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1. Introduction

Asian options are averaging options where the terminal payoffs depend on some

form of averaging prices of the underlying asset over a part or the whole life of the

option. Averaging options are particularly useful for business involved in trading

on thinly traded commodities. These types of options are used by traders who are

interested to hedge against the average price of a commodity over a period rather

than, say, the price at the end of period.

A wide variety of averaging options have been proposed, and summaries of some

of these options can be found in the papers by Boyle [1] and Zhang [11]. The most

commonly used sampled average is the discrete arithmetic average. However, the

pricing of this class of Asian options is almost analytically intractable since the

sum of lognormal densities has no explicit representation. On the other hand, if the

Geometric Brownian motion is assumed for the underlying asset price, the analytic

derivation of the price formula for Asian options with geometric averaging is feasible

since the product of lognormal prices remains to be lognormal.

The analytic procedures for deriving pricing formula of geometrically averaged

Asian options can be broadly classified into two types, one uses the probabilis-

tic approach and the other uses the partial differential equation approach. In the
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probabilistic approach, one evaluates the price of an Asian option following the

risk neutralized discounted expectation approach. The density function of the joint

distribution of the asset price and its geometric averaging is derived. This prob-

ability approach has been well explored in numerous papers for a wide variety of

European-style Asian option models, for examples, in the papers by Kemna and

Vorst [8], Conze and Viswanathan [2], Vorst [10], etc. However, the extension of

the probabilistic approach to derive pricing formula for American-style Asian op-

tions appears to be less straightforward [5]. For the other approach, Dewynne and

Wilmott [3, 4] derived the most general partial differential equation formulation of

Asian option models. They have also attempted to analyze the properties of the

early exercise provision of American-style Asian options. However, they have not

come up with the analytical representation of the early exercise premium.

This paper presents the valuation of the floating strike Asian options with Amer-

ican early exercise feature whose payoff functions depend on the continuous geo-

metrical averaging of the asset price. The value of the American Asian option is

expressed as the sum of the value of its European counterpart and the early exercise

premium, where the premium term is in the form of an integral. The complexity

of the derivation is reduced by an appropriate choice of similarity variables, which

reduces the dimensionality of the governing equation of the Asian option model.

The availability of the integral representation of the early exercise premium leads

to an integral equation for the early exercise boundary. The solution of the exercise

boundary can be obtained effectively by the recursive integration method [6].

In the next section, we present the partial differential equation formulation of

a floating strike American Asian option with continuous geometrical averaging of

the asset price.

2. Partial Differential Equation Formulation

Let t denote the current time and T denote the expiration date of the contract of a

floating strike Asian call option with continuous geometrical averaging of the asset

price. The terminal payoff function of this Asian call option is given by

C(ST , GT , T ) = max(ST −GT , 0) , (1)

where ST is the asset price at time T andGT is the continuous geometrical averaging

of the asset price with averaging period starting at the time zero. Accordingly, Gt
is defined by

Gt = exp

(
1

t

∫ t

0

lnSudu

)
, 0 < t ≤ T . (2)

The current asset price St is assumed to follow the risk neutral lognormal process:

dSt = (r − q)St dt+ σSt dZ(t) . (3)
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Here, r, q and σ denote the constant riskless interest rate, constant dividend yield

and constant volatility, respectively, and Z(t) is the standard Wiener process. By

solving the stochastic differential Eq. (3) and using Eq. (2), we obtain

lnST = lnSt +

(
r − q − σ2

2

)
(T − t) + σ[Z(T )− Z(t)] , (4)

and

lnGT =
t

T
lnGt +

1

T

[
(T − t) lnSt +

(
r − q − σ2

2

)
(T − t)2

2

]

+
σ

T

∫ T

t

[Z(u)− Z(t)]du , (5)

where it is known that [2]

Z(T )− Z(t) = φ(0,
√
T − t) , (6a)

∫ T

t

[Z(u)− Z(t)]du = φ

(
0,

1√
3

(T − t) 3
2

)
. (6b)

Here, φ(µ, σ) denotes the normal distribution with mean µ and standard deviation

σ. The above relations reveal that GT is also lognormally distributed.

