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An external barrier of an option contract is a stochastic variable which determines
whether the option is knocked in or out when the value of the variable is above or
below some predetermined level, but itself is not the price of an asset which underlies
the option. In this paper, we present analytic formulation for the valuation of European
options on one or multiple assets with single external barrier, where the barrier level can
be exponential. As the domain of the problem becomes semi-infinite due to the presence
of the external barrier, we employ the method of images to find the Green function of the
governing differential equation. An efficient and accurate fractional step finite difference
scheme is proposed for the numerical valuation of these barrier options.
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1. Introduction

Heynen and Kat [1] have presented analytic valuation formulas for European-

style barrier options with single external barrier, where the external variable is not

the price of the underlying asset. For example, the underlying asset may be a foreign

stock and the external barrier may be the exchange rate. Such barrier options be-

come nullified (out-options) or activated (in-options) when the value of the barrier

variable hits some level either from above (down-options) or below (up-options). In

this paper, we go beyond the scope of Heynen and Kat’s formulas by allowing more

than one underlying asset and the barrier level can be exponential. In the valuation

of these options, we take the usual Black–Scholes assumptions. The diffusion pro-

cesses for the prices of the assets which underly the option and the barrier variable

are taken to be lognormal, and the correlation coefficients between these diffusion

processes are all constant. Also, the volatility values and the riskless interest rate

are assumed to be constant. Besides the presentation of analytic formulations, an
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efficient implicit finite difference scheme is also proposed for the numerical valuation

of these barrier options.

This paper is organized as follows. In the next section, we present the valuation

formulas for European-style options on one or multiple assets with single external

barrier where the barrier level can be exponential. The transition density function

of the underlying processes for the asset prices associated with the barrier feature

is derived using the partial differential equation approach rather than the usual

statistical approach. We solve for the Green function of the governing differential

equation argumented with the homogeneous Dirichlet boundary condition corre-

sponding to the absorbing barrier. The Green function can be recognized to be the

discounted value of the transition density function. Since the domain of the prob-

lem becomes semi-infinite with the presence of the barrier, we derive the Green

function using the method of images. The method of images resembles the reflec-

tion principle in statistics [5]. In the present context, we believe that the analytic

procedures involved using the method of images are more routine and direct. It is

known that the binomial method requires some judicious modifications to achieve

sufficient accuracy for the numerical valuation of barrier options [6]. In Sec. 3, we

propose a class of fractional step implicit finite difference schemes for the accurate

valuation of these barrier options. The pricing behaviors of a European option on

the maximum of two risky assets with an external barrier are also investigated. In

particular, we analyze the effects of correlations between the diffusion processes on

the option price. The paper is ended with conclusive remarks in Sec. 4.

2. European Options with Single External Barrier

Suppose there is an external barrier variable which determines whether the

option is nullified (“out”) or activated (“in”) when the value of the barrier variable

hits some prescribed level. For European-style options, an in-option plus an out-

option with the same expiration date, strike price and barrier will have the same

terminal payoff as the corresponding ordinary option without the barrier. Therefore,

it becomes necessary only to find values for out-options since those for in-options

can be obtained without much added efforts.

Let B denote the external barrier variable, and b(τ) = b0e
−βτ , β > 0, be the

exponential barrier level for B. The barrier variable is said to be an up (or down)

barrier if the out-option becomes nullified when the value of the barrier variable

hits the corresponding barrier level from below (or above), where the barrier level

is upstream (or downstream) of the movement of the value taken by the barrier

variable.

2.1. Formulation of the Green function

Assume that there are m underlying assets and let Si, i = 1, 2, . . . ,m, denote

the price of the underlying asset i. In the risk neutral world, the underlying asset
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prices are assumed to follow the lognormal diffusion processes:

dSi

Si
= (r − qi)dt+ σidZi, i = 1, 2, . . . ,m , (1)

where r is the constant riskless interest rate and σi is the constant volatility of

the stochastic process for Si, qi is the constant dividend yield of asset i. We let

n = m+1. The value of the barrier variable is also assumed to follow the lognormal

process:

dB

B
= (r − q)dt+ σndZn , (2)

where q is the dividend yield associated with B and σn is the constant volatility

of the stochastic process for B. Here, dZi, i = 1, 2, . . . , n, are standard Wiener

processes, and let ρij denote the correlation coefficient between dZi and dZj .

