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Abstract
Timer options are barrier style options in the volatility space. A typical timer option is
similar to its European vanilla counterpart, except with uncertain expiration date. The
finite-maturity timer option expires either when the accumulated realized variance of the un-
derlying asset has reached a pre-specified level or on the mandated expiration date, whichever
comes earlier. The challenge in the pricing procedure is the incorporation of the barrier fea-
ture in terms of the accumulated realized variance instead of the usual knock-out feature of
hitting a barrier by the underlying asset price. We construct the fast Hilbert transform al-
gorithms for pricing finite-maturity discrete timer options under different types of stochastic
volatility processes. The stochastic volatility processes nest some popular stochastic volatil-
ity models, like the Heston model and 3/2 stochastic volatility model. The barrier feature
associated with the accumulated realized variance can be incorporated effectively into the
fast Hilbert transform procedure with the computational convenience of avoiding the nui-
sance of recovering the option values in the real domain at each monitoring time instant
in order to check for the expiry condition. Our numerical tests demonstrate high level of
accuracy of the fast Hilbert transform algorithms. We also explore the pricing properties of
the timer options with respect to various parameters, like the volatility of variance, correla-
tion coefficient between the asset price process and instantaneous variance process, sampling
frequency, and variance budget.

Keywords: Finite-maturity timer options; Hilbert transform; stochastic volatility models.

1 Introduction

The price of a vanilla option is determined by the level of implied volatility quoted in the
market as well as the embedded option contractual terms, like maturity and strike price.
However, the level of implied volatility is often higher than the realized volatility, reflecting
the risk premium due to uncertainty of the future asset price movement. A higher implied
volatility used in pricing an option means the option would be overpriced. Based on the
empirical studies performed by Societe Generale Corporate and Investment Banking (SG
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CIB) in 2006 on options on Euro Stock 50 index since 2000, 80% of the three-month calls
that have matured in-the-money were overpriced. In April 2007, SG CIB (Sawyer 2007)
first launched the timer options as an attempt to resolve the volatility misspecification risk.
For a finite-maturity timer call option, the buyer of the option has the right to purchase
the underlying asset at the preset strike price at the first time when a pre-specified variance
budget is fully consumed by the accumulated realized variance of the price process of the
underlying asset or on the mandated preset expiration date, whichever comes earlier. In
this new type of options, we allow maturity to float. This is in contrast with the usual
European vanilla options where maturity is fixed and volatility floats. As early as in 1978,
the investment consultant firm Leland-O’Brien-Rubinstein experimented with the concept
of move-based (random expiration date) portfolio insurance strategies. Bick (1995) presents
a detailed analysis of a family of dynamic trading strategies that do not require forecasting
future volatility and illustrate various applications in portfolio insurance. Li (2009) presents
a discussion on managing volatility by timer options and explains how to use a timer put
option to hedge against market collapse.

The effective pricing of timer options poses some challenge due to the uncertain expi-
ration condition associated with the accumulated realized variance. Li (2015) manages to
obtain analytic price formulas for the timer call option under the Heston stochastic volatility
model. His success of analytical tractability relies on the characterization of the joint dis-
tribution of variance and variance clock based on the mathematical properties of the Feller
process and Bessel process. Based on an ingenious time change technique, Bernard and Cui
(2011) show that the pricing of a timer option under general stochastic volatility model can
be reduced to a one-dimensional model. They develop an almost exact simulation method
equipped with an effective control variate. However, both pricing methods neglect the fea-
ture of mandated maximum expiration date. Using the path integral technique developed in
the quantum field theory, Liang et al. (2011) manage to obtain pricing formulas for both the
perpetual and finite lived timer options under the Heston model and 3/2-stochastic volatility
model. Their approach works for stochastic volatility models where the transition density is
analytically tractable. The complexity of the pricing formulas is quite immense, involving
multi-dimensional integrals with complicated integrands. Some researchers seek for asymp-
totic approximation pricing formulas to achieve less complexity in analytic forms. Saunders
(2009) consider pricing timer options under the fast mean-reverting stochastic volatility
models, where the volatility of the underlying asset price follows an ergodic diffusion process
running on a fast time scale. Though nice analytical approximation formulas are obtained,
the validity of their asymptotic expansion requires extremely large value for the reversion
coefficient. The reversion coefficient value required for achieving sufficient level of accuracy
in the asymptotic formulas is more than 100 times of the physical value typically observed
in reality. Li and Mercurio (2014) propose a more reliable asymptotic expansion for pricing
perpetual timer options under general stochastic volatility models with volatility of variance
as the perturbation parameter. Their asymptotic formulas resemble the Black-Scholes form
that are quite readily computable. As an extension, Li and Mercurio (2015) also develop an
approximation technique for pricing finite-maturity timer options under Heston-like models.
However, a small value of the volatility of variance is required for achieving sufficient accu-
racy in these approximations. In addition, these analytic approximation approaches do not
incorporate the discrete monitoring feature of the variance budget in actual timer option
contracts.

It is always more effective to use numerical option pricing algorithms in the Fourier do-
main for pricing exotic discrete path dependent derivatives under stochastic volatility models
and Lévy models. This is attributed to the nice analytical tractability of the characteristic
function of the underlying asset price processes while the density function itself may not ad-
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mit an analytic closed form. A review of the fast Fourier transform option pricing algorithms
is presented by Kwok et al. (2012). Applications of the Fourier transform pricing algorithms
for various discrete exotic derivatives are quite numerous, like pricing of discrete barrier and
American options (Jackson et al. 2008) and discrete variance options (Zheng & Kwok 2014).
In this paper, we apply the fast Hilbert transform algorithm for pricing discrete timer op-
tions under various stochastic volatility models. The fast Hilbert transform algorithm was
first proposed by Feng and Linetsky (2008) for pricing barrier options and defaultable bonds
under Lévy processes. Zeng and Kwok (2014) extend the fast Hilbert transform approach
for pricing barrier and Bermudan style options under time-changed Lévy processes. The
success of the fast Hilbert transform approach to compute the fair prices of barrier style
derivatives in the Fourier domain lies in the mathematical identity that relates the Fourier
transform of a price function multiplied by an indicator function (arising from modeling the
barrier feature) to the Hilbert transform of the Fourier transform of the price function. In
essence, the fast Hilbert transform computes a sequence of Hilbert transforms at all discrete
monitoring dates and only one final step of Fourier inversion is required to recover the op-
tion price and state variables in the real domain. This avoids the nuisance of recovering the
option prices and underlying state variables in the real domain at each monitoring instant in
order to check for the expiration condition of the timer option. In comparison with all the
previous pricing methods for pricing timer options based on the continuous monitoring of the
barrier feature, we contribute to the existing literature by constructing numerical schemes
for pricing finite-maturity discrete timer options under different types of stochastic volatility
models.