Following the riskless hedging approach and applying the no arbitrage argument,

the governing equation of the value of the European counterpart of the above Asian

call is given by

∂c

∂t
+

(
G

t
ln
S

G

)
∂c

∂G
+
σ2

2
S2 ∂

2c

∂S2
+ (r − q)S ∂c

∂S
− rc = 0, 0 < t < T , (7a)

with terminal condition:

c(S,G, T ) = max(S −G, 0) . (7b)

Let S∗(G, t) denote the optimal exercise asset price above which it is optimal to

exercise the American Asian option. Using the argument of delay exercise com-

pensation as advocated by Jamshidian [7], the governing equation of the above

American Asian option is obtained by modifying Eq. (7a) as follows:

∂C

∂t
+

(
G

t
ln
S

G

)
∂C

∂G
+
σ2

2
S2 ∂

2C

∂S2
+ (r − q)S ∂C

∂S
− rC

=


0 if S ≤ S∗(G, t)

−qS − dG

dt
+ rG if S > S∗(G, t)

. (8)

The above partial differential equation formulation involves two spatial variables:

S and G, and also the optimal exercise asset price S∗ depends on G and t. The

non-homogeneous term in Eq. (8) contains the extra term, dG
dt

, which corresponds

to the change of the strike price due to the temporal rate of change of the averaging

asset value.
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Various attempts have been made to reduce the dimensionality of the governing

equation by seeking appropriate scaling of the variables [4, 9]. We propose the

following choice for the set of similarity variables:

y = t ln
G

S
,

V (y, t) =
C(S,G, t)

S
,

(9)

where the asset price S is used as the numeraire. In terms of the new similarity

variables, the partial differential equation formulation of the American Asian option

model is reduced to

∂V

∂t
+
σ2t2

2

∂2V

∂y2
−
(
r − q +

σ2

2

)
t
∂V

∂y
− qV

=


0 if y ≥ y∗(t)

−q + rey/t +
y

t2
ey/t if y < y∗(t)

, (10a)

and

V (y, T ) = max(1− ey/T , 0) . (10b)

In the stopping region, the American Asian option value is given by

V (y, t) = 1− ey/t, y ≤ y∗(t) . (10c)

The above new formulation paves the path for the effective derivation of the pricing

formula of the American Asian option.

3. Integral Representation of the Early Exercise Premium

The solution for the American call option value obtained from the above pricing

model can be formally represented as integrals involving the Green function of

the governing equation. Let G(y, t;Y, T ) be the Green function which satisfies the

following reduced equation:

∂V

∂t
+
σ2t2

2

∂2V

∂y2
−
(
r − q +

σ2

2

)
t
∂V

∂y
= 0 . (11)

The Green function is found to be

G(y, t;Y, T ) = n

Y − y + µ
∫ T
t
udu

σ

√∫ T
t
u2du

 , (12)
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where µ = r−q+ σ2

2 and n(x) is the standard normal density function. The solution

to the governing Eqs. (10a) and (10b) can be formally represented by

V (y, t) = e−q(T−t)
∫ ∞
−∞

max(1− eY/T , 0)G(y, t;Y, T ) dY

+

∫ T

t

e−q(u−t)
∫ y∗(u)

−∞

(
q − reY/u − Y

u2
eY/u

)
G(y, t;Y, u) dY du , (13)

where y∗(u) is the critical value of y at time u, such that when y ≤ y∗(u), the

American option value assumes its intrinsic value. The first term in Eq. (13), when

multiplied by S, gives the option value of the European counterpart of the present

American Asian call option. By brute force integration of the first integral, the

value of the European counterpart is found to be

c(S,G, t) = Se−q(T−t)N(d1)−Gt/TS(T−t)/T e−q(T−t)e−QN(d2) , (14)

where

d1 =
t ln S

G + µ
2 (T 2 − t2)

σ
√

T 3−t3
3

, d2 = d1−
σ

T

√
T 3 − t3

3
, Q =

µ

2

T 2 − t2
T

− σ
2

6

T 3 − t3
T 2

.

We let e(S,G, t) denote the early exercise premium, that is,

e(S,G, t) = C(S,G, t) − c(S,G, t) . (15)

Here, c(S,G, t) is given in Eq. (14) and C(S,G, t) is the solution to Eq. (8). Let

the second integral in Eq. (13) be Ve(y, t) so that e(S,G, t) = SVe(y, t). Again, by

performing the integration accordingly, we obtain the integral representation of the

early exercise premium as follows:

e(S,G, t) = S

∫ T

t

{
qe−q(u−t)N(d̂1)

−
(
G

S

)t/u
e−q(u−t)eQ̂

[(
r + d̂3

)
N(d̂2)− σ̂

u2
n(d̂2)

]}
du , (16)

where

d̂1 =
u ln G

S∗(G,u) − t ln G
S + µ

2 (u2 − t2)

σ̂
, d̂2 = d̂1 −

σ̂

u
,

d̂3 =
t ln G

S
− µ

2 (u2 − t2) + σ̂2

u

u2
,

Q̂ =
σ̂2

2u2
− µ(u2 − t2)

2u
, σ̂2 =

σ2

3
(u3 − t3) .
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The above early exercise premium integral resembles that of an American vanilla

option. The availability of the early exercise premium term in analytic form proves

to be valuable in subsequent analysis of the early exercise policy.