Suppose we apply the following transformation of variables:

xi =
1

σi
lnSi, i = 1, 2, . . . ,m, and xn =

1

σn
ln

B

b(τ)
, (3)

the governing partial differential equation for the value of an option on the m

underlying assets and with the downstream external barrier is given by

∂V

∂τ
=

1

2

n∑
i=1

n∑
j=1

ρij
∂2V

∂xi∂xj
+

m∑
i=1

r − qi − σ2
i

2

σi

∂V

∂xi
+
r − qn − σ2

n

2

σn

∂V

∂xn
− rV,

−∞ < xi <∞, i = 1, 2, . . . ,m, 0 < xn <∞, τ > 0 , (4)

where qn = q + β. (Note: the interval of definition for xn becomes −∞ < xn <

0 when the barrier is upstream.) We would like to find the Green function for

the above differential equation which satisfies the homogeneous Dirichlet boundary

condition at xn = 0 and the vanishing far field boundary conditions at xi →∞, i =

1, 2, . . . , n and xi → −∞, i = 1, 2, . . . ,m. First, we find the fundamental solution for

the above differential equation in the infinite domain: −∞ < x1, x2, . . . , xn < ∞;

then use the method of images to find the corresponding Green function in the

semi-infinite domain: −∞ < x1, . . . , xm < ∞, 0 < xn < ∞. The fundamental

solution in the infinite domain to (4) is found to be (see Appendix A)

gn(x1, x2, . . . , xn) =
e−rτ

(2πτ)n/2
1√

detR
exp

(
− 1

2τ
yTR−1y

)
,

−∞ < x1, x2, . . . , xn <∞ . (5)

Here, R is an n×n symmetric matrix whose entries are Rij = ρij , i, j = 1, 2, . . . , n,

and y = (y1 y2 . . . yn)T where

yi = xi + µiτ, i = 1, 2, . . . , n , (6.a)

where

µi =
r − qi − σ2

i

2

σi
, i = 1, 2, . . . , n . (6.b)
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Also, we write ξ = (ξ1 ξ2 . . . ξn)T and η = (η1 η2 . . . ηn)T . Corresponding to the

homogeneous boundary condition at xn = 0, the Green function for Eq. (4) defined

in the semi-infinite domain can be expressed as

Gn(y, τ − u; ξ) =
e−r(τ−u)

[2π(τ − u)]n/2
1√

detR

[
exp

(
− 1

2(τ − u)
(y − ξ)TR−1(y− ξ)

)

− H(ξ) exp

(
− 1

2(τ − u)
(y − η)TR−1(y − η)

)]
. (7)

We take ξ to be the dummy spatial vector and u to be the dummy time variable

in the Green function. Here, η is to be determined in terms of ξ such that the

homogeneous boundary condition at xn = 0 is satisfied. The second term in (7)

can be considered as the contribution from the negative source at η, which is the

image of ξ with respect to the boundary mirror xn = 0. The multiple H(ξ) can be

considered as the source strength of the image source at η. The present approach

of finding the Green function is called the method of images. The above Green

function is easily seen to satisfy the differential equation. It can be shown that

η1, η2, . . . , ηn are obtained by solving the following system of algebraic equations

(see Appendix B): {
ξTR−1ξ = ηTR−1η

eTi R
−1ξ = eTi R

−1η, i = 1, 2, . . . ,m,
(8)

where ei is the ith coordinate vector. The solution to the above algebraic system

is found to be

η = ξ − 2ξnRen. (9)

The corresponding value for H(ξ) is found to be (see Eq. (B.4) in Appendix B)

H(ξ) = exp(µneTnR
−1(ξ − η)) = exp(2µnξn) . (10)

The Green function can be expressed as

Gn(y, τ − u; ξ)

=
e−r(τ−u)

[2π(τ − u)]n/2
1√

detR

[
exp

(
− 1

2(τ − u)
(y− ξ)TR−1(y − ξ)