This paper is organized as follows. In the next section, we discuss the model formulation
of the timer options and show how to construct the backward induction scheme for pricing
finite-maturity discrete timer options using the Fourier transform method under stochastic
volatility models. In Section 3, we present the fast Hilbert transform algorithms that deal
effectively with the discrete monitoring of the knock-out feature based on the variance budget
constraint in timer options. In order to incorporate the expiration condition associated with
the accumulated realized variance in a timer option, it is necessary to take the accumulated
realized variance as an additional state variable. In Section 4, we present the numerical
tests that were performed to assess accuracy of the Hilbert transform algorithms for pricing
finite-maturity discrete timer options under the Heston model and 3/2 stochastic volatility
model. Pricing properties of the timer options under varying values of volatility of variance,
correlation between the asset price process and variance process, and other model parameters
are examined. Conclusive remarks are presented in the last section.

2 Timer options

Instead of having a preset maturity date as in a vanilla option, a finite-maturity discrete
timer option expires on a random maturity date either at the first time when the accumu-
lated realized variance of the underlying stock exceeds a pre-specified level or the mandated
expiration date, depending on which one comes earlier. We consider a finite-maturity discrete
timer option written on an underlying asset whose price process is St. Let [0, T ] (T > 0) be
the life of the timer option and denote the tenor of the monitoring times for the underlying
asset price by T = {t0, t1 · · · , tN} with tN = T . For brevity, we assume a uniform monitoring
interval ∆, though the time intervals between successive monitoring times are not necessary
to be uniform. The discrete annualized realized variance of the underlying asset price process
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over the observation period [0, T ] is defined by

σ2
realized =

1

(N − 1)∆

N∑
i=1

(
ln

Sti

Sti−1

)2

. (2.1)

We introduce the discrete cumulative realized variance up to day N , which is calculated
according to following formula

Σ2
realized = N∆σ2

realized ≈
N∑
i=1

(
ln

Sti

Sti−1

)2

. (2.2a)

Taking the limit N → ∞ while T = N∆ is held finite, we obtain the continuous cumulative
realized variance IT over [0, T ] as follows

IT = lim
N→∞

Σ2
realized =

∫ T

0

(d lnSt)
2 = ⟨lnSt⟩T . (2.2b)

In the timer option contract, the investor specifies an expected investment horizon T0 and a
target volatility σ0. The variance budget is then given by

B = σ2
0T0.

Let τB be the first time in the tenor of monitoring dates at which the discrete cumulative
realized variance exceeds the variance budget B, namely,

τB = min

{
j

∣∣∣∣∣
j∑

i=1

(
ln

Sti

Sti−1

)2

≥ B

}
∆. (2.3)

The price of a finite-maturity discrete timer call option can expressed as a sum of two
components:

Ct = Et[e
−r(τB−t)max(SτB −K, 0)]1{τB<T} + e−r(T−t)max(ST −K, 0)1{τB≥T}], (2.4)

where K is the strike price and r is the constant interest rate. Here, Et denotes the expec-
tation under a risk neutral measure Q conditional on the filtration Ft. In the limit where B
tends to ∞, the finite-maturity discrete timer call option reduces to a European vanilla call
option.

Model formulation
The underlying asset price process St and its instantaneous variance vt under a risk neutral
measure Q are assumed to follow the following stochastic volatility model

dSt

St

= (r − q) dt+
√
vt dW

S
t ,

dvt = α(vt) dt+ β(vt) dW
v
t ,

(2.5)

where Et[dW
S
t dW

v
t ] = ρ dt. Here, ρ is the correlation coefficient between the pair of Brown-

ian motions, q is the costant dividend yield, α(vt) and β(vt) are Borel measurable functions
with respect to the natural filtration generated by the two correlated Brownian motions such
that the above system of stochastic differential equations admits a unique and non-exploding
solution, and the discounted dividend adjusted asset price process is a Q martingale. The
above representation nests the two well-known stochastic volatility models, namely, the He-
ston model and the 3/2 stochastic volatility model. The technical conditions on α(vt) and
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β(vt) for the existence of non-exploding solution in the 3/2 model have been discussed in
Drimus (2012).

For the stochastic volatility model of (2.5), we define the continuous realized variance
over [0, t] by

It =

∫ t

0

vs ds. (2.6)

To simplify the pricing procedure, we assume continuous cumulative realized variance over
successive monitoring time instants in our pricing models of the finite-maturity discrete
timer options. The use of continuous realized variance allows us to obtain the explicit
representation of the joint characteristic function of the relevant state variables in the pricing
problem. Let the current time be t0 = 0, we define γt = ln vt and write the log-asset return
normalized by the strike price K as xt = ln St

K
. Let Vtk(xtk , γtk , Itk) be the option value of

the finite-maturity discrete timer call option at monitoring time tk, k = 0, 1, · · · , N , where
xtk , γtk and Itk denote the normalized log-asset return, log-variance and realized variance,
respectively. Here, we choose the log-variance instead of variance since the corresponding
form of conditional density exhibits two advantages compared to the conditional density of
variance used in the usual integration based pricing methods. Firstly, the left tail of the
conditional density of log-variance decays to zero more rapidly. Secondly, the conditional
densities of the log-variance processes for varying parameter values are more symmetric than
those of the variance processes. For notational convenience, we write xtk , γtk and Itk as xk, γk
and Ik, respectively. The terminal condition of the timer option is given by

VtN (xN , γN , IN) = K(exN − 1)+1{IN≥0}.

Suppose we write
Utk(xk, γk, Ik) = Etk [Vtk+1

(xk+1, γk+1, Ik+1)],

then
Vtk(xk, γk, Ik) = e−r∆Utk(xk, γk, Ik)1{Ik<B} +K(exk − 1)+1{Ik≥B}, (2.7)

for k = 1, 2, · · · , N−1. The first term gives the continuation value conditional on the realized
variance staying below the variance budget. The second term shows that the option value
equals the exercise payoff K(exk − 1)+ once the variance budget is exhausted before man-
dated maturity T . The challenge in the pricing procedure is the incorporation of the barrier
feature in terms of the accumulated realized variance instead of the usual knock-out feature
of hitting a barrier by the underlying asset price. The value function of the timer option
contains an extra state variable of the accumulated realized variance due to the knock-out
feature associated with the variance budget.

Time-stepping calculations between successive monitoring dates
By the tower property and conditional on the log-variance process γk+1 at time tk+1, it
follows that

Utk(xk, γk, Ik) = E
[
E[Vtk+1

(xk+1, γk+1, Ik+1)|Ftk , γk+1]|Ftk

]
.

The outer expectation integral involves integration over the density function pγ(γtk+1
|γtk),

which has an analytic closed form under some common types of stochastic volatility models
[see Eqs. (A.2) and (B.2)]. To evaluate the above three-dimensional expectation integral,
we apply an interpolation based quadrature rule for the outer expectation integral and the
Fourier transform method for the inner expectation integral. As exemplified by the barrier
condition across a monitoring date shown in Eq. (2.7), we can take advantage of the fast
Hilbert transform method to deal with the barrier feature associated with the accumulated
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realized variance. The novel use of the fast Hilbert transform avoids the nuisance of recov-
ering the option prices in the real domain at each monitoring time instant in order to check
for the expiry condition.