4. Early Exercise Boundary

From the integral representation of the early exercise premium, we can deduce the

following two properties of the optimal exercise asset value, S∗(G, t).

(1) The optimal exercise asset value is homogeneous in G. In fact,

S∗(G, t)

G
= e−y

∗(t)/t , (17)

and e−y
∗(t)/t is a function of time. This agrees with the homogeneity property

of the present floating strike Asian option model.

(2) The asymptotic limit of y∗(t) as t→ T−, at instant right before the expiration

time, is given by

y∗(T−) = min(y∗, 0) , (18a)

where y∗ is the solution to the non-linear algebraic equation

q −
[
y∗

T 2
+ r

]
ey
∗/T = 0 . (18b)

The results given by Eqs. (18a) and (18b) are obtained based on the following

arguments. Since the payoff of the American Asian call option when exercised pre-

maturely is S − G, which must be non-negative; and so correspondingly, y∗(T−)

must be non-positive. In order that the American Asian call option remains alive at

time right before the expiration time, the condition ∂V
∂t
|t=T− < 0 must be observed.

At the critical value y = y∗(T−), we should have ∂V
∂t
|t=T− = 0. The critical value

y∗(T−) is then obtained by setting the non-homogeneous term in Eq. (10a) to be

zero, thus giving Eq. (18b).

In particular, when q = 0, Eq. (18b) can be solved analytically to give

y∗(T−) = −rT 2 . (19)

Hence, it is still optimal to exercise the present American Asian call option at

sufficiently high asset price even when the underlying asset is non-dividend paying,

a property not shared by the American vanilla call option.

In order to solve for the critical exercise boundary, we derive the following

integral equation for the critical value y∗(t) above which the option value as-

sumes the intrinsic value. Setting V (y∗, t) = 1 − ey∗/t along the critical boundary

(y∗(t), t), t ≤ T , we obtain

1− ey∗/t = VE(y∗(t), t) +

∫ T

t

f(y∗(t), t; y∗(u), u)du , (20)
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where f(y∗(t), t; y∗(u), u) denotes the integrand in the integral representing

Ve(y
∗(t), t). The solution of y∗(t), t ≤ T , can be effected by applying the following

numerical procedure, which has been coined as the recursive integration method

[6].

In the recursive integration method, one attempts to find the numerical approx-

imation of y∗(t) at discrete instants tk, k = 0, 1, . . . , n, where t0 = t, tn = T and

∆t = T−t
n

. Let y∗k denote the numerical approximation of y∗(tk), k = 0, 1, . . . , n.

By approximating the integral in Eq. (20) using the trapezoidal rule in numerical

integration, we obtain the following non-linear algebraic equation for y∗k:

1− ey∗k/tk = VE(y∗k, tk)

+
∆t

2

[
f(y∗k, tk; y∗k, tk) + f(y∗k, tk; y∗n, tn) + 2

n−1∑
i=k+1

f(y∗k, tk; y∗i , ti)

]
. (21)

Provided that y∗i , i = k + 1, . . . , n are known, one can solve for y∗k from the above

equation by any iterative method.

The following procedure is adopted to solve for y∗n, y∗n−1, y∗n−2, . . . , y
∗
0 in se-

quential manner. First, y∗n is obtained by solving Eqs. (18a) and (18b). Next, we

solve for y∗n−1 from the equation obtained by taking k = n − 1 in Eq. (21). Once

y∗n−1 is known, we take k = n − 2 in Eq. (21) and again solve for y∗n−2 from the

corresponding equation. The same procedure is repeated until we have found y∗n,

y∗n−1, . . . , y
∗
0 sequentially.

