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Abstract We consider the stochastic control model with finite time horizon for a
mixed duopoly Research and Development (R&D) race between the profit-maximizing
private firm and welfare-maximizing public firm. In our two-firm stochastic control
R&D race model with input and output spillovers, the stochastic control variable is
taken to be the private firm’s rate of R&D expenditure and the hazard rate of success of
innovation has dependence on the R&D effort and knowledge stock. Given the fixed
R&D effort of the public firm, the optimal control is determined so as to maximize the
private firm’s value function subject to market uncertainty arising from the stochastic
profit flow of the new innovative product. We conduct various sensitivity tests with
varying model parameters to analyze the effects of input spillover, output spillover and
knowledge stock on the optimal control policy and the value function of the profit-
maximizing private firm. The R&D effort of the private firm is found to increase
when the profit flow rate increases. Moreover, the optimal R&D effort level may
decrease with increasing private firm’s knowledge stock and output spillover. The
effects of input spillover on the optimal control policy and value function are seen to
be relatively small. We examine the robustness of various observed phenomena of the
two-firm R&D race with varying values of the fixed R&D effort of the public firm.
With regard to public policy issue, we examine the level of the fixed public firm’s
R&D effort so that social welfare is maximized.
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1 Introduction

There has been strong empirical evidence that reveals the importance of the role of
the public firms (in a broader sense, including government funded research units) in
enhancing social welfare in certain industrial sectors, such as the health care sector and
agriculture sector. One well-known example is the Research and Development (R&D)
race around the genome sequencing between Celera Genomics and public research
units like the Human Genome Project (HGP). As a social policy to enhance social
welfare, public funds have been pooled to support the international research project
HGP due to the fear of potential monopolized use of the genome information by
Celera Genomics. The monopoly by a private firm may pose a serious obstacle to the
future progress of biotechnologies that may benefit the welfare of the whole society.
The government may use the public firm or government funded research unit as an
instrument for internal regulation of a particular industry and the implementation of
public policy in mitigating the common pool problem—effort duplication as reflected
in over-investment in R&D races under nearly zero spillovers and almost “winner-take-
all” scenario. In the past decades, many researchers investigate the role of public firms
in a mixed duopoly from both theoretical and public policy point of view. An early
survey of the game theoretic models of mixed oligopoly can be found in Giovanni and
Delbono (1990). Delbono and Denicolò (1993) argue that the presence of public firms
has its special role in alleviating the problem of duplication of R&D effort where
the overall social welfare is improved through cost reduction. In a mixed duopoly,
they show that both the private firm and public firm invest less compared to that in
a private duopoly. Interestingly, though the expected time of innovation is delayed,
social welfare is improved. Ishibashi and Matsumura (2006) confirm the public sector’s
role in mitigating inefficiency of R&D spending and show that additional government
control is needed for achieving social optimum. Later, Zikos (2007) suggests that the
public firm should invest as a Stackelberg follower in order to fully exercise its desirable
role. Marinucci (2014) constructs models on cooperative R&D networks among firms
and public research institutions. He finds that the incentive for the players to form
a partnership is decreasing with the spillover effect. In other words, subsidizing the
formation of an R&D partnership among firms and public research institutions can be
ineffective when the R&D spillover is sufficiently high.

The literature on R&D races has paid relatively little attention to analyze the
impact of spillovers in mixed oligopolies where firms with different objectives coex-
ist. In particular, one would ask what is the role of public policy in achieving
social optimality of innovative activities undertaken by the public social welfare-
maximizing firm and the private profit-seeking firm. Though spillovers have been
extensively studied in R&D races among private firms (d’Aspremont and Jacquemin
1988; Kamien et al. 1992; Amir 2000; Martin 2002; Hausenschild 2003), there
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are only a few papers that focus on the impact of spillovers on the mixed market.
Poyago-Theotoky (1998) takes one step further by considering easy imitation and
analyzes public firm’s role in tackling the problem of underinvestment due to the free
rider phenomenon. However, she finds that the inclusion of public firms in the R&D
race may or may not improve social welfare, depending on the size of the innovation.
Such ambiguous effect attracts even more attention in examining the spillover effect
in a mixed market framework. Naseem and Oehmke (2006) consider the category of
spillover phenomena in pure private duopoly research and investigate the effects of
input and output spillovers as well as their impact on social welfare. Gil Moltó et al.
(2011) study the spillover effect from a policy maker’s point of view. They focus on
the use of subsidies and its relation with the degree of spillovers. In addition, the
knowledge accumulation effect in which past accumulated knowledge may contribute
to better chance of successful innovation has received less attention in studies of R&D
races. Doraszelski (2003) disregards the memorylessness property of the exponen-
tial distribution in most earlier R&D models by analyzing the effect of knowledge
accumulation in firms’ R&D behavior. Leung and Kwok (2014) construct the R&D
stochastic control model with the hazard rate of arrival of innovation that is dependent
on knowledge stock. Steinmetz (2010) analyzes the effect of learning by doing and
organizational forgetting in R&D on firms’ incentives in innovations. He shows that the
leader’s innovation effort declines with the lead, and incentives are highest when com-
petition is most keen. König et al. (2011) analyze a model in which innovation arises
from recombinant knowledge of firms engaged in a network of R&D collaborations.
The growth of firm knowledge stock is an increasing function of the individual knowl-
edge stock and the knowledge of its R&D partners (see Eqs. 2.1, 2.2). They show how
the R&D network influences knowledge growth, innovation and profits of the firms.