)
− exp(2µnξn)

× exp

(
− 1

2(τ − u)
(y + 2ξnRen − ξ)TR−1(y + 2ξnRen − ξ)

)]
. (11)

The above Green function is valid for external barrier which is either downstream or

upstream. To facilitate the subsequent derivation of the option formulas, it is more

convenient to use an alternative form of the Green function as given by Eq. (C.3)

in Appendix C. For convenience, we take the dummy time variable u to be zero in

all subsequent calculations.
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We restrict the later discussion to options where the number of underlying assets

is either one or two. The generalization to arbitrary number of underlying assets is

quite straightforward.

2.2. Barrier options on one underlying asset

We consider the valuation of European out-options on one underlying asset and

with single external barrier. Let θ denote a binary variable which equals 1 or −1

depending on respectively whether the barrier is downstream or upstream. The

interval of definition for ξ2 is (0,∞) or (−∞, 0) corresponding to θ = 1 or −1,

respectively. Also, let η be a binary variable which equals 1 or −1 corresponding to

the option being a call or a put, respectively. The terminal payoff for any type of

option, either a call or a put, can be represented by max(η(S1,T −X), 0). Here, X

is the strike price and S1,T is the asset price at expiry. The price of an out-option

with an external barrier is given by

V (S1, B, τ)

=

∫ ∞
0

∫ ∞
η
σ1

lnX

η(S1,T −X)G2(x1, x2, τ ; ξ1, ξ2)d(ηξ1)d(θξ2)

= ηS1e
−q1τ

[
N2(ηd̂1,−θê1; ηθρ12)−exp(−2(µ2 + ρ12σ1)x2)N2(ηd̂′1,−θê′1; ηθρ12)

]
− ηXe−rτ

[
N2(ηd̂2,−θê2; ηθρ12)−exp(−2µ2x2)N2(ηd̂′2,−θê′2; ηθρ12)

]
, (12)

where

d̂2 =
ln S1

X
+ µ1σ1τ

σ1
√
τ

, d̂1 = d̂2 + σ1
√
τ, d̂′1 = d̂1 −

2ρ12x2√
τ

, d̂′2 = d̂2 −
2ρ12x2√

τ
,

ê1 =−x2 + (µ2 + ρ12σ1)τ√
τ

, ê2 =−x2 + µ2τ√
τ

, ê′1 = ê1 +
2x2√
τ
, ê′2 = ê2 +

2x2√
τ
.

(13)

A few corrections have been made to the formula given by Heynen and Kat [1].

2.3. Options on the extremum of two risky assets with an external

barrier

As an illustration, we consider the valuation of a European call option on

the maximum of two risky assets and with a down-and-out external barrier. The

payoff function of the above European option is given by c2max(S1, S2, B, 0) =

max(max(S1,T , S2,T ) − X, 0), where X is the strike price and Si,T is the price of

asset i at expiry, i = 1, 2. The option remains alive only when B > b(τ) = b0e
−βτ

throughout the whole life of the option. The background on the use of options on

the extremum of several risky assets can be found in Stulz’s paper [7]. In what

follows, we adopt similar derivation procedure proposed by Johnson [2].
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Formally speaking, the price of the present European call is given by

c2max(S1, S2, B, τ) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

c2max(S1, S2, B, 0)

G3(x1, x2, x3, τ ; ξ1, ξ2, ξ3)dξ1dξ2dξ3 . (14)

Like all other price formulas, the above call price contains the term which represents

the discounted expectation of the cash paid out conditional on the exercising of the

call. This cash payment is given by

−X
[∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞

G3(x1, x2, x3, τ ; ξ1, ξ2, ξ3)dξ1dξ2dξ3

−
∫ ∞

0

∫ 1
σ2

lnX

−∞

∫ 1
σ1

lnX

−∞
G3(x1, x2, x3, τ ; ξ1, ξ2, ξ3)dξ1dξ2dξ3

]
.