FFT technique
We adopt the numerical quadrature rule to calculate the outer expectation integral. By
performing discretization along the dimension of log-variance γk+1 at the discrete nodes
ζj, j = 1, 2, · · · , J , we obtain

Utk(xk, γk, Ik) ≈
J∑

j=1

wjpγ(ζj|γk)E
[
Vtk+1

(xk+1, γk+1, Ik+1)|Ftk , γk+1 = ζj
]
, (2.8)

where wj is the weight at the quadrature node ζj, j = 1, 2, · · · , J . Next, we apply the
Fourier transform method to perform the inner expectation calculations. To guarantee that
the Fourier transforms are well defined, we need to introduce a proper exponential damping
factor. Let w = α1 + iβ1 and u = α2 + iβ2, where α1 and α2 are constants. At γk+1 = ζj,
xk+1 = x and Ik+1 = y, we define

V α1,α2
tk+1

(x, ζj, y) = eα1x+α2yVtk+1
(x, ζj, y). (2.9)

The parameters α1, α2 are chosen to insure the existence of the generalized two-dimensional
Fourier transform of Vtk+1

(x, ζj, y) as defined by

V̂ α1,α2
tk+1

(ζj; β1, β2) =

∫ ∞

−∞

∫ ∞

−∞
eiβ1x+iβ2yV α1,α2

tk+1
(x, ζj, y) dxdy

=

∫ ∞

−∞

∫ ∞

−∞
ewx+uyVtk+1

(x, ζj, y) dxdy,

where w = α1 + iβ1 and u = α2 + iβ2. By the renowned Parseval theorem, we can represent
the inner expectation as follows

E[Vtk+1
(xk+1, γk+1, Ik+1)|Ftk , γk+1 = ζj]

=

∫ ∞

−∞

∫ ∞

−∞
Vtk+1

(x, ζj, y) p(x, y|Ftk , γk+1 = ζj) dxdy

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
V̂ α1,α2
tk+1

(ζj; β1, β2)p̌(w, u|Ftk , γk+1 = ζj) dβ1dβ2.

(2.10)

Here, p̌(w, u|Ftk , γk+1 = ζj) = E
[
e−wx−uy|Ftk , γk+1 = ζj

]
is visualized as the generalized

inverse Fourier transform of the joint conditional density function p(x, y|Ftk , γk+1 = ζj) of
xk+1 and Ik+1. It is convenient to express p̌(w, u|Ftk , γk+1 = ζj) in the following analytic
representation

p̌(w, u|Ftk , γk+1 = ζj) = e−wxk−uIkE[e−w(xk+1−xk)−u(Ik+1−Ik)|Ftk , γk+1 = ζj]. (2.11)

Furthermore, we write Ψ(w, u; γt, γs) = E[ew(xt−xs)+u(It−Is)|Fs, γt]. Here, we have suppress
the dependency of Ψ on t− s for notational convenience. By the tower property, for s < t,
we have

Ψ(w, u; γt, γs) = E
[
E[ew(xt−xs)+u(It−Is)|Fs, γt, It − Is]|Fs, γt

]
= E

[
E[ew(xt−xs)|Fs, γt, It − Is]e

u(It−Is)|Fs, γt

]
. (2.12)
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In Section 4, we show that Ψ(w, u; γt, γs) possesses closed form analytic representation under
the Heston model and the 3/2 stochastic volatility model. Combining Eqs. (2.10), (2.11) and
(2.12), we may express the inner expectation integral at γk+1 = ζj as shown in the following
two-dimensional inverse Fourier transform representation

E[Vtk+1
(xk+1, γk+1, Ik+1)|Ftk , γk+1 = ζj]

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−wxk−uIk V̂ α1,α2

tk+1
(ζj; β1, β2)Ψ(−w,−u; ζj, γk) dβ1dβ2.

(2.13)

Here, we have set γk+1 = ζj in the conditional moment generating function Ψ(w, u; γk+1, γk).

Summary of the computational procedures
GivenN+1 discrete monitoring dates, where the tenor is T = {tk|k = 0, 1, · · · , N}, the back-
ward induction procedure as exemplified by the numerical evaluation of the three-dimensional
expectation integral for pricing finite-maturity discrete timer call options are summarized as
follows:

(i) The backward induction procedure is initiated by the following analytic terminal con-
dition

VtN (xN , γN , IN) = K(exN − 1)+1{IN≥0}. (2.14a)

(ii) Time-stepping calculations between two consecutive monitoring dates
For k = N − 1, N − 2, · · · , 1, the numerical approximation of Vtk(xk, γk, Ik) is recur-
sively calculated by computing a sequence of Fourier transforms and inverse Fourier
transforms

Vtk(xk, γk, Ik) = e−r∆Utk(xk, γk, Ik)1{Ik<B} +K(exk − 1)+1{Ik≥B}, (2.14b)

where

Utk(xk, γk, Ik) ≈
J∑

j=1

wj

4π2

∫ ∞

−∞

∫ ∞

−∞
e−wxk−uIk V̂ α1,α2

tk+1
(ζj; β1, β2)Ψ̃(−w,−u; ζj, γk) dβ1dβ2,

(2.14c)

Here, we write Ψ̃(−w,−u; ζj, γk) = Ψ(−w,−u; ζj, γk)pγ(ζj|γk), and Utk(xk, γk, Ik) is
easily obtained by combining Eqs. (2.8) and (2.13).

(iii) The finite-maturity discrete timer call option value is approximated by

Vt0(x0, γ0, I0)

≈
J∑

j=1

e−r∆wj

4π2

∫ ∞

−∞

∫ ∞

−∞
e−wx0e−uI0V̂ α1,α2

t1 (ζj; β1, β2)Ψ̃(−w,−u; ζj, γ0) dβ1dβ2.

(2.14d)

The evaluation of the above Fourier integrals can be performed using the fast Fourier
transform (FFT) method, which requires performing N − 1 steps of Fourier transform in-
version and N − 1 steps of Fourier transform in the backward induction. In this paper, we
propose an enhanced alternative of the Fourier transform approach, the fast Hilbert trans-
form method, for pricing finite-maturity timer call options under various types of stochastic
volatility models. One may also adopt an extension of the Fourier-cosine series method (Fang
& Oosterlee 2011) for pricing timer options.
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3 Fast Hilbert transform algorithm for timer option

The key ingredient in the fast Hilbert transform method is that multiplying a function by
the indicator function associated with the barrier feature in the real domain corresponds to
taking Hilbert transform in the Fourier domain. When we employ the fast Hilbert transform
algorithm to reformulate the backward induction in the Fourier domain for timer option
prices, we can avoid the nuisance of recovering the option values in the real domain ex-
cept at the last monitoring instant. The fast Hilbert transform algorithm only requires the
computation of N − 1 steps of Hilbert transforms.