To address the above issues, we propose the two-firm stochastic control model
that investigates the impact of input and output spillovers on R&D races under a
mixed duopoly of public research institute and private firm. In our proposed stochastic
control model, the stochastic revenue flow rates to the two firms generated from the
innovative product are assumed to be scalar multiples of a stochastic fundamental state
variable. We choose various appropriability factors in the revenue flow rates to model
the level of output spillovers. The technological uncertainty of R&D innovation is
modeled as a mixed Poisson process, where the hazard rates of arrival of innovation
are path dependent (say, with dependence on the knowledge accumulation of research
activities). This more realistic modeling of path dependence on past research effort
eradicates the weakness in the memorylessness property of the simple exponential
distribution assumption on random arrival of innovation in most earlier R&D races
models. Under positive input spillovers of R&D efforts, the hazard rates of innovative
success can be enhanced by the research efforts of the competing firm. The rate of
R&D expenditure in the private firm is treated as a stochastic control variable in our
stochastic control model. Given the fixed R&D effort of the public firm, the private
firm chooses the corresponding optimal strategy of research effort so as to maximize
its firm value function.

It would be instructive to explore the optimal set of public policies in R&D race in
a mixed duopoly with public research institute and private firm. The implementation
of public policies may be partially modeled by the levels of input and output spillovers
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from the public research institute to the private firm. We explore how the private firm’s
R&D spending level evolves under varying levels of spillovers and knowledge stock
and different market conditions as proxied by the current level and volatility of the
profit flow rate. There may exist the scenario where a lowering of private firm’s R&D
effort does occur due to a loss of incentive of the private firm as a result of strong
output spillover and low profit flow rate. As a result, this leads to postponement of the
expected arrival time of innovation.

In this paper, the mixed duopoly R&D race model with spillovers (input and output)
and knowledge stock extends the basic modeling framework of Leung and Kwok’s
(2014) one-firm stochastic control model to the two-firm formulation. Usually, gov-
ernment spending on R&D effort of the public research institute is planned in advance,
so it may be less flexible to adapt to changing market conditions and competition. We
take the model assumption that the public firm’s R&D investment level is fixed at
initiation of the R&D race. The two-firm R&D race model has the private firm’s R&D
effort as the single stochastic control variable. Our model combines the effects of input
spillover and output spillover in the asymmetric competition of the R&D race.

The paper is organized as follows. In the next section, we present the finite time R&D
stochastic control model by specifying details on the modeling of knowledge accumu-
lation, input and output spillovers. We then apply the Bellman optimality condition to
derive the governing Hamilton–Jacobi–Bellman equation for the real option stochastic
control model. In Sect. 3, we discuss the numerical scheme for finding the solution of
the value function and optimal control of R&D expenditure of the private firm based
on the finite difference algorithm together with the policy iteration procedure (Forsyth
and Labahn 2007). Special precautions are taken to prescribe the numerical auxiliary
conditions. We examine the mathematical conditions required for the convergence of
the numerical calculations based on some earlier theoretical results in the literature
(Barles 1997; Leung and Kwok 2014). In Sect. 4, we present sensitivity tests on input
and output spillovers and knowledge accumulation through numerical studies on the
optimal R&D expenditure of the private firm and public firm with respect to different
sets of model parameters that characterize various market conditions and technolog-
ical uncertainties. By identifying the criterion of social welfare maximization of the
public firm, we examine the appropriate level of the fixed public firm’s R&D effort so
that social welfare is maximized. Summary and conclusive remarks are presented in
the last section.

2 Stochastic control model for R&D race

We develop a two-firm R&D stochastic control model with finite time horizon for a
mixed duopoly R&D race with the inclusion of input and output spillovers, together
with knowledge accumulation effect.

2.1 Model settings

For the two firms in our mixed duopoly model, public firm (Firm 0) and private
firm (Firm 1), both are engaged in R&D of developing an innovative product. While
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most real option models assume for the sake of analytic tractability, it would be more
realistic to assume a finite life T > 0 of the innovative product. It is common that the
government funding for supporting R&D of the public firm is planned in advance, so
we assume the level of R&D effort of the public firm to be fixed. We let u0(·) denote
the fixed public firm’s R&D effort and assume that it is known to the private firm.
For the private firm, it targets to maximize its own firm value in view of the costs
expended on its own R&D activities. Let u1(t) be the stochastic control variable for
the rate of R&D expenditure of the private firm, where u1(t) is assumed to be chosen
from a compact set Q1(t) ∈ [0, B] for 0 ≤ t ≤ T , where B is the upper bound of
R&D effort expended by the private firm. It is reasonable to set an upper bound on u1
since a firm can only have a finite resource.

