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ABSTRACT

The difficulty for the accurate valuation of American type financial options lies
on the unknown free boundaries associated with the early exercise feature. This
article proposes a front-fixing transformation to transform the unknown free
boundary into a known and fixed line in the transformed plane. An efficient finite
difference method is then developed, which produces the optimal exercise
- boundary and multiple option values simultaneously. Numerical results reveal that
the front-fixing finite difference method has accuracy comparable to that of the
binomial method, and it becomes computationally competitive when multiple
option positions are priced.
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I. INTRODUCTION

The valuation of American options has long been an intriguing problem. It is
widely acknowledged that an analytical formula does not exist for the value of an
American option where early exercise may be optimal, As a result, the valuation
of American options routinely resorts to numerical or quasi-analytical methods.
Since most traded options are American style, there is considerable interest in
searching for new valuation techniques. -

The numerical methods are typified by the finite difference method (Brennan
and Schwartz 1977), and the binomial method (Cox et al. 1979). The binomial
schemes are pedagogically appealing, easy to implement, and adapt easily to
options with nonstandard features. Rigorous justification for convergence has also
been established for these methods (Jaillet et al. 1990; Amin and Khanna 1994).

The quasi-analytical approach to the valuation problem includes the methods
proposed by Geske and Johnson (1984), MacMillan (1986), and Barone—Adesi
and Whaley (1987). These methods generate approximate solutions of an
American option by either restricting the early exercise at discrete dates, or by
solving some modified form of the Black—Scholes equation. Recent developments
of the quasi-analytical approach include the analytical method of lines by Carr
and Faguet (1994), the integral equation approach by Huang et al. (1996), and the
capped option approximation by Broadie and Detemple (1996). Both the integral
equation approach and capped option approach require some interactive procedure
for determining the early exercise boundary. Also, the use of Richardson extrap-
olation is a critical component of the analytical method of lines and the integral
equation approach. It may be reasonable to believe that these methods can be
generalized to other types of options. However, for some exotic options (such as
Asian options which do not have analytical formula even without the early
exercise feature), the prospect of the quasi-analytical approach may not be
promising.

Recently, Wilmott et al. (1993) developed a new framework to price exotic
options, such as barrier, Asian, and lookback options. They model these exotic
options by a linear complimentarily formulation of partial differential equations,
which can then be solved effectively by the projected SOR method. The
projection requires an embedded iteration at each time step.

In this article we introduce a known technique for solving free boundary
problems to the field of option pricing. By the so-called front-fixing
transformation (Landau 1950), we let the unknown boundary be included into the
equation in exchange for a fixed boundary. The presence of fixed boundary
facilitates effective discretization of the governing differential equation. We then
propose a linearized difference scheme for the transformed equation. Our scheme
does not require embedded iteration at each time step of evolution, like the
projected SOR method. In addition to option values, the present method captures
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the whole optimal exercise boundary as part of the solution procedure. The
procedure works well for any type of option as long as an appropriate front-fixing
transformation exists, which we believe to be true at least for standard American
options, barrier options, Asian options, and lookback options. In subsequent
sections we will present the procedure and numerical test results with the
prototype American put options.

The article is organized as follows. In Section II we introduce the front-fixing
transformation which transforms an unknown front into a fixed boundary. In
Section III, we propose a finite difference discretization of the transformed
equation and outline the solution procedure. Numerical comparisons of the
proposed algorithm with the binomial method are given in Section IV, Concluding
remarks are presented in the last section.

II. THE FRONT-FIXING TRANSFORMATION

Let P(S, T; X) denote the value of an American put option. Here, S is the price
of the underlying asset, T is the time to expiration, and X is the strike price. We
assume that S follows the risk—neutral process:

dS = rSdt + oSdz (1)

where r is the risk—free interest rate, o is the volatility of the asset price, and dz
is the standardized Weiner process. Both r and o are assumed constant. It is well
known that at any moment, there exists a critical asset price B(t) such that it is
optimal to exercise the put option when S is at or below B(1). Hence, when S <
B(1), the put option takes the value:

PS,7; X)=X-8 (2)

For asset price S above B(1), P(S, 1) satisfies the celebrated Black—Scholes
equation (Black and Scholes 1973):