3.1 Review of Hilbert transform

For any f ∈ Lp(R), 1 ≤ p < ∞, we define the Fourier transform f̂ by

f̂ = Ff =

∫ ∞

−∞
eiβxf(x) dx, (3.1)

and f̂ = Ff ∈ Lq(R) with 1
p
+ 1

q
= 1. For any f ∈ Lp(R), 1 ≤ p < ∞, its Hilbert transform

is defined by the following Cauchy principal value integral (King, 2009)

Hf(x) =
1

π
PV

∫
R

f(y)

x− y
dy, (3.2)

and Hf̂ ∈ Lq(R) with 1
p
+ 1

q
= 1. For the special case p = 1, we require f̂ ∈ L1(R). For any

b ∈ R, it is instructive to establish the following formula that relates the Fourier transform
of a function multiplied by the indicator function to the Hilbert transform of the Fourier
transform function (Feng & Linetsky 2008):

F(1(−∞,b) · f)(β) =
1

2
f̂(ξ)− i

2
eiβbH

(
e−iηbf̂(η)

)
(β). (3.3)

The Hilbert transform can be evaluated based on the Sinc expansion of an analytic function
as follows

Hf(x) =
1

π
PV

∫
R

f(y)

x− y
dy =

∞∑
l=−∞

f(lh)
1− cosπ(x−lh)

h
π(x−lh)

h

, h > 0, (3.4)

where h is the fixed discretization step. More details on the success of the fast Hilbert trans-
form algorithms for pricing discrete barrier options, discrete lookback options and Bermudan
options under Lévy processes or time-changed Lévy processes can be found in Feng & Linet-
sky (2008, 2009), Lin & Feng (2013), and Zeng & Kwok (2014).

3.2 Construction of the fast Hilbert transform algorithm

The backward induction procedure in the Fourier domain using the fast Hilbert transform
algorithm for pricing finite-maturity discrete timer options can be reformulated as follows:

(i) We initiate the time stepping calculations at maturity tN . The generalized Fourier
transform of the terminal payoff admits the analytic formula

V̂ α1,α2
tN

(ζj; β1, β2) = − K

(α1 + iβ1)(α1 + iβ1 + 1)(α2 + iβ2)
, (3.5a)

for j = 1, 2, · · · , N . Here, the constraints α1 < −1 and α2 < 0 should be observed in
order to guarantee the existence of the above generalized Fourier transform.

8



(ii) For the intermediate time steps, k = N − 1, N − 2, · · · , 1, the numerical approxima-
tion of V̂ α1,α2

tk
(ζp; β1, β2) is recursively calculated by computing a sequence of Hilbert

transforms

V̂ α1,α2
tk

(ζp; β1, β2)

= e−r∆

[
1

2
Ûα1,α2
tk

(ζp; β1, β2)−
i

2
eiβ2BH

(
e−iβ

′
2BÛα1,α2

tk
(ζp; β1, β

′

2)
)
(β2)

]
− Ke(α2+iβ2)B

(α1 + iβ1)(α1 + iβ1 + 1)(α2 + iβ2)
,

(3.5b)

for p = 1, 2, · · · , N . Here, we approximate Ûα1,α2
tk

(ζp; β1, β2) using the quadrature rule

Ûα1,α2
tk

(ζp; β1, β2) ≈
J∑

j=1

wjV̂
α1,α2
tk+1

(ζj; β1, β2)Ψ̃(−w,−u; ζj, ζp). (3.5c)

(iii) For the last step that corresponds to k = 0, the timer call option value is obtained by

Vt0(x0, ζp, I0)

≈
J∑

j=1

e−r∆wj

4π2

∫ ∞

−∞

∫ ∞

−∞
e−(α1+iβ1)x0e−(α2+iβ2)I0V̂ α1,α2

t1 (ζj; β1, β2)Ψ̃(−w,−u; ζj, ζp) dβ1dβ2,

(3.5d)
for p = 1, 2, · · · , N .

The construction of the above fast Hilbert transform algorithm is explained as follows.
When the quadrature rule is applied in the log-variance dimension, we perform the computa-
tion on a set of log-variance nodes at maturity tN , where γN = ζj, j = 1, 2, · · · , N . The same
set of log-variance nodes are employed over all time steps in the backward induction. Recall
that across a monitoring date, we incorporate the condition as exemplified by Eq. (2.14b).
By taking the two-dimensional generalized Fourier transform on both sides of Eq. (2.14b)
and using the crucial relation (3.3) between the Fourier transform and Hilbert transform for
the realized variance dimension, we obtain Eq. (3.5b) on each log-variance node. By multi-
plying the damping factor and taking the two-dimensional Fourier transform with respect to
xk and Ik of both sides of Eq. (2.14c), we obtain Eq. (3.5c) by performing the computation
on the set of log-variance nodes. In the last time step, we compute Vt0(x0, ζp, I0) through the
two-dimensional inverse Fourier transform on each log-variance node as shown in Eq. (3.5d).

Discrete approximation
Next, we provide the details on the evaluation of the Hilbert transform in the following form

q(β) = H
(
e−iηxf̂(η)

)
(β),

and the calculation of the two-dimensional inverse Fourier transform

g(x1, x2) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−iβ1x1e−iβ2x2 ĝ(β1, β2) dβ1dβ2.

The Hilbert transform can be evaluated by the truncated Sinc approximation [see Eq. (3.4)]
as follows

qh,L(β) =
L∑

l=−L

e−ilhxf̂(lh)
1− cosπ(β−lh)

h
π(β−lh)

h

, (3.6)
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while the inverse Fourier transform can be evaluated numerically by the following discretized
and truncated operator:

gh1,M,h2,L(x1, x2) =
1

4π2

M∑
m=−M

L∑
l=−L

e−imh1x1e−ilh2x2 ĝ(mh1, lh2)h1h2. (3.7)

The trapezoidal sum approximation has been shown to be highly accurate, exhibiting expo-
nentially decaying discretization errors. We use h1 and [−Mh1,Mh1] to denote the step size
and finite truncation domain for the log-asset dimension, respectively. Also, we use h2 and
[−Lh2, Lh2] to denote the step size and finite truncation domain for the realized variance
dimension, respectively.

Implementation procedures
Based on the above discrete approximations, we present the detailed implementation proce-
dure of the fast Hilbert transform algorithm for pricing finite-maturity discrete timer options
under the various types of stochastic volatility models.

Repeat Step 1 and Step 2 for β1 = −Mh1, · · · ,Mh1

Step 1: Preparation
Calculate the generalized Fourier transform of the terminal payoff V̂ α1,α2

tN
(ζj; β1, β2) using the

analytic formula (3.5a) for β2 = −Lh2, · · · , Lh2 and j = 1, 2, · · · , J .. Prepare the matrix

with elements Ψ̃(−α1 − iβ1,−α2 − ilh; ζj, ζp) for p = 1, 2, · · · , J .

Step 2: Backward induction in the Fourier domain
Based on the discrete approximation to the Hilbert transform [see Eq. (3.6)], we compute
V̂ α1,α2
tk

(ζp; β1, β2) recursively as follows

V̂ α1,α2
tk

(ζp; β1, β2)

=
e−r∆

2

{
J∑

j=1

wjV̂
α1,α2
tk+1

(ζj; β1, β2)Ψ̃(−α1 − iβ1,−α2 − iβ2; ζj, ζp)

− ieiβ2B

L∑
l=−L

e−ilh2B

J∑
j=1

wjV̂
α1,α2
tk+1

(ζj; β1, lh2)Ψ̃(−α1 − iβ1,−α2 − ilh2; ζj, ζp)
1− cosπ(β2−lh2)

h2

π(β2−lh2)
h2

}

− Ke(α2+iβ2)B

(α1 + iβ1)(α1 + iβ1 + 1)(α2 + iβ2)
,

(3.8a)
for β2 = −Lh2, · · · , Lh2 and j = 1, 2, · · · , J .

Repeat Step 2 for k = N − 1, · · · , 1.