2.1.1 Knowledge stock

According to Doraszelski (2003), the past R&D efforts are accumulated as the firm’s
knowledge stock. In addition, the rival firm’s R&D effort may also contribute to the
firm’s knowledge stock due to input spillover effect. Combining these two effects,
we assume that Firm j’s knowledge stock z j (t) evolves according to the following
differential equation

dz j

dt
= u j (t) + β j u j ′(t), j = 0, 1, 0 ≤ t ≤ T, (2.1)

where β j is a nonnegative constant, β j ∈ [0, 1]. The first term on the right-hand side
of Eq. (2.1) represents the contribution from the current research effort of Firm j
( j = 0, 1) itself, while the second term represents the input spillover from rival Firm
j ′ ( j ′ �= j and j ′ = 0, 1). It is common that the private firm would try to minimize
the spread of the firm’s knowledge to the public, so we assume no input spillover
from the private firm to the public firm with β0 = 0 in our later model calculations.
For the private firm, we set β1 ∈ [0.5, 1], corresponding to a relatively high input
spillover from the public firm to the private firm. As a remark, complexity in the
numerical calculations of the R&D race model would not be affected by the choices
of the parameter values for β0 and β1.

2.1.2 Hazard rate of arrival of discovery

The uncertainty in the success of innovation is modeled by a Poisson process
with the hazard rate of arrival of the innovative product as the Poisson parame-
ter. The R&D effort of the private firm is the control variable, which is chosen
optimally so as to maximize the firm value of the private firm. Both the current
R&D effort and knowledge stock contribute to the likelihood of innovative success.
We assume that the hazard rate h j (t) ( j = 0, 1) increases with Firm j’s current
R&D effort u j (t) and knowledge stock z j (t) as modeled by the following equation
(Leung and Kwok 2014)
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h j (t) = a j u j (t) + b j z j (t), (2.2)

where R&D effort factor a j > 0 and the knowledge stock factor b j ≥ 0 are constant
parameters and 0 ≤ t ≤ T . The special case b j = 0 corresponds to memoryless R&D
process.

2.1.3 Profit flow rate and expected payoff functions

Our model assumes that the winner of the R&D race would commercialize the innov-
ative product immediately and receive the profit flow from the sale of the new product.
The profit flow rate is modeled as the product of a nonnegative constant appropriability
factor and the stochastic profit flow rate xt . Similar to most real option models, xt is
assumed to follow the geometric Brownian motion

dxt = μxt dt + σ xt dZt . (2.3)

Here, μ is the constant drift rate, σ is the constant volatility parameter and Zt is the
standard Brownian motion. Let r denote the riskless interest rate. The usual no-bubble
condition is assumed, where μ < r .

For convenience, suppose we write the total patent of the new innovative product as
� > 0. Due to output spillover, Firm j as the winner of the race can only appreciate
part of the total patent. The appropriability factor of the winner is defined as θ�, where
θ denotes the appreciation rate of the winner on the patent. Moreover, we assume that
the remaining part of the patent (1−θ)� is distributed to Firm j ′ as the loser, assuming
that the loser manages to imitate a similar product. One would expect θ ∈ [0.5, 1], so
the appropriability factors observe θ� ≥ (1−θ)�. For the “winner-take-all” scenario,
we have θ = 1, which then leads to (1 − θ)� = 0.

At the current time t , suppose the innovative product has been active in the market,
where t < T . Conditional on xt = x , the expected payoff W j (x, t) of the winner Firm
j and the expected payoff L j ′(x, t) of the loser Firm j ′ are given by

W j (x, t) = θx

r − μ

[
1 − e−(r−μ)(T −t)

]
,

L j ′(x, t) = (1 − θ)x

r − μ

[
1 − e−(r−μ)(T −t)

]
.

2.1.4 Cost function

Let cost c j (u j ) denote the rate of cost incurred on Firm j in R&D effort to be a
nonnegative, continuous and strictly increasing function with respect to the R&D effort
u j . It is common to assume the cost function to be a power function. By setting the
marginal cost to be the R&D effort, the cost function takes the following quadratic form

c j (u j ) = c j (0) + u2
j

2
, (2.4)
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where c j (0) is a fixed minimum cost for Firm j to maintain its R&D facilities even
at zero R&D effort.

2.2 Hamilton–Jacobi–Bellman formulation

Given the fixed public firm’s R&D expenditure u0, our objective is to determine the
optimal R&D control u1 and the firm value function V1 of the private firm. Conditional
on xt = x , z0(t) = z0 and z1(t) = z1, we write V1(x, t; z0, z1) as the value function
of the private firm derived from the R&D project. The Bellman optimality condition
gives the following relation that governs the value function:

V1(x, t; z0, z1) = lim
dt→0

sup
u1∈Q1

{
G (x, t; z0, z1) − c1(u1)

}
.

Neglecting the scenario where both firms succeed in R&D within (t, t +dt), we have

G (x, t; z0, z1) dt = (h0 dt) (1 − h1 dt) L1(x, t) + (1 − h0 dt) (h1 dt) W1(x, t)

+(1 − h0 dt) (1−h1 dt) e−rdt E
[
V1 (xt+dt , t + dt; z0 (t + dt) ,

×z1 (t + dt) |xt = x, z0(t) = z0, z1(t) = z1)
]
.

The individual terms in G are derived based on the following considerations.

(i) With probability (h0 dt)(1 − h1 dt), the public firm wins the R&D race within
(t, t + dt). The resulting expected value for the private firm is L1(x, t).

(ii) With probability (1 − h0 dt)(h1 dt), the private firm wins the R&D race within
(t, t + dt) and its corresponding expected value is W1(x, t).