Eli-lﬂzslazP -—rSaP +P =0, Se (B(1), =) (3)
gt 2 gS? as

augmented with the “smooth pasting” conditions at the exercise boundary B(T):

P(B(1), ©) = X - B(1), %{Bm. 1) =<1 (4)




and the far field boundary condition:

Im P(§, 1) =0 (5)

& =4 ea
The terminal payoff of the option gives rise to the initial mnditinn:
P(S,0)=0, S e (B(0), =) withB(0)= (6)

Since P(S, 1) is linearly homogeneous in S and X, and § is linearly homogeneous
in X, the equation and boundary conditions using the normalized functions

p= X and By = PO
X

on the normalized variable § = % are identical to

Equations 3-6, except the strike price becomes 1. Assuming there is no confusion,
we let P, B, and S stand for the normalized variables in subsequent discussions.

The difficulty for accurate valuation of the American put option lies on the
unknown boundary B(t). If we employ standard finite difference and finite
element methods directly to Equations 3-6, we will encounter the difficulty of
managing the computational mesh points or elements. It was first suggested by
Landau (1950) that such difficulty can be removed by transforming the unknown
and time varying boundary into a known and fixed line. The following
transformation of state variable serves such a purpose:

=1 7
y = In B (7)
The process for y now becomes:
dy = |1~ f - B dt + odz (8)
2 B(1)

By either forming a riskless portfolio or direct substitution, we can derive the
equation and boundary conditions using the new variable y:

P _ E o _ B(1) 3P ©)
ot 2 B(1) 9y
Py, ) =0 y € (0, =) (10)
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PO, 0 =1 -8, L&D = B@, Peon=0 (D
Y

B’ . :
The presence of the term B(m oP reveals the nonlinear nature of the valuation
1

) 9y

problem as exposed by the tran sformation. Note that transformation (7) is valid
only if B(t) > 0 for all © = 0. This is indeed true as it has been shown
(Samuelson 1979) that B(1) 1s a monotonically decreasing function of © with a
nontrivial asymptotic limit: '

1 o
BledY = e = e (12
o 1 ¥ L 2r :

Unlike most other free boundary problems, there is no separate equation for B(t)
in the present case. At y = 0, Equation 9 becomes:

B };E[T} + 1 =00 (13)

after some cancellations. Since the left boundary value P(O, 1) is an unknown,
Equation 13 will be needed in the numerical procedure.

III. FINITE DIFFERENCE APPROXIMATION

The finite difference discretization of the previous governing eguations amounts
to the approximation of all derivatives by the appropriate difference quotients. For
this purpose, we introduce a two—dimensional mesh of the size (h, k) in the first
quadrant of the y-r plane. To present our finite difference scheme in a compact
form, we define the following difference operators:

= - -1 i =1
B o BB E-E (14)
h h 2h

where E is the spatial shifting operator such that for any discrete. function P,
EP,; = P, (15)

In order to avoid nonlinearity and achieve a high order of accuracy, we adopt the
following three-level discretization to Equation 9:
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Pjn*l_Pjn-l Jocz GE (P-H*I'*'P-n-]}
-4 D,D_+|r - 2. D - J l = DR
2k 2 [ 2 |° r} 2 Giss ey

i=12 ..., M (16)

Here, P}" denotes the numerical approximation to P(jh,nk), and:

BTI-'I __En-l
= Ek_Bu

g® (17)

B ‘(nk)

(nk)

which approximates . We choose M large enough so that we can

comfortably set P, , = O for all n. The discretized version of Equation 13 is;

2
o DD P~ B spup (18)
2 2

which involves a fictitious value P.7. The discretization of the “smooth pasting
condition” (Equation 11) by central differencing gives rise to:

P, =1-B" and (19)

= -B" foralln> | (20)

From Equations 18, 19, and 20, we can eliminate P_," and obtain:

P'"=a-BB" n31 (21)
where
e=1+h%"r, B=[1+(1+h?}2 (22)

Note that the numerical discretization is not unique. We adopt the discretization
in Equation 16 based on the following considerations. First, when gh= 0,
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Equation 16 reduces to the Crank-Nicholson scheme used by Courtadon (1982)
for the Furopean call options. If we consider our finite difference scheme from
the viewpoint of an approximate general jump process, then the underlying jump
process has no biased variance. Second, the three—level discretization permits the
explicit treatment of nonlinear term, without sacrificing the accuracy of the
Crank-Nicholson discretization, which is known to be of order O(k* + h?).