Step 3: Inversion of Fourier transform at the final step to recover the timer option value
The inverse Fourier transform representation (3.5d) can be approximated by numerical
quadrature as follows

Vt0(x0, ζp, I0)

≈ e−r∆

4π2

M∑
m=1

L∑
l=1

J∑
j=1

e−(α1+imh1)x0e−(α2+ilh2)I0wjV̂
α1,α2
t1 (ζj;mh1, lh2)

Ψ̃(−α1 − imh1,−α2 − ilh2; ζj, ζp)h1h2.

(3.8b)
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One can either use a spline interpolation to obtain the value of Vt0(x0, γ0, I0) from the grid
values Vt0(x0, ζp, I0), p = 1, 2, · · · , J , or choose the grid layout such that γt0 lies exactly on
the grid.

Remarks

(i) The fast Hilbert transform algorithm also works for perpetual timer options, provided
one takes a sufficient larger T .

(ii) Since the initial asset price only appears at the final time step of the algorithm, the
fast Hilbert transform algorithm can be used to price finite-maturity discrete timer
options at varying values of S0 simultaneously with almost no additional computational
cost. Note that the values of the generalized Fourier transform of timer option prices
are proportional to the strike price at each time step, multiple timer option values
at varying values of K can also be obtained simultaneously using the fast Hilbert
transform algorithm by modifying the formula at the final time step. In addition, the
timer option delta can be calculated by taking the first derivative of the value function
(3.8b) with respect to S0 as follows

∂Vt0(x0, ζp, I0)

∂S0

≈ − e−r∆

4π2S0

M∑
m=1

L∑
l=1

J∑
j=1

(α1 + imh1)e
−(α1+imh1)x0e−(α2+ilh2)I0wj

V̂ α1,α2
t1 (ζj;mh1, lh2)Ψ̃(−α1 − imh1,−α2 − ilh2; ζj, ζp)h1h2.

(3.9)

To obtain the option delta, one only needs to compute one additional Fourier inversion
at the last time step.

For pricing finite-maturity discrete timer options in Step 2, we evaluate V̂ α1,α2
tk

(ζp; β1, β2)
at β2 = nh2 for n = −L, · · · , L. More specifically,

V̂ α1,α2
tk

(ζp; β1, nh2)

=
e−r∆

2

{
J∑

j=1

wjV̂
α1,α2
tk+1

(ζj; β1, nh2)Ψ̃(−α1 − iβ1,−α2 − inh2; ζj, ζp)

− ieinh2B

L∑
l=−L,l ̸=n

e−ilh2B

J∑
j=1

wjV̂
α1,α2
tk+1

(ζj; β1, lh2)Ψ̃(−α1 − iβ1,−α2 − ilh2; ζj, ζp)
1− (−1)n−l

π(n− l)

}

− Ke(α2+inh2)B

(α1 + iβ1)(α1 + iβ1 + 1)(α2 + inh2)
,

(3.10)
where n = −L, · · · , L. Note that the first summation of the second term in the above equa-
tion is simply the multiplication of a matrix by a vector. In actual numerical implementation,
the computational cost in the realized variance dimension at each time step is O(L2). One
observes that the matrix whose entries are given by

Tn,l =
1− cosπ(nh2−lh2)

h2

π(nh2−lh2)
h2

=

{
1−(−1)n−l

π(n−l)
l ̸= n

0 l = n
(3.11)

is a Toeplitz matrix. In view of the special structure of the Toeplitz matrix, the correspond-
ing matrix-vector multiplication can be implemented using the fast Fourier transform with
computational complexity of O(L logL).
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We would like to reformulate the backward induction in the Fourier domain in an easier
format in matrix/vector notation in Step 2. For each fixed β1, we introduce the following β1

dependent notations: V̂ α1,α2
tk+1

is a (2L+1)× J matrix with elements V̂ α1,α2
tk+1

(ζj; β1, lh2), Ψ̃(ζp)

is a (2L+1)×J matrix with elements Ψ̃(−α1−iβ1, α2−ilh2; ζj, ζp) for p = 1, 2, · · · , J , w is a
column vector containing the quadrature weights. We construct the following matrix/vector
multiplication

κtk(ζp) = [V̂ α1,α2
tk+1

· Ψ̃(ζp)]w, p = 1, 2, · · · , J ;

Btk = [κtk(ζ1),κtk(ζ2), · · · ,κtk(ζJ)],

where κtk(ζp) is a column vector of dimension 2L+ 1, Btk is a (2L+ 1)× J matrix, and the
operator “ · ” denotes an element-wise matrix-matrix product.

Let H,G and F be the (2L+1)×J matrices whose entries are H(l, p) = e−ilh2B, G(l, p) =

− Ke(α2+ilh2)B

(α1+iβ1)(α1+iβ1+1)(α2+ilh2)
and F (l, p) = eilh2B, respectively. According to Eq. (3.10), we can

rewrite the backward induction in the Fourier domain in the following matrix/vector form

V̂ α1,α2
tk

=
e−r∆

2
Btk −

e−r∆i

2
[T (Btk ·H)] · F −G, (3.12)

where T is the Toeplitz matrix defined in Eq. (3.11). The Toeplitz matrix-vector multipli-
cation can achieve O(L log2 L) complexity in the realized variance dimension. Moreover, the
same Toeplitz matrix is used over all time steps. Only two runs of the fast Fourier transform
are required for each time step. In fact, we only need to update Btk to recover V̂ α1,α2

tk
at each

time step for each β1 .
The enhanced version of the fast Hilbert transform algorithm for pricing finite-maturity

discrete timer options is summarized in the table below.

Algorithm: Pricing finite-maturity discrete timer options under general
stochastic volatility models.

For each β1 = mh1, where m = −M, · · · ,M , begin the loop for m:

Preparation
Calculate V̂ α1,α2

tN
using the analytic formula (3.5a);

Prepare matrix Ψ̃(ζp) for p = 1, 2, · · · , J ;
Prepare matrices H,G and F ;
Calculate the first row and column of the Toeplitz matrix T .

Backward induction
Calculate κtk(ζp) = [V̂ α1,α2

tk+1
· Ψ̃(ζp)]w for p = 1, 2, · · · , J , and update Btk ;

Compute V̂ α1,α2
tk

by Eq. (3.12) using FFT algorithm for k = N − 1, · · · , 1.

End the loop for m.

Timer option value at t0
Calculate the timer option value by Eq. (3.8b). Use a spline interpolation
to obtain Vt0(x0, γ0, I0).

Computational complexity
The computation in the main loop is dominated by numerical evaluation of the elements in
[T (Btk ·H)] · F for each fixed β1, whose computational complexity is O(MJ2L logL). This
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is achieved by taking advantage of the special structure of the Toeplitz matrix T and the
use of the fast Fourier transform, which is in contrast to the direct computation with com-
putational complexity of O(MJ2L2) operations. As a result, the overall complexity of the
fast Hilbert transform algorithm is O(NMJ2L logL), where N is the number of monitoring
instants, and M , J and L are the truncation level parameters in the log-asset dimension,
log-variance dimension and realized variance dimension, respectively.