5. Numerical Examples

We apply the above recursive integration method to determine the early exercise

boundary of a floating strike American-style Asian call option whose payoff function

is given by Eq. (1). The other parameter values of the Asian model are (i) annualized

riskless interest rate r = 4%, (ii) annualized dividend yield q is set to be 0, 4%,

and 8% successively, (iii) annualized volatility σ = 20%, (iv) averaging period from

t = 0 till the expiration time, t = 1.5. In Fig. 1, we plot S∗(G, t)/G = e−y
∗(t)/t

against time t for varying values of dividend yield q. At any moment when the

asset price S is above S∗(G, t), the American Asian option should be optimally

exercised. It is observed that the function S∗(G, t)/G is not a monotonic function

in t. The higher fluctuation level of G to changes in asset price S at the earlier

time of the averaging period compared to that at the later time may explain the

concavity property of the plot of S∗(G, t)/G shown in Fig. 1. Premature exercise

becomes more attractive when the dividend yield becomes higher, as evidenced by

decreasing value of S∗(G, t)/G with increasing dividend yield (see Fig. 1). Even

when the underlying asset is non-dividend paying, that is, q = 0, the American

floating strike Asian call option will be exercised prematurely when it is sufficiently

deep-in-the-money, a property not shared by the American vanilla call option. This
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Fig. 1. Plot of S∗(G, t)/G against time t.

is because the strike price, which equals the averaging price G, is changing at all

times in the present floating strike option.

We would also like to explore the effects of interest rate and dividend yield on the

early exercise policy of the American Asian options and examine how these may

differ from those of the American vanilla options. The American value, C(S, t),

consists of two parts: the early exercise premium, e(S, t), and the value of the

European counterpart, c(S, t). The ratio R(S, t) = e(S, t)/c(S, t) somewhat reveals

the value of the early exercise privilege, where higher value of the ratio would

indicate that the potential of taking advantage of premature exercise is higher. We

consider an American vanilla call option and an American floating strike Asian call

option with continuous geometrically averaging, and compute the corresponding

R(S, t) in both models. In the numerical calculations, the asset price and the time

to expiry are chosen to be S = 100 and τ = 1.0, respectively, in both options. The

strike price for the vanilla option is X = 100 and the geometrical average value is

G = 100. The annualized volatility σ is chosen to be 20% in all calculations. We

take the dividend yield q to be r/2, r and 2r successively. Figures 2 and 3 show the

plots of the ratio R(S, t) against the interest rate r for the American vanilla call

option and the American Asian call option, respectively.

We observe that the ratio R(S, t) normally has a higher value for the Amer-

ican Asian option comparing with that of the American vanilla option in similar

situation. This is attributed to the positive correlation between S and G, so that

the intrinsic value S −G of the American Asian option fluctuates at a lower level
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Fig. 2. Plot of R(S, t) against r for the American vanilla call option model.
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Fig. 3. Plot of R(S,G, t) against r for the American Asian call option model.
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compared to S −X of the American vanilla option. The lower level of fluctuation

leads to higher potential of taking the early exercise advantage and so higher value

of R(S, t). It is interesting to observe that when q > r, the ratio R(S, t) increases

steeply with increasing r in both the Asian and vanilla options. In the risk neutral

world, the drift rate becomes negative when q > r so that the asset value has higher

tendency to drop then to rise. Correspondingly, the early exercise privilege becomes

more valuable when the drift rate becomes more negative and so the ratio R(S, t)

increases with increasing value of r.

6. Conclusion

The apparent difficulties of analyzing the pricing models of American Asian options

stem from the dependence of the option value on the stochastic movements of both

the asset price and its averaging value. In this paper, we illustrate that the option

value, when normalized by the asset price, depends only on a single stochastic

variable. This stochastic variable is the ratio of the averaging price to the asset

price. The early exercise policy of the American Asian options can be analyzed

by solving an integral equation for the exercise boundary, the complexity of which

resembles that of an American vanilla option. Some interesting properties of the

early exercise policy unique to averaging options have been obtained in the present

analysis. Compared to the American vanilla options, it is shown that the ratio of

the early exercise premium to the value of the European counterpart is higher for

the American Asian options.

One may query that this paper only deals with the pricing of a floating strike

American Asian option with continuous geometrical averaging, which is considered

to be one of the simplest option model among the whole class of American Asian

options. However, the methodology discussed here can be applied to price other

types of American-style Asian options, including models whose averaging is sam-

pled discretely, and with other terminal payoff structures. In addition, more efficient

numerical algorithms may also be constructed from the more succinct partial dif-

ferential equation formulation derived using the scaling technique proposed in this

paper.
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