(iii) With probability (1 − h0 dt)(1 − h1 dt), R&D efforts of both firms continue
beyond t + dt since none of the two firms succeed in R&D within (t, t + dt).
The discounted expected value of the R&D project for the private firm is given
by

e−rdt E
[
V1(xt+dt , t + dt; z0(t + dt), z1(t + dt)|xt = x, z0(t) = z0, z1(t) = z1)

]
.

We apply the Ito Lemma to obtain

E
[
V1 (xt+dt , t + dt; z0(t + dt), z1(t + dt)|xt = x, z0(t) = z0, z1(t) = z1)

]

= V1 + ∂V1

∂t
dt + μx

∂V1

∂x
dt + σ 2x2

2

∂2V1

∂x2 dt + (u0 + β0u1)
∂V1

∂z0
dt

+ (u1 + β1u0)
∂V1

∂z1
dt + O(dt

3
2 ).

Since we have assumed no input spillover from the private firm, we have β0 = 0.
Moreover, u0 is fixed as a constant, so we can replace z0 by u0t . As a result, the
dependence of V1 on z0 can be dropped. Substituting the above equation into the
Bellman optimality condition and neglecting higher order terms when we take the
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limit of dt → 0, we obtain the HJB formulation of the optimal R&D control model
as follows

sup
u1∈Q1

{∂V1

∂t
+ μx

∂V1

∂x
+ σ 2x2

2

∂2V1

∂x2 + (u1 + β1u0)
∂V1

∂z1
− (r + h0 + h1)V1

+ h0L1(x, t) + h1W1(x, t) − c1(u1)
}

= 0. (2.5)

2.3 Auxiliary conditions

To complete the HJB formulation, it is necessary to impose the appropriate auxiliary
conditions. Firstly, since the R&D process is sure to terminate at T , we have

V1(x, t; z1) → 0 as t → T . (2.6a)

Also, when x or z1 becomes asymptotically small, the expected value of the project
is almost zero. For the far-field boundary condition at z1 → ∞, we have

V1(x, t; z1) → W1(x, t) as z1 → ∞. (2.6b)

One may visualize that V becomes a linear function in x when x → ∞ (Leung and
Kwok 2014), so we have

V1(x, t; z1) → C1(t; z1)x + C2(t; z1) as x → ∞. (2.6c)

The solution procedure for finding the closed form expressions for C1(t; z1) and
C2(t; z1) is outlined in Appendix.

We would like to comment on the specific features of the mixed duopoly model
that are distinctive from the single-firm model studied in Leung and Kwok (2014).
The impact of the R&D effort u0 and the hazard rate of arrival of the innovation h0
on the private firm’s value function V1 and its optimal R&D effort u1 enters into the
HJB formulation for V1(x, t; z1) via the coefficient in ∂V1

∂z1
and V1 and the source term

h0L1(x, t). Also, spillover effects between the two firms are modeled by the expected
loser payoff function L1(x, t) and the winner counterpart W1(x, t).

3 Finite difference algorithms with policy iteration procedure

By following a similar numerical procedure for solving the stochastic control R&D
model (Leung and Kwok 2014), we solve the HJB model formulation using the finite
difference approach together with policy iteration procedure. The usual backward
induction procedure in discounted expectation calculations is seen to be equivalent to
forward time marching with respect to time to expiry τ in a finite difference scheme,
where τ = T − t . Here, we use τ as the temporal variable in V1, L1 and W1 and
rewrite Eq. (2.5) as follows:
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F(V1) = sup
u1∈Q1

{
− ∂V1

∂τ
+ μx

∂V1

∂x
+ σ 2x2

2

∂2V1

∂x2 + (u1 + β1u0)
∂V1

∂z1

− (r + h0 + h1)V1 + h0L1(x, τ ) + h1W1(x, τ ) − c1(u1)
}

= 0. (3.1)

The discretized computational domain is restricted to a finite domain: [0, xmax] ×
[0, zmax]×[0, T ], where xmax and zmax are chosen to be some sufficiently large values.
The ( j, k, n)th node in the discretized domain corresponds to x j = j�x, zk = k�z
and τn = n�τ , where j = 0, 1, 2, . . . , jmax, k = 0, 1, 2, . . . , kmax and n =
0, 1, 2, . . . , nmax. We let V n

j,k denote the numerical approximation to V1(x j , zk, τn) and
let un

j,k denote the respective control strategy for u1 at the nodal point (x j , zk, τn). We
follow the discretization techniques developed in Forsyth and Labahn (2007), where
fully implicit discretization is adopted and appropriate forward/backward differencing
is applied to various spatial differential operators so that the condition of positive coef-
ficients in the resulting finite difference scheme is enforced. The discretized version
of the HJB equation becomes

F∗ (
V n+1

j,k

)
= sup

un+1
j,k ∈Q1

{
− V n+1

j,k − V n
j,k

�τ
+ μx j

V n+1
j+1,k − V n+1

j,k

�x

+ σ 2x2
j

2

V n+1
j+1,k − 2V n+1

j,k + V n+1
j−1,k

(�x)2

+ (u1 + β1u0)
V n+1

j,k+1 − V n+1
j,k

�z
− (r + h0 + h1)V n+1

j,k

+ h0L1(x j , τn+1) + h1W1(x j , τn+1) − c1(u
n+1
j,k )

}
= 0. (3.2)

The numerical auxiliary conditions along the computational boundaries and at
expiry (corresponding to τ = 0) are (i) V n

j,kmax
= W1(x j , τn+1), (ii) V n

jmax,k =
C1(τn; zk)xmax + C2(τn; zk), (iii) V 0

j,k = 0, (iv) V n
0,k = 0.