By defining

ui =
ξi − yi√

τ
, vi =

ξi − yi + 2ρi3x3√
τ

, i = 1, 2, 3 , (15)

the above second integral term can be expressed as

e−rτ

[∫ ∞
− y3√

τ

∫ ( lnX
σ2
−y2)/

√
τ

−∞

∫ ( lnX
σ1
−y1)/

√
τ

−∞
n3(u1, u2, u3; ρ12, ρ13, ρ23)du1du2du3

− e−2µ3x3

∫ ∞
−y3+2x3√

τ

∫ ( lnX
σ2
−y2+2ρ23x3)/

√
τ

−∞

∫ ( lnX
σ1
−y1+2ρ13x3)/

√
τ

−∞

n3(v1, v2, v3; ρ12, ρ13, ρ23)dv1dv2dv3

]

= e−rτ [N3(−d,−e, f ; ρ12,−ρ13,−ρ23)

− exp(−2µ3x3)N3(−d′,−e′, f ′; ρ12,−ρ13,−ρ23)] (16)

where

d =
ln S1

X + µ1σ1τ

σ1
√
τ

, e =
ln S2

X + µ2σ2τ

σ2
√
τ

, f =
ln B

b(τ) + µ3σ3τ

σ3
√
τ

,

d′ = d−
2ρ13 ln B

b(τ)

σ3
√
τ

, e′ = e−
2ρ23 ln B

b(τ)

σ3
√
τ

, f ′ =
− ln B

b(τ) + µ3σ3τ

σ3
√
τ

.

(17)

Using similar procedure, the evaluation of the first integral gives

e−rτ [N(f)− exp(−2µ3x3)N(f ′)] .
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Suppose S1,T is the larger of the two asset prices at expiry. Following the pro-

cedure proposed by Johnson, we define

S̃1 =
Xe−rτ

S1e−q1τ
, S̃2 =

S2e
−q2τ

S1e−q1τ
, S̃3 =

B

b(τ)
, (18)

and let σ̃2
i to denote the variance rate of the normal diffusion process for ln S̃i, i =

1, 2, 3. These variance rates are found to be

σ̃2
1 = σ2

1 , σ̃2
2 = σ2

1 − 2ρ12σ1σ2 + σ2
2 , σ̃2

3 = σ2
3 . (19)

Let ρ̃ij denote the correlation coefficient between the Wiener processes associated

with the logorithms of S̃i and S̃j, i 6= j. It can be shown that

ρ̃12 =
σ1 − ρ12σ2

σ̃2
, ρ̃13 = −ρ13, ρ̃23 =

σ2ρ23 − σ1ρ13

σ̃2
. (20)

Similar to the probability calculation given in (16), the expectation of S1 in the

risk neutral world, conditional on S̃1 < 1, S̃2 < 1 at expiry and S̃3 > 1 for all τ , is

found to be

S1e
−q1τ [N3(d1, e1, f1; ρ̃12,−ρ̃13,−ρ̃23)

− exp(−2(µ3 − ρ̃13σ1)x3)N3(d′1, e
′
1, f
′
1; ρ̃12,−ρ̃13,−ρ̃23)] ,

where

d1 =
ln S1

X
+ (r − q1 +

σ2
1

2 )τ

σ1
√
τ

, e1 =
ln S1

S2
+ (q2 − q1 +

σ̃2
2

2 )τ

σ̃2
√
τ

,

f1 =
ln B

b(τ) + (µ3σ3 − ρ̃13σ1σ3)τ

σ3
√
τ

,

d′1 = d1 +
2ρ̃13 ln B

b(τ)

σ3
√
τ

, e′1 = e1 +
2ρ̃23 ln B

b(τ)

σ3
√
τ

,

f ′1 =
− ln B

b(τ) + (µ3σ3 − ρ̃13σ1σ3)τ

σ3
√
τ

.