4 Numerical tests on the Hilbert transform algorithms

Under the general stochastic volatility model as depicted in Eq. (2.5), the asset price process
has the following representation (Bernard & Cui 2011)

St = S0e
(r−q)t+at+

√
bt W , (4.1)

where at and bt are defined by

at = ρ[f(vt)− f(v0)]− ρHt −
It
2

and bt = (1− ρ2)It,

with

Ht =

∫ t

0

h(vs) ds and f(vt) =

∫ √
vt

β(vt)
dvt.

Here, W is a standard normal random variable and h is defined by

h(vt) = α(vt)f
′
(vt) +

1

2
β2(vt)f

′′
(vt).

4.1 Specific models: Heston model and 3/2 model

The kernel function Ψ̃(w, u; γt, γs) is the only input that characterizes the specific stochastic

volatility model. This section shows the explicit representation of Ψ̃(w, u; γt, γs) for the two
specific stochastic volatility models, namely, the Heston model and 3/2 stochastic volatility
model. When the closed form analytic expression of the kernel function is not available,
one may require an extra numerical integration procedure to obtain the discrete values of
Ψ̃ required for the subsequent numerical procedures of the fast Hilbert transform. As a
result, the algorithm becomes more computationally cumbersome. Also, note that analytic
tractability of Ψ̃(w, u; γt, γs) is preserved when the underlying asset process exhibits inde-
pendent Poisson jumps (see Remark at the end of Section 4.1).

Case 1: Heston model
For the Heston stochastic volatility model, the dynamics for its variance is defined by

dvt = λ(v̄ − vt) dt+ η
√
vt dW

v
t . (4.2)

In the Heston model, α(vt) = λ(v̄ − vt) and β(vt) = η
√
vt. It follows that f(vt) = vt

η
and

h(vt) =
λ(v̄−vt)

η
. We can rewrite the normalized log-asset return process based on Eq. (4.1)

as follows

xt = ln
S0

K
+ (r − q)t+

ρ

η
(eγt − eγ0 − λv̄t) +

(
ρλ

η
− 1

2

)
It +

√
(1− ρ2)ItW.
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In this case, we have

Ψ(w, u; γt, γs)

= E
[
E[ew(xt−xs)|Fs, γt, It − Is]e

u(It−Is)|Fs, γt

]
= ew{(r−q)(t−s)+ ρ

η
[eγt−eγs−λv̄(t−s)]}Φ

(
−iw

(
ρλ

η
− 1

2

)
− 1

2
iw2(1− ρ2)− iu; eγt , eγs

)
,

where Φ(ξ; γt, γs) = E[eiξ
∫ t
s vu du|γt, γs] is the conditional characteristic function of the time-

integrated log-variance process
∫ t

s
vu du. To compute Ψ̃(w, u; γt, γs), we need to evaluate the

conditional density of log-variance pγ(γt|γs) and Φ(ξ; γt, γs) = E[eiξ
∫ t
s vu du|γt, γs], the details

of which are presented in Appendix A.

Case 2: 3/2 stochastic volatility model
Another popular model is the 3/2 stochastic volatility model, whose variance process evolves
according to the following dynamics

dvt = λvt(v̄ − vt) dt+ ηv
3/2
t dW v

t . (4.3)

This is also a mean-reverting process, where the speed of mean-reversion is in proportional to
the level of the variance process. The use of Itô’s formula gives the corresponding dynamics
for 1

vt

d

(
1

vt

)
= λv̄

(
λ+ η2

λv̄
− 1

vt

)
dt− η

√
vt

dW v
t . (4.4)

The reciprocal of the variance process of the 3/2 model follows a mean-reverting square-root

process with parameters (λv̄, λ+η2

λv̄
,−η).

In this case, α(vt) = λvt(v̄ − vt) and β(vt) = ηv
3/2
t . It follows that f(vt) = ln vt

η
and

h(vt) = λ
η

[
v̄ −

(
1 + η2

2λ

)
vt

]
. The normalized log-asset return process can be expressed as

follows

xt = ln
S0

K
+ (r − q)t+

ρ

η
[γt − γ0 − λv̄t] +

[
ρλ

η

(
1 +

η2

2λ

)
− 1

2

]
It +

√
(1− ρ2)ItW.

Similarly, we have

Ψ(w, u; γt, γs)

= ew{(r−q)(t−s)+ ρ
η
[γt−γs−λv̄(t−s)]}Φ

(
−iw

[
ρλ

η

(
1 +

η2

2λ

)
− 1

2

]
− 1

2
iw2(1− ρ2)− iu; eγt , eγs

)
.

The closed form formulas of the conditional density of log-variance pγ(γt|γs) and the condi-
tional characteristic function Φ(ξ; γt, γs) are presented in Appendix B.

Remark
Suppose the stochastic volatility model with jump takes the form

dSt

St

= (r − q − λϑ) dt+
√
vt dW

S
t +

(
eJ − 1

)
dNt,

dVt = α(vt) dt+ β(vt) dW
v
t ,

where a jump component as modeled by a compound Poisson process is appended to the
asset price process of the original stochastic volatility model of (2.5). Here, J stands for
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the random jump size and Nt is an independent Poisson process with constant intensity λ.
Assuming the jump size to be a normal random variable with mean µ and variance σ2, then
we have

ϑ = E
[
eJ − 1

]
= eµ+σ2/2 − 1.

Let Ψ̃ and Ψ̃jump denote the corresponding kernel function for the stochastic volatility models
without and with jumps, respectively. After some technical calculations, we can obtain the
following relation

Ψ̃jump(w, u; γt, γs) = e

(
−wλϑ+exp

(
2iµ(−iw−iuµ)+w2σ2

2(1−2uσ2)

)
λ√

1−2uσ2
−λ

)
(t−s)

Ψ̃(w, u; γt, γs).

The fast Hilbert transform algorithm remains to be viable when independent Poisson jumps
are appended to the asset price process. The only complexity added is simply the inclusion
of an additional term in the analytic kernel function.

4.2 Numerical results

In this section, we would like to demonstrate the performance of the fast Hilbert transform
algorithms for pricing finite-maturity discrete timer options under the two popular stochastic
volatility models: Heston model and 3/2 stochastic volatility model.

Heston model
The parameter values in the Heston model and finite-maturity discrete timer call options used
in our sample calculations are listed in Table 1. Indeed, they are the same set of parameter
values used in Liang et al. (2011), together with the number of monitoring instants N as
an additional parameter for discrete timer options. Since the variance budget B is equal
to v0, the expected target maturity is roughly about 1 year. Table 2 reports the numerical
results obtained from the fast Hilbert transform algorithm and the benchmark prices for
different strike prices and correlation values. The benchmark results are obtained using
Monte Carlo simulation (labeled MC1) based on 20 million simulation runs and 800 time
steps per year. The relative percentage errors between the numerical results obtained from
the fast Hilbert transform (labeled Hilbert) and the Monte Carlo results are always less than
0.2%. This reveals high level of accuracy of the fast Hilbert transform algorithm. For further
comparison, we list the numerical results for finite-maturity continuous timer options that
are obtained using the path integral approach (Liang et al. 2011). Given the high frequency
of monitoring (N = 300), the values of the discrete timer call options and their continuous
counterparts are sufficiently close to each other. The benchmark results for the timer call
option values under continuous monitoring using Monte Carlo simulation with 20 million
simulation runs and 3200 time steps per year are also listed (labeled MC2) for comparsion.