Let the stepwidth and time step parameters be chosen such that �x = γ1δ, �τ =
γ2δ, �z = γ3δ, where γ1, γ2, γ3 are positive constants independent of the small
parameter δ. One can show that

F∗ (
V n+1

j,k

)
− F(V1) = O(�x) + O(�τ) + O(�z) = O(δ).

Using the above discretization procedures, it can be shown that the resulting numer-
ical scheme observes the properties of consistency (pointwise), monotonicity and l∞-
stability. Provided that the strong comparison property holds, the numerical solution
of Eq. (3.2) converges to the viscosity solution of the continuous HJB formulation in
Eq. (2.5). The proof of these theoretical results can be mimicked from a similar proof
presented in Leung and Kwok (2014).

We proceed to solve for V n+1
j,k through marching backward in k and forward in n.

For a fixed value of k and n, we solve recursively for the optimal control variables,
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where each iteration requires the numerical solution of a system of jmax + 1 algebraic
equations of the form

−an+1
j,k �τ V n+1

j+1,k +[
1+

(
an+1

j,k + bn+1
j,k + cn+1

j,k

)
�τ

]
V n+1

j,k −bn+1
j,k �τ V n+1

j−1,k = hn+1
j,k .

The coefficients are given by

an+1
j,k =

[
σ 2x2

j

2(�x)2 + μx j

�x

]
, bn+1

j,k = σ 2x2
j

2(�x)2 , dn+1
j,k = un+1

j,k + β1u0

�x
,

cn+1
j,k = un+1

j,k + β1u0

�x
+ r +

(
a1un+1

j,k + b1zk

)

+[
a0u0 + b0u0 (T − τn+1)

]
,

en+1
j,k =

(
a1un+1

j,k + b1zk

)
W1(x j , τn+1)

+[
a0u0 + b0u0(T − τn+1)

]
L1(x j , τn+1) − c1

(
un+1

j,k

)
,

hn+1
j,k =

(
dn+1

j,k V n+1
j,k+1 + en+1

j,k

)
�τ + V n

j,k .

Here, the coefficients an+1
j,k , bn+1

j,k , cn+1
j,k , dn+1

j,k are all nonnegative. The coefficients and

V n+1
j,k are evaluated at the optimal control variables un+1∗

j,k , which are determined by

un+1∗
j,k = argmax

un+1
j,k ∈Q1

{
an+1

j,k �τ V n+1
j+1,k − [

1 +
(

an+1
j,k + bn+1

j,k + cn+1
j,k

)
�τ

]

V n+1
j,k + bn+1

j,k �τ V n+1
j−1,k + hn+1

j,k

}
.

We can express the above numerical scheme in the following matrix form

sup
un+1

j,k ∈Q1

{
− BkVn+1

k + hn+1
k

}
= 0, k = 0, 1, . . . , kmax − 1, (3.3)

where

Vn+1
k = (

V n+1
0,k V n+1

1,k . . . V n+1
jmax,k

)T
,

hn+1
k = (

hn+1
0,k hn+1

1,k . . . hn+1
jmax−1,k C1(τn+1; zk)xmax + C2(τn+1; zk)

)T
,

[Bk]l,m =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 (l, m) = ( jmax, jmax)

−bn+1
j,k �τ m = l − 1, l = 1, . . . , jmax − 1,

−an+1
j,k �τ m = l + 1, l = 0, . . . , jmax − 1,

1 +
(

an+1
j,k + bn+1

j,k + cn+1
j,k

)
�τ m = l, l = 0, . . . , jmax − 1,

0 otherwise.
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Let (Vn+1
k )i denote the i th iterate of the vector Vn+1

k . The sequence of steps in the
policy iteration are outlined as follows:

1. Set the initial guess of Vn+1
k to be (Vn+1

k )0 = Vn
k .

2. Assume the value of (Vn+1
k )i to be known, the i th iterate of the optimal control

variable (un+1
j,k )i is determined by

(
un+1

j,k

)i = argmax
un+1

j,k ∈Q1

{(
− Bk

(
Vn+1

k

)i + hn+1
k

)
j

}
,

where
( − Bk(V

n+1
k )i + hn+1

k

)
j denotes the j th component of the corresponding

vector, j = 1, 2, . . . , jmax − 1.
3. Solve the linear system of equations

−(Bk)
i
(

Vn+1
k

)i+1 +
(

hn+1
k

)i = 0,

where (Bk)
i = Bk |(

un+1
j,k

)i and
(

hn+1
k

)i = hn+1
k |(

un+1
j,k

)i .

The policy iteration is terminated when

max
j

(
Vn+1

k

)i+1 −
(

Vn+1
k

)i

(
Vn+1

k

)i+1 < tolerance value.

The tridiagonal matrix Bk can be easily checked to be a M-matrix. In the policy
iteration scheme presented above, the M-matrix property provides a sufficient con-
dition for convergence of the policy iteration procedure so that the iterates (Vn+1

k )i

converge to the unique solution of Eq. (3.3) for any initial guess (Vn+1
k )0. A similar

proof of the sufficient condition for convergence can be found in Leung and Kwok
(2014).