(21)

Next, suppose S2,T is the larger of the two asset prices at expiry. Accordingly, we

define

Ŝ1 =
S1e
−q1τ

S2e−q2τ
, Ŝ2 =

Xe−rτ

S2e−q2τ
, Ŝ3 =

B

b(τ)
. (22)

The variance rates for ln Ŝi, i = 1, 2, 3, are found to be

σ̂2
1 = σ2

1 − 2ρ12σ1σ2 + σ2
2 , σ̂2

2 = σ2
2 , σ̂2

3 = σ2
3 , (23)
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and the corresponding correlation coefficients between ln Ŝi and ln Ŝj , i 6= j, are

given by

ρ̂12 =
σ2 − ρ12σ1

σ̂1
, ρ̂13 =

σ1ρ13 − σ2ρ23

σ̂1
, ρ̂23 = −ρ23 . (24)

The expectation of S2 in the risk neutral world, conditional on Ŝ1 < 1, Ŝ2 < 1 at

expiry and Ŝ3 > 1 for all τ , is found to be

S2e
−q2τ [N3(d2, e2, f2; ρ̂12,−ρ̂13,−ρ̂23)

− exp(−2(µ3 − ρ̂23σ2)x3)N3(d′2, e
′
2, f
′
2; ρ̂12,−ρ̂13,−ρ̂23)]

where

d2 =
ln S2

S1
+ (q1 − q2 +

σ̂2
1

2 )τ

σ̂1
√
τ

, e2 =
ln S2

X
+ (r − q2 +

σ2
2

2 )τ

σ2
√
τ

,

f2 =
ln B

b(τ) + (µ3σ3 − ρ̂23σ2σ3)τ

σ3
√
τ

, d′2 = d2 +
2ρ̂13x3√

τ
,

e′2 = e2 +
2ρ̂23x3√

τ
, f ′2 =

− ln B
b(τ) + (µ3σ3 − ρ̂23σ2σ3)τ

σ3
√
τ

.

(25)

Combining the results, the price of the European call option on the maximum of

two risky assets is given by

c2max(S1, S2, B, τ)

= S1e
−q1τ [N3(d1, e1, f1; ρ̃12,−ρ̃13,−ρ̃23)− exp(−2(µ3 − ρ̃13σ1)x3)

×N3(d′1, e
′
1, f
′
1; ρ̃12,−ρ̃13,−ρ̃23) + S2e

−q2τ [N3(d2, e2, f2; ρ̂12,−ρ̂13,−ρ̂23)

− exp(−2(µ3 − ρ̂23σ2)x3)N3(d′2, e
′
2, f
′
2; ρ̂12,−ρ̂13,−ρ̂23)]

−Xe−rτ{[N(f)−N3(−d,−e, f ; ρ12,−ρ13,−ρ23)]

− exp(−2µ3x3)[N(f ′)−N3(−d′,−e′, f ′; ρ12,−ρ13,−ρ23)]} . (26)

As a verification, suppose we set S2 = 0 in (26) so that

c2max(S1, 0, B, τ)

= S1e
−q1τ [N3(d1,∞, f1; 1, ρ13, ρ13)− exp(−2(µ3 + ρ13σ1)x3)

×N3(d′1,∞, f ′1; 1, ρ13, ρ13)]−Xe−rτ [N(f)−N3(−d,∞, f ; 0,−ρ13, 0)

− exp(−2µ3x3)[N(f ′)−N3(−d′,∞, f ′; 0,−ρ13, 0)]

= S1e
−q1τ [N2(d1, f1; ρ13)− exp(−2(µ3 + ρ13σ1)x3)N2(d′1, f

′
1; ρ13)]

−Xe−rτ [N2(d, f ; ρ13)− exp(−2µ3x3)N2(d′, f ′; ρ13)] . (27)
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The above price formula agrees with that given in (12) with θ = η = 1, as

expected.

The prices of other European options on the extremum of several risky assets

and with an external barrier can be derived in a similar manner.

3. Numerical Algorithms

It has been fortunate that analytic price formulas are available for the above

European options with an external barrier. However, in most other option models

with similar nature, the corresponding price formula may appear to be too cumber-

some or unavailable. A good example is the single-asset European option with both

internal (dependent on the underlying asset price) and external barriers, whose an-

alytic price formula involves an infinite series since infinite number of images will be

generated based on the present framework of method of images. Also, no analytic

price formula would be available for multi-asset options when the terminal payoff

function is a linear function of the underlying asset prices. In these cases, one has

to resort to numerical method for valuation of the option models.