Table 1: Parameter values in the Heston model and finite-maturity discrete timer options

S0 T r q B N λ η v̄ v0
100 1.5 0.015 0 0.087 300 2 0.375 0.09 0.087
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Table 2: Comparison of the numerical results for finite-maturity discrete timer call options
for varying strike prices K and correlation values ρ obtained from the fast Hilbert transform
algorithm with the benchmark results obtained using the Monte Carlo method (MC1) under
the Heston model. Numerical results for finite-maturity timer call options under continuous
monitoring obtained using the path integral approach and the corresponding Monte Carlo
results (MC2) are also provided.

K ρ Hilbert MC1 RE(%) Path integral MC2
-0.5 17.6905 17.6927 -0.0124 17.6914 17.6851

90 0 17.5517 17.5551 -0.0194 17.5351 17.5330
0.5 17.4910 17.4882 0.0160 17.4627 17.4680
-0.5 12.3996 12.4099 -0.0830 12.4034 12.4010

100 0 12.2804 12.2909 -0.0854 12.2675 12.2678
0.5 12.2647 12.2692 -0.0367 12.2426 17.2464
-0.5 8.4174 8.4313 -0.1649 8.4206 8.4218

110 0 8.3503 8.3634 0.1566 8.3393 8.3405
0.5 8.3716 8.3774 -0.0692 8.3522 8.3542

3/2 stochastic volatility model
Similarly, we employ the fast Hilbert transform algorithm for pricing finite-maturity discrete
timer call options under the 3/2 stochastic volatility model. The parameter values are
taken from the same set of parameter values used in Liang et al. (2011). Table 3 displays
the parameter values for the finite-maturity discrete timer call options used in our sample
calculations for the 3/2 model. Similarly, we show the comparison of the numerical results
obtained from the fast Hilbert transform algorithm with the benchmark prices for different
strike prices and correlation values in Table 4. The benchmark results are obtained using
Monte Carlo simulation (labeled MC1) based on 20 million simulation runs and 800 time
steps per year. The relative percentage errors between the numerical results obtained from
the fast Hilbert transform (labeled Hilbert) and the Monte Carlo results are always less than
0.3%, thus confirming high level of accuracy of the fast Hilbert transform algorithm. With
the chosen set of parameter values, the finite-maturity discrete timer call option prices are
also very close to each other under the Heston model and 3/2 stochastic volatility model.
We also observe that negative correlation coefficient ρ between the asset price process and
its variance process gives slightly higher timer option values. For further comparison, we
report the numerical results for the prices of continuously monitored counterpart obtained
using the path integral approach (Liang et al. 2011) and Monte Carlo simulation (labeled
MC2). The Monte Carlo simulation calculations were performed using 20 million sample
paths and 3200 time steps per year.

Table 3: Parameter values in the 3/2 model and finite-maturity discrete timer call options

S0 T r q B N λ η v̄ v0
100 1.5 0.015 0 0.087 200 22.84 8.56 0.218 0.087
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Table 4: Comparison of the numerical results for finite-maturity discrete timer call options
for varying strike prices K and correlation values ρ obtained from the fast Hilbert trans-
form algorithm with the benchmark results obtained using the Monte Carlo method (MC1)
under the 3/2 stochastic volatility model. Numerical results for finite-maturity timer call
options under continuous monitoring obtained using the path integral approach and the
corresponding Monte Carlo results (MC2) are also provided.

K ρ Hilbert MC1 RE(%) Path integral MC2
-0.5 17.7155 17.7383 -0.1285 17.6813 17.6790

90 0 17.5778 17.5892 -0.0648 17.5385 17.5510
0.5 17.4923 17.5016 -0.0531 17.4260 17.4301
-0.5 12.4366 12.4594 -0.1830 12.4089 12.3998

100 0 12.3195 12.3328 -0.1078 12.2780 12.2890
0.5 12.2759 12.2856 -0.0790 12.2104 12.2032
-0.5 8.4608 8.4802 -0.2287 8.4381 8.4301

110 0 8.3951 8.4063 -0.1332 8.3531 8.3611
0.5 8.3897 8.3962 -0.0774 8.3229 8.3153

4.3 Sensitivity analysis

Finally, we examine the pricing properties of the finite-maturity discrete timer call options
under the Heston model with respect to various model parameters, like variance budget B,
number of monitoring instants N , volatility of variance η and interest rate r. Option delta
values ∆ are also obtained under different initial asset prices and interest rates.

Variance budget B
Figure 1 shows that the finite-maturity discrete timer call option price is an increasing
function of the variance budget B. When B becomes sufficiently large, the finite-maturity
discrete timer call option value becomes almost insensitive to B and tends to that of the
European vanilla call option. Intuitively, an option is usually more expensive with a longer
life. The higher variance budget B leads to the later arrival of the knock-out of the timer
call option, thus giving a more expensive timer call option price.

Number of monitoring instants N
In Figure 2, we plot the finite-maturity discrete timer call option prices against number of
monitoring instants N . The discrete timer call option value decreases when the number of
monitoring instants increases. Under high frequency of monitoring (N = 300), the prices of
the discrete timer call options and their continuous counterpart are sufficiently close to each
other. The discrete timer option prices converge to that of the continuous counterpart from
above. In fact, the investor obtains a discrete timer option whose variance budget usually
overshoots its original variance budget B due to discrete monitoring of the accumulated
realized variance for termination of the timer option. Recall that the higher variance bud-
get B gives a more expensive timer option price, so this explains the observed behavior of
the finite-maturity discrete timer call option prices against number of monitoring instants N .
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Figure 1: Plot of the prices of finite-maturity at-the-money discrete timer call option with
leverage effect (S0 = K = 100, ρ = −0.5) obtained by the fast Hilbert transform algorithm
against variance budget B under the Heston model. The dashed line displays the discrete
timer call option price when B = 1, which reduces to the vanilla European call option when
B is sufficiently large.
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Figure 2: Plot of the prices of finite-maturity at-the-money discrete timer call option with
leverage effect (S0 = K = 100, ρ = −0.5) obtained by the fast Hilbert transform algorithm
against number of monitoring instantsN under the Heston model. The dashed line represents
the finite-maturity timer call option price under continuous monitoring.

Volatility of variance η
Table 5 examines the dependence of the finite-maturity discrete timer option call prices on
the three different values of volatility of variance η under two different correlation coefficients,
namely, ρ = −0.5 and ρ = 0.5. The price function of a finite-maturity timer call option may
not be a monotonically increasing function of η. We observe that when ρ = −0.5, the discrete
timer call option price firstly increases and then decreases with an increasing value of η. On
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the other hand, when ρ = 0.5, the discrete timer call option price is a decreasing function of
η.

Table 5: Comparison of the numerical values for finite-maturity discrete timer call option
prices with varying values of strike prices, volatility of variance and correlation coefficient
under the Heston model. The parameter values are taken from Table 1, except with varying
values of η.