4 Characteristics and sensitivity analysis of the optimal R&D effort

In this section, we would like to explore the characteristics of the optimal R&D effort
of the private firm and public firm. The sensitivity analysis of the value functions
with respect to optimal R&D efforts would inform the private firm manager and the
policy maker about how to choose their optimal R&D strategies according to different
levels of spillover effect and knowledge stock. Moreover, we analyze the impact on
the optimal R&D effort with respect to varying market conditions, such as volatility
and drift rate of the stochastic profit dynamics. In our numerical experiments, the
following basic set of parameter values were used: r = 0.05, μ = 0.01, σ = 0.3,

a0 = a1 = 1, b0 = b1 = 0.05, β0 = 0, β1 = 0.5, T = 10, θ = 0.8, c j (u j ) = 10+ u2
j

2 ,
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j = 0, 1, u1 ∈ Q1 = [0, 5] and u0 = 5. When we examine the impact on the optimal
R&D effort with respect to a particular parameter, the specific parameter may assume
varying values other than the value specified in the above basic set of parameter values.

4.1 Characteristics of the optimal R&D efforts

Similar to the one-firm stochastic control R&D race model studied in Leung and Kwok
(2014), we expect that the optimal R&D effort of the private firm is increasing with
the current value of profit rate x while decreasing with the knowledge stock. Our
numerical results reveal a similar pattern for the optimal R&D effort of the private
firm in our two-firm mixed duopoly R&D race model. In Fig. 1a, we plot the optimal

30 35 40 45 50 55 60
3.6

3.8

4

4.2

4.4

4.6

4.8

5

x

O
pt

im
al

 u
1*

z1= 10, μ = 0.01, σ = 0.3

z1= 10, μ = 0.01, σ = 0.1

z1= 10, μ = 0.03, σ = 0.3

z1= 20, μ = 0.01, σ = 0.3

(a)

0 20 40 60 80 100 120 140 160 180
1

2

3

4

x

O
pt

im
al

 u
0*

z1= 10

z1= 25

z1= 40

(b)

Fig. 1 a Plots of the optimal R&D effort of the private firm u∗
1 (subject to maximum cap value of 5) against

x with varying values of z1, μ and σ ; b Plots of the optimal R&D effort of the public firm u∗
0 against x

with varying values of z1. a u∗
1 against x , b u∗

0 against x
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control u∗
1 of the private firm against the profit rate x with varying values of the

knowledge stock z1, mean of the profit flow rate μ and volatility of the profit flow rate
σ . Given that the payoff to the private firm V1(x, t) upon arrival of the innovation is
a linear function in x , the optimal control u∗

1 increases linearly in x until it reaches
the maximum cap level sup Q1 = 5. When the knowledge stock of the private firm
increases, we observe a decrease in u∗

1 since the private firm can benefit from the past
knowledge accumulation. This phenomenon is revealed in Fig. 1a by the observation
that the corresponding dotted curve of u∗

1 for z1 = 20 lies below the solid curve of u∗
1

for z1 = 10.
Moreover, the above observations are robust to various mean values and volatilities

of the profit flow rate. To investigate how u∗
1 may be affected by market uncertainty,

we show the comparison of the optimal R&D effort of the private firm for different
values of μ and σ in Fig. 1a. One would expect that the private firm should increase
its R&D effort with a higher value of μ since the payoff to the private firm V1(x, t) is
an increasing function of μ. As revealed in Fig. 1a, u∗

1 increases as μ increases from
0.01 to 0.03 and u∗

1 reaches the maximum level of 5 at a lower value of x when μ has a
higher value. On the other hand, we observe that u∗

1 is not quite sensitive to volatility
σ since the payoff is a linear function in x with no optionality. We do observe a small
increment in u∗

1 when x is relatively small when σ reduces in value from 0.3 to 0.1.
This indicates that the private firm chooses to expend less in R&D effort under a higher
level of market volatility.

The plots shown in Fig. 1a are obtained with a fixed value of public firm’s R&D
effort of u0 = 5. With varying levels of the public firm’s fixed R&D effort u0, the
private firm’s optimal R&D effort u∗

1 would be adjusted accordingly. We do expect
that a similar behavior of adopting the optimal control u∗

1 would prevail with different
values of u0. We would like to recall that the aim of the public firm is to maximize
social welfare. In the literature, social welfare is commonly modeled by the sum of
consumer and producer surpluses minus costs. In our model, it is not straightforward to
quantify surpluses as capacity additions. Pawlina and Kort (2006) argue that consumer
surpluses can be modeled by firms’ revenue flows. Here, we take social welfare S to be
the sum of the firm values of both the public and private firms, S = V0 + V1. A similar
approach has also been adopted by Delbono and Denicolò (1993), Poyago-Theotoky
(1998) and Naseem and Oehmke (2006). In our model setup, once we have obtained
the private firm’s optimal control policy, we can calculate the value of social welfare
S. With varying level of the public firm’s R&D effort, we can determine the public
firm’s optimal R&D effort u∗

0 that maximizes the social welfare value.
In Fig. 1b, we show the plots of the public firm’s optimal R&D effort u∗

0 against
x with varying values of z1. Unlike the private firm’s optimal R&D effort u∗