The popular numerical approaches are the binomial method and the finite dif-

ference method. The binomial method may not be a good choice for the present

external barrier option models since it is well known to have difficulty to cope with

the presence of barriers [6]. In this paper, we propose a class of fractional step finite

difference schemes for the numerical valuation of European options with an exter-

nal barrier. Fractional splitting technique has been commonly adopted in numerical

algorithms for fluid flow simulation [4]. The scheme proposed below can be consid-

ered as the fractional splitting of the second order time accurate Crank–Nicholson

scheme. The advancement in each time step is split into n stages, where n is the

number of spatial dimensions in the governing equation. In every stage, only the

implicit differencing of spatial derivative terms in one of the spatial variables (one

by one in turn) is involved; and so only the solution of a tridiagonal system of equa-

tions is required at each stage. This splitting approach avoids the solution of a linear

system at every time step required by the full form of the Crank–Nicholson scheme.

The fractional step procedure can be considered as performing one Gauss–Seidel

relaxation in each spatial direction, taken consecutively. If desired, the relaxation

procedure in each direction may be repeated to achieve higher level of accuracy.

3.1. Single-asset option with an external barrier

We illustrate the splitting procedure through the valuation of the following

option model: a European call option on a single asset with an external down-and-

out barrier and no rebate. The governing equation of the call is given by

∂c

∂τ
=

1

2

(
∂2c

∂x2
1

+ 2ρ12
∂c2

∂x1∂x2
+
∂2c

∂x2
2

)
+ µ1

∂c

∂x1
+ µ2

∂c

∂x2
− rc,

−∞ < x1 <∞, 0 < x2 <∞, τ > 0 , (28)
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where

x1 =
1

σ1
lnS, x2 =

1

σ2
ln

B

b(τ)
, b(τ) = b0e

−βτ , β > 0 . (29)

The boundary conditions at S = 0 and B = b(τ) can be deduced to be

lim
x1→−∞

c(x1, x2, τ) = 0 and c(x1, 0, τ) = 0. (30)

When B attains sufficiently large value, it becomes much unlikely that the down-

and-out barrier is breached. Hence, the far field boundary condition at large value

of B is

lim
x2→∞

c(x1, x2, τ) = cE(x1, τ) , (31)

where cE(x1, τ) is the price formula for the corresponding European option without

the barrier. It is slightly more trickly to deduce the far field boundary condition at

large value of S. At exceedingly high value of S, the option is sure to expire in-the-

money, provided that the value of the barrier variable stays above the barrier level

for all times. The limiting value of the corresponding vanilla call option at high

asset value is eσ1x1−q1τ −Xe−rτ . Therefore, we may adopt the following boundary

condition:

lim
x1→∞

c(x1, x2, τ) = E[(eσ1x1−q1τ −Xe−rτ)|x2 > 0]

= Se−q1τ [N(ē1)− e−2(µ2+ρ12σ1)x2N(ē2)]

−Xe−rτ [N(ē′1)− e−2µ2x2N(ē′2)] , (32)

where

ē1 =
x2 + (µ2 + ρ12σ1)τ√

τ
, ē2 = ē1 −

2x2√
τ
,

ē′1 = ē1 − ρ12σ1
√
τ , ē′2 = ē2 − ρ12σ1

√
τ .

(33)

The initial condition is simply the terminal payoff function of the call, namely,

c(x1, x2, 0) = max(eσ1x1 −X, 0) . (34)

The computational procedures of the fractional step finite difference scheme is out-

lined in Appendix D.

We test the proposed fractional step finite difference algorithm and compare its

performance with the binomial method proposed by Kamrad and Ritchken [3]. The

accuracy of the numerical schemes is assessed based on the exact value obtained by

the direct evaluation of the analytic formula [see Eq. (12)]. In addition, we examine

the order of convergence of the numerical schemes.
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Case (i): barrier variable value is far from the down-and-out barrier

The parameters of the option model are: B = 1.0, b = 0.5, r = 0.05, q1 = 0.02,

β = 0, σ1 = 0.1, σ2 = 0.2, ρ12 = 0.5, X=1.0, τ=1.0. We find the option value

at varying asset values using the numerical schemes and compare the computed

values with the exact values. The root-mean-squared error (RMSE) are obtained

by summing the squares of these errors at different asset prices and taking the

square root. We attempt to deduce the level of accuracy of the numerical schemes

and their rate of convergence by performing the calculations at varying time steps

and comparing the RMSE values. The numerical results are tabulated in Table 1.