|

We now explain how to advance from P;" "' and P;" to obtain B "', j =0,

1, ..., M. We first rewrite Equation 16 using matrix notations. Denote:

a=p01+k1.b=__.[ﬁi—h[r—£]].c=f_]:ﬂ"+h[r—.?.2.n
2 2 2 2

where p = k/h?, and define matrix:

f b
a < 0 . .. 0
b a = 0 .. 0
0 -b a ¢ 0
A= -
0 .. .. -b a -c
Hkti 0 .. 0 b a 4

In terms of A, Equation 16 can then be rewritten as:
(I+A) P = (- AP ' +bP," ' e, + bP" "' e, Ag"(ZhDP?),
n>l (23)
where A = k/h and:

P=®,P,...P0%

(24)
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The solution to-Equation 23 can be expressed as:
Prn-l =f1 +bPﬂn+1fz+lgn f:-! {25}
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where:
f,=(0+ AT - AP 4 bPﬂ“" el

£ =(1+A)" ¢ (26)

£, = (I + A)(2hD,P"

Substituting P *' into Equation 21 and using Equation 17, we can solve for
Bn+l:

AL, B
o -1 ~bf11z+-iﬂ_.7_
Bl (27)
Af
B B hfl.l g 9 L}n

The solutions for g* and Py~ then follow. The pseudo—code for the above

scheme is:

[L, U] = LU-decompose I + A
f, s Ut e
forn=1,2,...,N-1do
f UL 1= AP
f, « U L™ (2hD,P")

Solve for B"*' g"and P, °'

P+« f + bP; *'f, + Ag’y
end

It takes 11M multiplications/divisions and 9M additions/subtractions to compute
each P°.

Since Equation 16 is a three-level scheme, we need P' in addition to P’ to
initialize the computation. To maintain overall second order accuracy, we employ
the following two-step predictor—corrector technique to obtain P';
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[ + %]ii = [I - ﬁ]}ﬂ + %Pﬂe, + kgD, P°,

2
(28)
[ 3= 4 r v 2
where:
- B - B® o B! - B?
kBﬂ * _"'_""—I(E " Bu {29]
2

The code for P" can be used to realize this predictor—corrector procedure with
slight modification.

The specification of grid size (k, h) and the integer M is an important issue
to be addressed. Following the convention of numerical schemes, we let k be one
of the input parameters defined according to the number of time steps N, i.e,
k = T/N. Regarding h, it is well known that the convergence of the finite
difference solution for parabolic equation requires k/h — 0 as k — 0. From the
viewpoint of approximating general jump process, it is desirable to have non—
negative 1 — a, b, and c, as they then can be interpreted as probabilities
(multiplied by 1 — kr, the time discount factor). The nonnegativity requirement

leads to h = GJE.

From experience, we recommend h = 1.50y/k . This selection implies that our
finite difference method is first order accurate in k. When penny accuracy is
demanded, M should be chosen according to P(Mh, T) < (100X)™. Clearly, M is
a function of all input parameters. At this point we cannot propose a general
formula of M that guarantees penny accuracy in all situations. We have instead
chosen M in a rather simple way. For 0 < T < O(1), we observe that the

magnitude of the solution at high asset price (y > 1) depends on o/T. We thus

consider Mh = cﬁ'ﬁ , of M = [c¢oy/T/h]. Here ¢ is a constant insensitive to the
input parameters. When T < 3, we have chosen ¢ = 8 uniformly. This selection
is supported by our numerical results, For larger values of o, T, or X, we may
need larger c.

Given M chosen earlier, we can calculate the number of arithmetic operations
needed for the entire iteration. The total numbers of multiplications/divisions and
additions/subtractions are:




22¢c

3
No. of x/+ = 11IMN = {TNT} (30)

and

= 3 31
No. of +/- = 9MN = [ﬁcN?J kol

Note that the exponents over N are % When the number of time steps doubles,

the CPU time for the front-fixing method will increase by the factor of

(V2) = 2.8. Meanwhile, the binomial method takes N(N + 1) multiplications and
the same number of additions. When the number of time steps doubles, the CPU
time for the binomial method will increase by the factor of 4. If the CPU time for
one multiplication (division) significantly dominates the CPU time for one
addition (subtraction), then the front—fixing method will take less CPU time than

2
binomial method for each run when the number of time steps N 2 % .