1 which
is an increasing function of x , we observe that u∗

0 increases at first with x , then drops
slightly after it reaches its first peak. With a higher value of x , u∗

0 increases again and
stays at a certain high level until x becomes very large. Beyond some large value of
x , the optimal R&D effort u∗

0 decreases again. The dependence of u∗
0 on x can be

explained as follows. When x is relatively low, it is optimal for the public firm to
increase its R&D effort in order to enhance social welfare through an earlier arrival of
the new product. When the payoff rate x increases to around 25, the return is already
attractive enough for the private firm to expend its maximum R&D effort. The public
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firm slightly reduces its R&D effort in order to avoid keen competition. This may
explain the small drop in u∗

0 after the first peak. When the payoff rate x continues to
increase to a more attractive level, the public firm may choose to increase its R&D
effort accordingly as it becomes more profitable to expend more R&D efforts for
an earlier arrival of the new product that promises a high payoff. However, when x
increases to a very high level, the public firm lowers its R&D effort again in order to
avoid excessive sum of R&D efforts of the two firms. This explains the drop when x
increases further to a very high value. Furthermore, we observe that u∗

0 is a decreasing
function of z1 since less R&D effort is required with a higher knowledge stock z1 in
order to achieve the same hazard rate of success of innovation.

4.2 Sensitivity tests on various market conditions

We would like to examine the sensitivity of the optimal R&D effort of both firms with
respect to different levels of input spillover, output spillover and knowledge stock.
We performed various sensitivity tests by only changing one of the parameters in the
standard set of parameter values in each set of calculations. The values of the input
spillover rate β1 and output spillover rate θ are chosen from 0.5 to 1, and the value of
the knowledge stock factor b j is chosen from 0 to 0.06, j = 0 or 1.

4.2.1 Input spillover effect

For the private firm, higher input spillover rate β1 can accelerate its speed of knowledge
accumulation and increases the private firm’s chance of winning the R&D race. It
is obvious that the private firm value increases with increasing input spillover rate.
However, the impact of the input spillover rate on the optimal R&D effort of the private
firm is not so obvious. In Fig. 2, we show the plots of the private firm’s optimal R&D

Fig. 2 Plots of the optimal
R&D effort of the private firm
u∗

1 against input spillover rate β1
at varying values of (x, z1)
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effort u∗
1 against the input spillover rate β1 at three different states of (x, z1) with

u0 = 5. We find that when the input spillover rate of the private firm β1 increases in
value from 0.5 to 1, an insignificant decline trend of the optimal R&D effort of the
private firm is observed. Intuitively, the private firm can take advantage of the public
firm’s research effort under a higher level of input spillover. Therefore, the private firm
would choose to reduce its R&D effort accordingly since it foresees an increase in the
knowledge stock in the future due to higher input spillover. The same pattern of u∗

0
against β1 prevails with different states of (x, z1).

4.2.2 Output spillover effect

Since output spillover allows the losing firm to imitate the production of the new
product released by the winning firm and appreciate part of the payoffs, the effects of
the output spillover rate on the firm values and optimal R&D efforts of the two firms
are expected to be much more significant. In Fig. 3a, we show the plots of the optimal
R&D effort of the private firm u∗

1 to varying values of the appreciation rate θ at three
different states of (x, z1) with u0 = 5. We find that u∗

1 increases almost linearly
with the appreciation rate θ , which suggests that the private firm would expend more
R&D effort to compete when it becomes harder to imitate the public firm’s innovative
product. When the appreciation rate is very high, especially when the firm can have
perfect appreciation (θ = 1), the competition is intensified as there is zero output
spillover. We observe that the private firm enhances its R&D effort to a very high
level. If the current payoff rate x is high enough, say x = 20, maximal level of R&D
effort will be chosen for u∗

1. In contrast, when the appreciation rate is as low as θ = 0.5,
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Fig. 3 a Plots of the optimal R&D effort of the private firm u∗
1 against appreciation rate θ at varying values

of (x, z1); b Plots of the optimal R&D effort of the public firm u∗
0 against appreciation rate θ at varying

values of (x, z1). a u∗
1 against θ , b u∗

0 against θ
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the output spillover rate is at the highest level where the profits are equally shared by
the two firms. The R&D effort of the private firm is found largely reduced to a low
value of 1.5. Therefore, the private firm should simply play as the free rider.

In Fig. 3b, the optimal R&D effort of the public firm u∗
0 is seen to be a non-monotonic

function of the appreciation rate. We find that u∗
0 increases with the appreciation rate

at first and then decreases. The magnitude of variation is relatively small compared
to the variation in u∗

1 with varying values of θ . For different states of (x, z1), the
maximum value of u∗

0 is found at some intermediate level of the appreciation rate.
The public firm foresees the response of the private firm to the output spillover, either
adopting maximal R&D effort under perfect appreciation or taking a free ride attitude
under a high level of output spillover, so the public firm reduces its R&D effort in
view of excessive combined R&D efforts. When the output spillover rate is at some
appropriate level, the public firm maximizes its R&D effort to achieve an earlier arrival
of the new product. As a result, one would expect that the public policy maker can
achieve higher social welfare by setting an appropriate level of output spillover in the
mixed duopoly. That is, the public firm can play its role in alleviating inefficient R&D
expenditure.