Roughly speaking, we observe that when the number of time steps is doubled, the

RMSE is halved in binomial calculations but reduced by a factor of one fourth

in finite difference calculations. These observations reveal that the finite difference

scheme is second order time accurate while the binomial method is only first order

time accurate. The fractional splitting procedure, which corresponds to one iteration

in each spatial direction, maintains the second order temporal accuracy of the

Crank–Nicholson scheme.

Case (ii): barrier variable value is close to the down-and-out barrier

The parameters of the option model are the same as that in case (i), except that

now the barrier b = 0.9, which is closer to the barrier variable value B = 1.0. The

numerical results for the RMSE values are also tabulated in Table 1. We observe that

the accuracy of the binomial method cannot be improved with increasing number

of time steps when the barrier variable value is close to the down-and-out barrier,

but the finite difference scheme is shown to remain second order time accurate. One

may observe the slowing down of error reduction when the number of time steps

goes from 64 to 128. This may be attributed to the dominance of the error from the

boundary condition approximation over the truncation error at this level of step

Table 1. Comparison of the root-mean-squared error values with reference to the binomial scheme
and the fractional step finite difference scheme at varying number of time steps.

b0 = 0.5 b0 = 0.9

number of finite finite

time steps binomial difference binomial difference

4 1.16 × 10−3 9.99× 10−3 2.44× 10−2 9.49× 10−3

8 5.00 × 10−4 3.21× 10−3 2.51× 10−2 3.19× 10−3

16 2.34 × 10−4 6.98× 10−4 2.93× 10−2 7.12× 10−4

32 1.19 × 10−4 1.69× 10−4 2.70× 10−2 1.71× 10−4

64 9.68 × 10−5 4.18× 10−5 2.80× 10−2 4.91× 10−5

128 4.29 × 10−5 1.03× 10−5 2.47× 10−2 3.42× 10−5
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size. The boundary condition approximation given in (32) becomes less accurate

when the value of the barrier variable comes closer to the knock-out level.

3.2. Option on the maximum of two risky assets with an external

barrier

In order to verify the validity of the pricing formula for the European call option

on the maximum of two risky assets with an external down-and-out barrier (see

formula (26)), we compute the option value by both direct evaluation of the pricing

formula and applying the fractional step algorithm. The parameter values used in

the calculations are: r = 0.05, σ1 = 0.4, σ2 = 0.3, σ3 = 0.2, q1 = 0.08, q2 =

0.04, q3 = 0, ρ12 = 0.5, ρ13 = 0.5, ρ23 = 0.5, X = 100, S1 = 100, S2 =

100, τ = 1.0; and two choices of the barrier level are taken, namely b = 60 and

b = 80. The comparison of the numerical results with varying values of the barrier

variable is revealed in Table 2. It is shown that the numerical accuracy of the finite

difference calculations is not much affected by the proximity of the value of the

barrier variable to the knock-out barrier, a nice property not shared by the usual

binomial calculations for barrier option models.

Table 2. This table compares option values obtained by direct evaluation of the pricing formula
(26) and applying the fractional step finite difference algorithm, with reference to the European
option on the maximum of two risky assets with an external down-and-out barrier. The number
of time steps used in the finite difference calculations is 64.

b = 60 b = 80

finite finite

B analytic difference analytic difference

80.5 19.399 19.386 1.102 1.026

81.0 19.442 19.430 2.150 2.039

84.0 19.598 19.622 7.426 7.513

87.0 19.831 19.723 11.248 11.308

90.0 19.887 19.775 13.957 14.009

The dependence of the option price function on the correlation coefficients be-

tween the two risky assets and the stochastic movement of the barrier variable

is also investigated. There are three correlation coefficients in the option model,

namely, ρ12, ρ13 and ρ23. We fix the value of one of the correlation coefficients,

