized variance with different maturities, especially for short-maturity put

options. Also, we examine the impact of some of the key model parameters on accuracy of

these approximations. In Figure 1, we show the plots of the percentage errors of various ap-

proximation methods against moneyness for one-month and one-year put options on the daily

sampled realized variance. It is observed that these approximation methods are more accurate

when they are used for pricing options of shorter maturity. The second order ASPA method

is seen to provide more stable performance in accuracy compared to that of the first order

counterpart. All these approximation methods generally give better results for in-the-money

puts.

Finally, we examine the impact of the two key model parameters in Kou’s model, σ and λ,

on accuracy of the approximation methods. In Figure 2(a), we reduce the volatility parameter

σ in Kou’s model from 0.3 to 0.1 so as to reduce the diffusion effect of the model. The

performance of the first order ASPA method is not quite satisfactory compared to that of

the second order counterpart. On the other hand, when we reduce the effect of the jump

component by decreasing the intensity λ from 3.97 to 1, we observe that accuracy of the STAA

method deteriorates quite significantly for out-of-the-money puts while the first and second

order ASPA methods perform much better [see Figure 2(b)]. Overall speaking, the performance

of the second order saddlepoint approximation formula is less sensitive to different choices of

the model parameter values.
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5.2 Stochastic volatility model with simultaneous jumps

In Table 3, we present the model parameters that are chosen in our sample calculations for the

stochastic volatility model with simultaneous jumps (SVSJ). These parameters are calibrated

to S&P500 option prices on November 2, 1993 (Duffie et al., 2000). In addition, we take

r = 3.19% and S0 = 1.

κ 3.46 ν −0.086

θ (0.0894)2 η 0.05

ε 0.14 λ 0.47

ρ −0.82 ρJ 0 or −0.38√
V0 0.087 δ 0.0001

Table 3: Model parameter values of the SVSJ model. We take ρJ = 0 for the saddlepoint

approximation method using the small time approximation of the MGFs and ρJ = −0.38 for

the conditional saddlepoint aproximation method.

Saddlepoint approximation

As shown in Section 3.2, the approximate CGF of I(0, T ;N) and its higher order derivatives

can be expressed in analytic forms if the MGF of the quadratic variation process I(0, T ;∞)

is known in closed form. This is possible under the SVSJ model only if we impose ρJ = 0,

which means the jump size of the asset return JS is assumed to follow an independent normal

distribution with mean ν and variance δ2. This lack of dependency between the jump size

distributions in general has only minor effect on the SVSJ model in capturing the real asset

price dynamics [see Sepp (2008)]. The derivation of the analytic formula of the MGF of

I(0, T ;∞) is presented in Appendix B.

In Table 4, we present the prices of put options on daily sampled realized variance with

varying maturities and strike prices. The numerical results indicate that the saddlepoint ap-

proximation methods can produce fairly accurate results for the given range of strike prices

and maturities. Specifically, the approximation results for the short-maturity (5 days) and

out-of-the-money (OTM) put options are fairly good. It is interesting that the second order

saddlepoint approximation does not necessarily outperform the first order saddlepoint approx-

imation. The numerical results in Table 4 show that “SPA2” would in general outperform

“SPA1” for short-maturity or out-of-the-money put options. When maturity is lengthened

and moneyness becomes more in-the-money, “SPA1” performs better than “SPA2”.
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maturity (days) 5 10 15 20 40 60

strike (OTM) 0.9037 0.9222 0.9399 0.9568 1.0174 1.0683

SPA1 0.2885 0.2556 0.2530 0.2577 0.2840 0.3071

SPA2 0.2851 0.2545 0.2500 0.2500 0.2741 0.2986

MC 0.2794 0.2463 0.2404 0.2441 0.2732 0.2992

SE 0.0008 0.0007 0.0006 0.0006 0.0006 0.0007

strike (ATM) 1.1296 1.1527 1.1748 1.1960 1.2717 1.3354

SPA1 0.4579 0.4334 0.4367 0.4459 0.4865 0.5188

SPA2 0.4500 0.4255 0.4262 0.4336 0.4729 0.5079

MC 0.4490 0.4286 0.4309 0.4406 0.4828 0.5154

SE 0.0010 0.0009 0.0008 0.0008 0.0008 0.0008

strike (ITM) 1.3555 1.3833 1.4098 1.4352 1.5261 1.6024

SPA1 0.6483 0.6352 0.6455 0.6597 0.7129 0.7517

SPA2 0.6367 0.6240 0.6322 0.6450 0.6978 0.7385

MC 0.6402 0.6330 0.6429 0.6574 0.7094 0.7465

SE 0.0012 0.0010 0.0009 0.0008 0.0008 0.0009

Table 4: The prices of put options on daily sampled realized variance with varying strike