4.2.3 Knowledge stock effect

Since the knowledge stock also contributes to the hazard rate of the arrival of innova-
tion, both firms can take advantage of the past knowledge accumulation to accelerate
the arrival of the new product. Here, we expect that a high value of knowledge stock
factor can help reducing both firms’ R&D efforts. The plots in Fig. 4 are seen to agree

0 0.02 0.04 0.06
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Knowledge stock factor

O
pt

im
al

 u
1*

(x,z1) = (20,20)

(x,z1) = (20,40)

(x,z1) = (20,10)

(a)

0 0.02 0.04 0.06
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Knowledge stock factor

O
pt

im
al

 u
0*

(x,z1) = (20,20)

(x,z1) = (20,40)

(x,z1) = (20,10)

(b)

Fig. 4 a Plots of the optimal R&D effort of the private firm u∗
1 against knowledge stock factor b1 at varying

values of (x, z1); b Plots of the optimal R&D effort of the public firm u∗
0 against knowledge stock factor
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with the above economic intuition. We find that the optimal R&D efforts of both firms
decrease as the corresponding knowledge stock factor increases. When the knowledge
accumulation factor b0 or b1 equals to 0, which means the knowledge accumulation
effect is absent, both firms would set the highest value for the optimal R&D efforts.
With a higher value of z1, the effect of the knowledge stock becomes more evident,
so u∗

1 and u∗
0 decline at a faster rate.

5 Conclusion

We have developed a stochastic control model under the setting of mixed duopoly
for the R&D race with input and output spillovers. In addition, the effect of knowl-
edge accumulation is considered so that the past knowledge stock also contributes
to the hazard rate of arrival of the innovative product. We present the HJB formu-
lation of the R&D race model and apply the finite difference scheme to solve for
the private firm value and its optimal control of R&D expenditure simultaneously
using the technique of policy iteration. The optimal R&D effort of the private firm
increases almost linearly with the profit flow rate and decreases with the knowl-
edge stock. However, the optimal R&D effort of the public firm does not reveal a
monotonic pattern against the profit flow rate. This is because the public firm’s R&D
effort would be optimally chosen in response to the trade-off between acceleration
of the arrival of the new product and excessive total R&D efforts expended in the
society.

We also performed various sensitivity tests on the optimal R&D effort of the private
firm and public firm with respect to various levels of spillover rate and knowledge
stock factor. We find that the input spillover rate has a relatively smaller effect on the
optimal R&D efforts of both firms. However, the knowledge stock and output spillover
have more significant impact on the R&D effort. We find that both firms reduce their
R&D expenditure to take advantage of the past accumulated knowledge when the
knowledge stock factors increase. Also, when the appreciation rate is extremely high
or low, overinvestment or free rider phenomenon is observed. The public firm has its
role to mitigate inefficiency of R&D expenditure by setting an appropriate level of
output spillover.

The interaction of the input and output spillover effects, knowledge stock accumu-
lation and social role of the public firm is highly nonlinear. An increase in the level
of the public firm’s R&D effort may or may not improve social welfare. The resulting
effects depend on various factors, such as the expected payoff from innovation (level
of revenue flow), free rider phenomenon (spillover effects) and chance of innovative
success (level of knowledge stock). The sensitive studies of the mixed duopoly R&D
race model under various market conditions presented in this paper may shed some
useful hints and insights for both the private firm manager and public fund decision
makers on the optimal choices of R&D expenditures and appropriation of spillovers
so as to maximize their respective value functions.
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6 Appendix: Derivation of C1(τ; z1) and C2(τ; z1), τ = T − t

It is convenient to use τ = T − t as the temperal variable in C1 and C2. To determine
C1(τ ; z1) and C2(τ ; z1), we substitute Eq. (2.6c) into the HJB formulation and obtain
the following governing partial differential equations for C1(τ ; z1) and C2(τ ; z1):

∂C1

∂τ
− (u1 + β1u0)

∂C1

∂z1
= − (r − μ + h0 + h1) C1 + h0(1 − θ)�

r − μ

[
1 − e−(r−μ)τ

]

+ h1θ�

r − μ

[
1 − e−(r−μ)τ

]
,

∂C2

∂τ
− (u1 + β1u0)

∂C2

∂z1
= −(r + h0 + h1)C2 − c1(u1).

The above equations share the following general form:

∂C

∂τ
− a

∂C

∂z1
= h(τ ; z1)C + k(τ ; z1), (6.1)

where h(τ ; z1) and k(τ ; z1) are functions of τ and z1. Here, a is constant (u0 is constant
and u1 is also fixed by adopting sup Q1). The general solution of Eq. (6.1) is given by

C(τ ; u) = H(τ ; u)
[
φ(u) +

∫ τ

0

k(s; u − as)

H(s; u)
ds

]
,

where

H(τ ; u) = exp
( ∫

h(s; u − as) ds
)
, u = z1 + aτ,

and φ(u) is an arbitrary function to be determined from appropriate auxiliary con-
ditions. Since C1(0; z1) = 0 and C2(0; z1) = 0, we obtain φ1(u) = φ2(u) = 0.
Therefore, the solution to Eq. (6.1) is found to be

C(τ ; u) = H(τ ; u)

∫ τ

0

k(s; u − as)

H(s; u)
ds.
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