ρ η K = 90 K = 94 K = 98 K = 102 K = 106 K = 110
0.15 17.6571 15.3986 13.3621 11.5434 9.9315 8.5091

-0.5 0.3 17.7028 15.4356 13.3888 11.5585 9.9342 8.4989
0.45 17.6654 15.3651 13.2840 11.4197 9.7630 8.2986
0.15 17.5859 15.3234 13.2845 11.4650 9.8537 8.4333

0.5 0.3 17.5453 15.2842 13.2475 11.4307 9.8226 8.4056
0.45 17.4522 15.1898 13.1569 11.3472 9.7483 8.3413

Delta ∆
Figure 3 reveals the sensitivity of the delta ∆ to the initial asset price S0 for different values
of the interest rate r. The behavior of the timer call option delta is similar to that of a plain
vanilla call option. The discrete timer call option delta is an increasing function of the initial
asset price S0. A higher level of interest rate r also implies a higher delta value.

As a remark, the above numerical results obtained from our Hilbert transform algorithm
agree well with the Monte Carlo simulation results.
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Figure 3: Plot of the delta values of discrete timer call option obtained by the fast Hilbert
transform algorithm against initial asset price S0 under the Heston model with varying values
of interest rate.

5 Conclusion

We construct the fast Hilbert transform algorithms for pricing finite-maturity discrete timer
options under the Heston model and 3/2 stochastic volatility models. The challenge in
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the pricing procedure is the incorporation of the barrier feature in terms of the accumulated
realized variance instead of the usual knock-out feature of hitting a barrier by the underlying
asset price. By applying the fast Hilbert transform method in the realized variance dimension
and a quadrature rule in the log-variance dimension, numerical pricing of a timer option is
seen to be related to evaluation of a sequence of Hilbert transforms in the Fourier domain.
The option delta and gamma can also be obtained with almost no additional computational
effort.

The overall computational complexity of the fast Hilbert transform algorithm for pricing
finite-maturity discrete timer options is O(NMJ2L logL), where N is the number of moni-
toring instants, M , J and L are the truncation level parameters in the log-asset dimension,
log-variance dimension and realized variance dimension, respectively. Our numerical tests
on pricing finite-maturity discrete timer options under the Heston model and 3/2 model
demonstrate high level of numerical accuracy and robustness of the fast Hilbert algorithm
for pricing options with exotic barrier feature.

20



Appendix A. Properties of the CIR process
For the CIR process vt as governed by Eq. (4.2), we introduce the following parameters

ν =
2λv̄

η2
− 1 and ζ =

2λ

[1− e−λ(t−s)]η2
.

The Feller condition is equivalent to “ν ≥ 0”, which is difficult to satisfy in practice. Recall
that the process vt is governed by a noncentral chi-squared distribution (Cox et al. 1985)

vt =
1

2ζ
χ′2
2(ν+1)[ 2ζe

−λ(t−s)vs ], t > s, (A.1)

where χ′2
2(ν+1)(m) denotes the noncentral chi-squared random variable with 2(ν + 1) degrees

of freedom and noncentrality parameter m. As a result, the probability density function of
vt given vs can be obtained as follows

p(vt|vs) = ζe−ζ[vse−λ(t−s)+vt]
[
eλ(t−s)vt

vs

] ν
2

Iν

(
2ζe−

1
2
λ(t−s)√vsvt

)
,

where Iν(·) is the modified Bessel function of the first kind with order ν. The left tail
of the conditional density of log-variance decays to zero more rapidly compared to that of
variance. Especially when the Feller condition fails, the density of variance grows extremely
fast as the variance approaches zero. Instead, the left tail of the conditional density of log-
variance converges to zero. This property dictates the adoption of the transformation from
the variance domain to the log-variance domain in our pricing algorithms. The conditional
density of the log-variance process γt can be derived by the change of variables as follows

pγ(γt|γs) = ζe−ζ[eγse−λ(t−s)+eγt ]
[
eγt−γseλ(t−s)

] ν
2 eγtIν

(
2ζe−

1
2
λ(t−s)

√
eγteγs

)
. (A.2)

Since the appearance of the exponential term eγt compensates the (·) ν
2 power term, the

conditional density of log-variance decays to zero as γt → −∞.
Scott (1996) uses the Fourier inversion technique to invert the conditional characteristic

function of the time-integrated variance
∫ t

s
vu− du to recover the sample distribution in

the CIR interest rate model. The closed form expression for the conditional characteristic
function of the time-integrated variance process is given by (Pitman & Yor 1982)

Φ(ξ; γt, γs) = E
[
eiξ

∫ t
s vu− du|γt, γs

]
=

Iν

(√
eγteγs 4γ̃(ξ)e−

1
2 γ̃(ξ)(t−s)

η2[1−e−γ̃(ξ)(t−s)]

)
Iν

(√
eγteγs 4λe−

1
2λ(t−s)

η2[1−e−λ(t−s)]

) γ̃(ξ)e−
1
2
[γ̃(ξ)−λ](t−s)[1− e−λ(t−s)]

λ [1− e−γ̃(ξ)(t−s)]

exp

(
eγs + eγt

η2

{
λ
[
1 + e−λ(t−s)

]
1− e−λ(t−s)

−
γ̃(ξ)

[
1 + e−γ̃(ξ)(t−s)

]
1− e−γ̃(ξ)(t−s)

})
,

(A.3)

where γ̃(ξ) =
√

λ2 − 2iη2ξ.
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Appendix B. Properties of the 3/2 stochastic volatility model
Since the reciprocal of vt as depicted in Eq. (4.4) is a mean-reverting square root process, we
can simplify the closed form expression for the conditional density function of log-variance
by defining the corresponding new set of parameters

v̄′ =
λ+ η2

λv̄
, λ′ = λv̄ and η′ = −η, (B.1)

which represent the long-run mean, speed of mean reversion and volatility of the CIR process
1
vt
, respectively. Note that γt = ln vt and the conditional density function of ln 1

vt
admits a

similar closed form as in Eq. (A.2). Therefore, in terms of

ν ′ =
2λ′v̄′

η′2
− 1 and ζ ′ =

2λ′

[1− e−λ′(t−s)]η′2
,

the conditional density of the log-variance process γt can be calculated by the change of
variable, which can be expressed as follows

pγ(γt|γs) = ζ ′e−ζ′[e−γse−λ′(t−s)+e−γt ]
[
e−γt+γseλ

′(t−s)
] ν′

2
e−γtIν′

(
2ζ ′e−

1
2
λ′(t−s)

√
e−γte−γs

)
.

(B.2)

In addition, the conditional characteristic function of the time-integrated variance
∫ t

s
vu− du

under the 3/2 stochastic volatility model can be derived in a similar way as that of the
Heston model (Jan 2012), which admits the following closed form

Φ(ξ; γt, γs) = E
[
eiξ

∫ t
s vu− du|γt, γs

]
=

I√
ν′2−8iξ/η2

(
2ζ ′e−

1
2
λ′(t−s)

√
1

vtvs

)
Iν′
(
2ζ ′e−

1
2
λ′(t−s)

√
1

vtvs

)
=

I√
ν′2−8iξ/η2

(
2ζ ′e−

1
2
λ′(t−s)

√
e−γte−γs

)
Iν′
(
2ζ ′e−

1
2
λ′(t−s)

√
e−γte−γs

) .

(B.3)
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