prices and maturities under the SVSJ model with ρJ = 0. The strike prices are chosen to

be 0.8µ, µ, 1.2µ, where µ is the at-the-money strike. All strike prices and option prices are

multiplied by a notional value of 100.

Next, we would like to investigate more closely how the saddlepoint approximation formulas

perform for varying moneyness and the sensitivity with respect to the model parameters. In

Figures 3(a,b), we plot the put option prices against moneyness from 0.8 (out-of-the-money)

to 1.2 (in-the-money) for two different sets of model parameters. In Figure 3(a), we use the

original SVSJ model parameters given in Table 3, while different values of λ and ε are used to

generate Figure 3(b). The plots reveal that the performance of the saddlepoint approximation

results do change with changes in the model parameters. In most cases, the percentage errors

are nevertheless within a bounded range (±3%) for SPA2. One may be concerned about the

performance of “SPA1” for deep out-of-the-money options. The relatively high percentage error

is driven mainly by the small value of the option price of the deep out-of-the-money put. When

measured in absolute errors, both “SPA1” and “SPA2” produce rather stable approximation

results.

Conditional saddlepoint approximation

We use the Euler-Maruyama scheme to discretize the stochastic differential equation for the

variance process and benchmark our conditional saddlepoint approximation results to those of
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the conditional quadrature method (details of which are presented in the Appendix C). The

number of simulation paths is taken to be 100,000. Moreover, the realized variance process

has been used as the control variate.

frequency (N) weekly (52) daily (252)
strike 0.0145 0.0182 0.0218 0.0145 0.0181 0.0218
ASPA1 0.4032 0.6366 0.8899 0.3998 0.6309 0.8815
(SE) (0.0009) (0.0011) (0.0014) (0.0009) (0.0011) (0.0013)
ASPA2 0.4033 0.6368 0.8901 0.3999 0.6309 0.8816
(SE) (0.0009) (0.0011) (0.0014) (0.0009) (0.0011) (0.0013)
CSPA 0.4033 0.6368 0.8901 0.3999 0.6309 0.8816
(SE) (0.0009) (0.0011) (0.0014) (0.0009) (0.0011) (0.0013)
CLTA 0.4034 0.6370 0.8904 0.3999 0.6309 0.8816
(SE) (0.0009) (0.0011) (0.0014) (0.0009) (0.0011) (0.0013)
QUAD 0.4033 0.6368 0.8901 0.3999 0.6309 0.8816
(SE) (0.0009) (0.0011) (0.0014) (0.0009) (0.0011) (0.0013)

Table 5: Comparison of numerical results obtained using different approximation methods for
the prices of one-year put options on realized variance with different sampling frequencies and
strike rates under the SVSJ model. The strike rates are chosen to be 0.8µ, µ, 1.2µ, where µ is
the at-the-money strike. All option prices and strike prices are multiplied by a notional value
of 100. The corresponding standard errors (SE) are shown in brackets.

In Table 5, the labels “ASPA1” and “ASPA2” refer to the first and second order conditional

ASPA methods, respectively. We take the saddlepoint according to the rule of thumb as

discussed in Section 2.2. For the other rows, “CSPA” stands for the conditional CSPA method,

“CLTA” refers to the conditional central limit theory approximation, and “QUAD” refers to

the conditional quadrature method (which serves as a benchmark). The bracket quantities

in rows labeled “SE” are the respective standard errors in the simulation. The at-the-money

strike rate is set to be the expectation of the realized variance, which is calculated using the

analytical formula in Zheng and Kwok (2013).

It is observed that all these approximation methods deliver good performance. It seems that

the conditional CLTA method also performs quite well. As discussed earlier, the conditional

CLTA method only works for relatively large number of observations (options with relatively

long maturities). We demonstrate below how this method may underperform for put options

with short maturities.