Hence, if there are p option positions with the same maturity to be evaluated, we
should consider the front—fixing method when the number of time steps

2
N 2 [&) . If we take p = ¢ = 8, for example, N > 54.

3p f
The asset price at which option value is desired in general does not fall on
one of the grid points in the finite difference mesh. The finite difference method
on the transformed equation produces option values at:

Sj == XB(T]BJhI .] = {}r ]-t LT A | M {32)

For option values at any designated asset prices other than these S, we adopt the
cubic spline interpolation (Press et al. 1992). One can prove that interpolated
option values over the interval [B(T), B(T)e*™"] will have the same accuracy as
that of p". The delta values can be obtained by interpolating the centered
difference of the option values at the grid points.
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IV. NUMERICAL RESULTS

In this section we illustrate the performance of the front-fixing method with two
test cases. The test cases cover medium-term and long—term options. For the
same number of time steps, front-fixing method is tested against the standard

binomial method. Throughout these test cases we take h = %cw’f and M =

[S{I\('—'I_‘ /h1 for the front—fixing method. By varying the number of time steps, we
tabulate the option values, deltas, root-mean—square—errors (RMSE), and CPU
times of both the standard binomial method and the front-fixing method. In
Examples 1 and 2, we generate the “exact” solutions needed for the computation
of RMSE by the binomial method with 1,000 time steps. We would like to

Table 1A
Comparison of Speed and Accuracy for the Valuation of the

American Put in Example 1
r=01,0=03T=1X=100,k=0.01

Option Values Delta
Stock Binomial Binomial F-F-F Binomial  Binomial F-F-F
Price n= 1000 n =100 n =100 n = 1000 o= 100 n= 100
77 23.0131 23,0000 23.0128 -0.9686 -0.9619 -0.9718
78 22,0615 22.0567 22.0621 09318 -0.9342 -0.9353
79 21,1483 21.1442 21.1469 -0.8971 -0.8987 -0.9001
80 20.26%7 20.2576 20,2662 -0.8632 -0.8634 -0.58661
EMSE 0.0092 0.0015 .0036 0.0032
CPU(sec) 1.89 5.9500
80 20.2689 20,2576 20,2662 -0.8631 -0.8634 .8661
85 16,3467 16.3412 16.3396 -0.7109 -0.7107 -0.7133
a0 13.1228 13.1208 13.1124 -0.5829 -(0.5832 -0.5848
05 10.4847 10,4798 10.4733 -0.4755 -0.4761 -0.4759
100 8.3348 8.3255 8.3277 -0.3856 -0.3860 -0.3860
103 6.6071 6.6108 6.5936 -0.3108 -0.3110 03116
110 5.2001 5.2250 5.2004 -0.2491 -0.2493 -0.2497
115 4.0976 41034 4.0872 -0.1986 -0.1988 . -0.1990
120 3.2059 3.1964 3.2023 -0.1575 0.1574 -0.1578
RMSE 0L00BG 0.0090 0.0003 0.0016
CPU(sec) 1.89 6.08
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emphasize here that the CPU times given in these examples are the CPU times
for each run of either method.

Example 1. The first test case is the prototypical example used by Carr and
Faguet (1994) with the following characteristics:

« Strike price X = $100

» Risk—free interest rate r = (.1

« Volatility o = 0.3

« Time to expiration T = 1 (year)

Table 1A lists the option values and deltas obtained by the binomial and
front—fixing methods for two sets of asset prices, where “F-F-F" stands for the
front—fixing finite difference method. The asset prices in the first set are near the
optimnal exercise boundary B(T) = 76.25, and the asset prices in the second set lie
within 20 percent range of the strike price. The RMSE indicates that the two
methods have similar level of accuracy, and both are well within the truncation
error O(k). When the asset price is near the optimal exercise boundary, the
front—fixing method is slightly more accurate.