In Figure 4, we show the plots of the percentage errors of these approximation methods

against moneyness for one-week put options on daily sampled realized variance with different

model parameters. The set of parameters in Table 3 are used to generate the plots in Figure 4(a)

while the parameter values of both λ and ε are increased in the plots in Figure 4(b). For one-
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week put options of short maturity, our saddlepoint approximation formulas outperform the

conditional CLTA method in two aspects. Firstly, accuracy of the saddlepoint approximation

results remains stable when there are substantial changes in value of the key model parameters.

Secondly, the saddlepoint approximation results are very accurate, both for the conditional

CSPA method and the second order conditional ASPA method (benchmark against the results

from the conditional QUAD method).

Finally, we consider the prices of put options and volatility swaps with different maturities.

In Figure 5(a), the plots of the put prices from these approximation methods almost overlap

with each other. One can observe easily that the conditional CLTA may not be a good approx-

imation for the short-maturity put options as the saddlepoint approximations. In Figure 5(b),

the fair strike prices of volatility swaps with different maturities are presented. It clearly shows

how the second order conditional ASPA method [given by Eq. (2.10b)] improves over its first

order counterpart [given by Eq. (2.10a)]. As a remark, the conditional CLTA method may have

difficulty in pricing volatility swaps since the non-negative realized variance is approximated

by a normal random variable as part of the procedure.

6 Conclusion

We have demonstrated the versatility of the saddlepoint approximation techniques for deriv-

ing analytic approximation formulas for pricing derivatives whose payoffs depend on discrete

realized variance of the price process of an underlying risky asset. For pricing discrete variance

options under Lévy models and stochastic volatility models, we derive an approximation to the

cumulant generating function of the squared returns based on some theoretical result on the

small time asymptotic distributions of the quadratic variation and discrete realized variance.

Furthermore, we propose an alternative saddlepoint approximation method since the classical

Lugannani-Rice approach may fail when used in pricing variance options. This is because the

root of the saddlepoint equation may lie outside the domain of definition of the cumulant gen-

erating function. For pricing variance options and volatility swaps under stochastic volatility

models with simultaneous jumps, we also develop an analytic-simulation procedure. In our

conditional saddlepoint approximation method, we first perform simulation on the variance

process and then compute the saddlepoint approximation to the prices of the variance options

and volatility swaps conditional on the simulated variance values. We have performed extensive

numerical tests to assess the performance of our proposed saddlepoint approximation through

comparison with the Monte Carlo simulation results and other approximation methods. The

errors in computing prices of various volatility derivatives using our saddlepoint approximation

methods are in general shown to be within numerical tolerance level of a few percents.

27



ACKNOWLEDGEMENT

This work was supported by the Hong Kong Research Grants Council under Project 642110

of the General Research Funds.

REFERENCES

Aı̈t-Sahalia, Y., J. Yu (2006). Saddlepoint approximations for continuous-time Markov pro-

cesses. Journal of Econometrics, vol. 134, p.507-551.

Antonov, A., S. Mechkov, T. Misirpashaev (2005). Analytical techniques for synthetic CDOs

and credit default risk measures. Technical report, Numerix.

Baldeaux, J. (2012). Exact simulation of the 3/2 model. To appear in International Journal

of Theoretical and Applied Finance.

Bernard, C., Z. Cui (2011). Pricing timer options. Journal of Computational Finance, vol.

12(1), p.69-104.

Broadie, M., O. Kaya (2006). Exact simulation of stochastic volatility and other affine jump

diffusion processes. Operations Research, vol. 54(2), p.217-231.

Bühler, H. (2006). Volatility markets: consistent modeling, hedging and implementation. PhD

thesis, TU Berlin.

Butler, R.W. (2004). Saddlepoint approximations with applications. Cambridge University

Press, Cambridge, United Kingdom.

Carr, P., H. Geman, D. Madan, M. Yor (2005). Pricing options on realized variance. Finance

and Stochastics, vol. 9, p.453-475.

Carr, P., D. Madan (2009). Saddlepoint methods for option pricing. Journal of Computational

Finance, vol. 13(1), p.49-61.

Crosby, J., M. Davis (2010). Variance derivatives: pricing and convergence. Working paper of

University of Glasgow and Imperial College.