In Table 1B, we display the changes of RMSE and CPU time with respect to
N. We define:

Factor of RMSE decrease = _ N ASEMN) (33)

EMSE(N/2)

and

Factor of CPU time increase = ﬂ[ﬂ (34)

CPUN)

Table 1B
RMSE and CPU Time versus Number of Time Steps
r=01,0=03,T=1,X =100
Binomial F-F-F Binomial E-F-F

Time Factor of Factor of| CPU |Factor of| CPU | Factor of

Step N | RMSE | Decrease | RMSE | Decrease | Time | Increase | Time | Increase

16 |5.1E-02 74E-02 6.7E-02 7.2E-01
32 | 1.0E-02 0.20 |34E-02| 046 |23E-01 3.50 | 1.2E+00| 167
64 | 1.2E-02 1.22 |1.5E-02| 044 |8.3E-01 157 |2.7E+00| 226
128 |33E-03| 027 |69E-03| 046 |32E+00| 390 |68E+00| 248
256 | 5.8E-03 1.79 |38E-03| 055 |13E+01]| 391 18E+01| 270
512 |13E03| 022 |28E-03| 073 |51E+01| 403 |50E+01| 274
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where RMSE(N) and CPU(N) denote the RMSE and CPU time of either method
with N time steps. These two factors measure the order of the accuracy and the
rate of increase of CPU times. It can be seen that when the number of time steps
doubles, the RMSE of the front—fixing method decreases by a factor of around

and the CPU time increases by factors approaching JS_ The factor of decrease
for RSME confirms the first order temporal accuracy of the front-fixing method.
Note that for N = 512, the run time of the front—fixing method becomes less than
that of the binomial method. Figure 1 shows the early exercise boundary obtained
by the front—fixing method for 0 <t < T.

Example 2. The second example is a long-term option with the following char-
acteristics;

» Strike price X = $100

» Risk—free interest rate r = 0.06

* Volatility ¢ = 0.4

* Time to expiration T = 3 (years)

Figure 1
Optimal Exercise Boundary
r=0.1,sigma=03T=1,X =100, N = 100

1 m T T I L) T T T L] T

e
i
p =]
=
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?D.__-,.-...___________.,.-_-..__..,.._______._._.__:
Perpetual Exercisa Boundary=£8.97
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As shown in Table 2, the accuracy of option values by the front-fixing
method is slightly better than the binomial method.

V. CONCLUSION

We have proposed and tested a new finite difference method for the numerical
valuation of American options. The novelty of the proposed method is the
front—fixing transformation. The new method has several advantages. First, it can
evaluate option positions with the same maturity for essentially all possible asset
prices simultaneously. It becomes increasingly more economical when the number
of option positions increases. Second, it solves the optimal exercise boundary
together with option prices without extra effort. Third, the accuracy of the method
is comparable to that of the binomial method. Fourth and perhaps the most
practical advantage is that the method 1s believed to be adaptive to other options
as long as a front-fixing transformation exists. The types of options would
include barrier and Asian options. However, the front—fixing transformation will
not work for American options on multiple assets.

Table 2

Option Values and Deltas
r=01,0=03T=1,X =100,k = 0.01

Option Values Delta

Stock Binomial  Binomial F-F-F Binomial  Binomial F-F-F

Price n = 1000 n= 100 n= 100 n= 1000 n= 100 n = 100

80 28.0708 28.0886 28.0607 -0.5040 -0.5039 -0.5060

85 25.6850 25,6895 25.6698 -0.4524 -0.4526 -0.4542

90 23.5395 23.5411 23.5203 =0.4073 -0.4073 =0.4088

03 21.6027 21.6320 21,5832 -0.3675 -0.3672 -0.3688

100 19.8513 19.8251 19.8335 -0.3323 -0.3328 -0.3334

105 18.2716 18.2067 18.2500 -0.3011 -0.3010 -0.3020

11 16.8385 16.8700 16.8141 -0.2732 =0.2731 =0.2741

115 15.5359 15.5039 13,5099 -(1.2484. -0.2486 -0.2492

120 14.3500 14.3714 14.3233 -0.2262 -0.2261 -0.2269

RMSE 0.0235 0.0207 0.0002 0.0013
CPU(sec) 1.89 6.08
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