Daniels, H. (1954). Saddlepoint approximations in statistics. Annals of Mathematical Statis-

tics, vol. 25, p.631-650.

Drimus, G.G. (2012). Options on realized variance by transform methods: a non-affine s-

tochastic volatility model. Quantitative Finance, vol. 12(11), p.1679-1694.

Drimus, G.G., W. Farkas (2012). Valuation of options on discretely sampled variance: a general

analytic approximation. Working paper of University of Zurich.

28



Duffie, D., J. Pan, K. Singleton (2000). Transform analysis and option pricing for affine jump-

diffusion. Econometrica, vol. 68, p.1343-1376.

Glasserman, P., K.K. Kim (2009). Saddlepoint approximations for affine jump-diffusion mod-

els. Journal of Economic Dynamics and Control, vol. 33, p.15-36.

Huang, X., C.W. Oosterlee, H. van der Weide (2007). Higher-order saddlepoint approximations

in the Vasicek portfolio credit loss model. Journal of Computational Finance, vol.

11(1), p.93-113.

Huang, X., C.W. Oosterlee (2011). Saddlepoint approximations for expectations and an ap-

plication to CDO pricing. SIAM Journal on Financial Mathematics, vol. 2, p.692-714.

Jensen, J. (1995). Saddlepoint approximations. Oxford University Press, Oxford, United K-

ingdom.

Kallsen, J., J. Muhle-Karbe, M. Voß (2011). Pricing options on variance in affince stochastic

volatility models. Mathematical Finance, vol. 21(4), p.627-641.

Keller-Ressel, M., J. Muhle-Karbe (2010). Asymptotic and exact pricing of options on variance.

Working paper of ETH, Zürich.
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Appendix A Derivation of Eq. (4.2)

For the asset price process St specificed in Eq. (4.1), the log return over (tk−1, tk) can be

expressed as

ln
Stk
Stk−1

=

∫ tk

tk−1

(
r − d− λm− Vt

2

)
dt+ ρ

∫ tk

tk−1

√
Vt dW V

t

+
√

1− ρ2

∫ tk

tk−1

√
Vt dBt +

N∆tk∑
k=1

JSm.

(A.1)

Applying Itô’s Lemma to f(Vt), we have

df(Vt) =

[
f ′(Vt)α(Vt) +

1

2
f ′′(Vt)β

2(Vt)

]
dt+ f ′(Vt)β(Vt) dW V

t + [f(Vt + JV )− f(Vt)] dNt

=

[
f ′(Vt)α(Vt) +

1

2
f ′′(Vt)β

2(Vt)

]
dt+

√
Vt dW V

t + [f(Vt + JV )− f(Vt)] dNt.

Integrating the above equation from tk−1 to tk and rearranging the terms, we have∫ tk

tk−1

√
Vt dW V

t = f(Vtk)− f(Vtk−1
)−

∫ tk

tk−1

[
f ′(Vt)α(Vt) +

1

2
f ′′(Vt)β

2(Vt)

]
dt

−
∫ tk

tk−1

[f(Vt + JV )− f(Vt)] dNt.

Substituting the above expression into Eq. (A.1), we obtain Eq. (4.2).

Appendix B MGF of I(0, T ;∞) under SVSJ model

When the asset price dynamics is governed by the SVSJ model [see Eq. (3.11)] with the random

jump size distribution as specified by

JS ∼ N (ν, δ2), JV ∼ exp(1/η),

the MGF of I(0, T ;∞) =
∫ T

0
Vt dt+ (JS)2NT can be derived analytically. Write It = I(0, t;∞)

and τ = T − t, and denote U(Vt, It, τ) = EQ
t [euIT ] with u being fixed. By the Feymann-Kac

Theorem, U(Vt, It, τ) satisfies the following partial integro-differential equation:

∂U

∂τ
= κ(θ − V )

∂U

∂V
+
ε2V

2

∂2U

∂V 2
+ V

∂U

∂I
+ λE

[
U(V + JV , I + (JS)2, τ)− U(V, I, τ)

]
. (B.1)
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The solution to Eq. (B.1) admits the exponential affine form:

U(Vt, It, τ) = exp (B(τ)Vt + uIt + Γ(τ) + Λ(τ)) , (B.2)

where the coefficient functions B(τ), Γ(τ) and Λ(τ) can be determined by solving the following

Riccati differential equation system:
B′ = −κB + ε2

2
B2 + u,

Γ′ = κθB,

Λ′ = λ
(
E[exp(BJV + (JS)2u)− 1]

)
,

(B.3)

with the initial conditions: B(0) = Γ(0) = Λ(0) = 0. The solution to the above Riccati system

gives [Sepp (2008), Zheng and Kwok (2013)]

B(τ) =
2u(1− e−ζτ )
ξ+e−ζτ + ξ−

,

Γ(τ) = −κθ
ε2

(
ξ+τ + 2 ln

ξ+e
−ζτ + ξ−

2ζ

)
,

Λ(τ) = −λτ + λ
exp(uν2/(1− 2uδ2))√

1− 2uδ2

1

ξ− − 2ηu[
ξ−τ +

4ηu

ξ+ + 2ηu
ln

(ξ+ + 2ηu)e−ζτ + ξ− − 2ηu

2ζ

]
,

(B.4)

where ζ =
√
κ2 − 2ε2u and ξ±= ζ ∓ κ. The solution is valid for any u < 1

2δ2 .

Appendix C Conditional quadrature method

Given the conditional MGF of I(0, T ;N) in Eq. (4.4) and the integral representation of the

tail expectation as shown in Eq. (2.7b), we can obtain the integral representation of the price

of the put option on discrete realized variance as follows:

E[K − I(0, T ;N)]+ =
1

π

∫ ∞
0

Re

(
eκ(τ+iu)−(τ+iu)K

(τ + iu)2

)
du, (C.1)

for any τ < 0. The above complex integral can be directly evaluated by numerical integration

methods such as the Gauss-Kronrod quadrature method. In order that this method works,

it is necessary to perform analytic continuation of the moment generating function in the

complex domain, possibly not a straightforward procedure in some cases. Also, we have a
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similar formula for volatility swaps:

E[
√
I] =

1

2
√
π

∫ ∞
0

1− eκ(−u)

u3/2
du, (C.2)

which can also be directly evaluated by numerical quadrature method. With the availability

of the integral representation of the price function of the volatility derivative, by following a

similar analytic-simulation procedure as in the conditional saddlepoint approximation method,

the computational procedure in the conditional quadrature method can be summarized as

follows:

1. Simulate a path of the stochastic variance process;

2. Compute the quantities µk and σ2
k;

3. Apply the numerical quadrature method to evaluate the price of the volatility derivative

represented as a complex integral;

4. Repeat steps 1 to 3 for sufficiently large number of simulation runs and take the sampled

average price.
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Figure 1: Plots of the percentage errors of different approximation methods against moneyness

for pricing one-month (N = 20) and one-year (N = 252) put options on the daily sampled

realized variance under Kou’s double exponential model. The performance of the STAA method

is comparable to that of SPA2. All these approximation methods provide better accuracy for

in-the-money put options.
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Figure 2: Plots of the percentage errors of different approximation methods against moneyness

for one-month (N = 20) put options on the daily sampled realized variance with different

values of volatility σ and jump intensity λ in Kou’s model. Accuracy of the STAA method

deteriorates quite significantly for out-of-the-money put options.
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Figure 3: Plots of percentage errors of the two saddlepoint approximation methods against

moneyness for one-month (N = 20) put options on daily sampled realized variance with differ-

ent model parameters in the SVSJ model. The performance of the saddlepoint approximation

methods (both SPA1 and SPA2) are sensibly dependent on the model parameter values of the

SVSJ model.
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Figure 4: Plots of percentage errors of different approxmation methods against moneyness for

one-week (N = 5) put options on the daily sampled realized variance with different model

parameters in the SVSJ model. The conditional CSPA method produces put option prices

that are in good agreement with those of the second order conditional ASPA method. The

conditional CLTA method is seen to be the least accurate compared to the other analytic

approximation methods.
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Figure 5: Plots of the prices of put options and volatility swaps based on daily sampled

realized variance against maturity. The put option prices are multiplied by notional value of

100. All analytic approximation methods provide almost identical numerical results for put

option values, except that the conditional CLTA method is slightly less accurate for options

with maturity less than 10 days. The conditional CLTA method cannot be directly applied to

pricing volatility swaps. Both the second order conditional ASPA and QUAD methods provide

values of volatility swaps that are in good agreement with each other.
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