ρ12, in each figure [see Figs. 1(a), (b) and (c)]. In every figure, three option price

curves are shown, where each curve corresponds to one fixed value of the correla-

tion coefficient, ρ23. These price curves reveal the dependence of the option price

on the correlation coefficient, ρ12. In each individual case, the range of ρ12 must

be chosen such that the correlation coefficient matrix remains positive definite. For
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(a)

(b)

(c)

Fig. 1. Illustration of the dependence of the option price function on the correlation coefficients.
The correlation coefficient, ρ13, is fixed to be 0.5, 0 and −0.5 in Figs. 1(a), (b) and (c), respectively.
In each figure, a set of three values for the correlation coefficient, ρ23, is chosen. The dashed
curve corresponds to ρ23 = 0.5, the dash-dot curve corresponds to ρ23 = 0, and the solid curve
corresponds to ρ23 = −0.5. Once ρ13 and ρ23 are fixed, the range of the correlation coefficient,
ρ12, is chosen so that the correlation coefficient matrix remains positive definite.
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example, with ρ13 = 0.5 [Fig. 1(a)] and ρ23 = 0.5 (dashed curve), the range for

ρ12 is taken to be (−0.5, 1). The parameter values used in the calculations are:

r = 0.05, q1 = 0.08, q2 = 0.04, q3 = 0.1, σ1 = 0.4, σ2 = 0.3, σ3 = 0.2, b =

80e−0.1τ , X = 100, S1 = 100, S2 = 100, B = 100, τ = 1.0.

The plots shown in Fig. 1 reveal that the option price decreases as ρ12 increases,

but the price increases as either ρ13 or ρ23 increases. When the correlation coefficient

ρ12 is negative, the two asset prices tend to move in opposite directions relative to

each other. However, since the maximum of the two asset prices is considered, only

the higher asset price is taken in calculating the payoff. Even one asset value is

moving down, the other asset price is likely moving up, so that high payoff value

is secured. The probability of positive terminal payoff would increase with more

negative correlation coefficient. Such advantage disappears when the correlation

coefficient becomes positive. The asset prices move up or down in pair. Downward

moves of both asset prices lead to a drop in payoff value. Hence, the option price

is a decreasing function of ρ12.

Next, we consider the influences of ρ13 or ρ23 on the option price. Suppose ρ13

is negative, S1 and B tend to move in opposite directions. When S1 increases, B

moves closer to the down-and-out barrier so that the upward increase in option price

is limited. On the other hand, when S1 decreases, B moves away from the barrier.

The payoff decreases while the positive effect of B on option price diminishes, and

so option price decreases. The above contradictory effects of S1 and B on option

price do not occur when ρ13 becomes positive. The asset price increases while the

barrier variable tends to move away from the barrier. The higher chance of positive

terminal payoff is coupled with the lesser chance of being knocked out. Deductively,

the option price function is an increasing function of ρ13, and also of ρ23.

4. Conclusion

We have developed a general approach for deriving analytic formulas for the pric-

ing of European multi-asset options with an external barrier. The method of image

is shown to be an effective technique for finding the transition density function of the

asset price movement with the presence of an external barrier. A second order time

accurate fractional step finite difference scheme is proposed. The computational ef-

ficiency of the difference scheme is maintained through the splitting procedure. The

finite difference scheme is shown to outperform the binomial method, in particular,

when the value of the barrier variable is close to the knock-out barrier. Apparently,

the accuracy of the finite difference calculations is not much affected by the prox-

imity of the value of the barrier variable to the knock-out barrier. Some pricing

behaviors of the European call option on the maximum of two risky assets with

an external down-and-out barrier are also discussed. In particular, the dependence

of the option price function on the correlation coefficients between the asset price

processes and the stochastic movement of the barrier variable is considered. The

option price decreases when the correlation between the two risky assets increases,
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but increases when the correlation between the barrier variable and either one of

the risky assets increases.

Appendix A

We would like to derive the fundamental solution of the following n-dimensional

parabolic equation defined in the infinite domain

∂V

∂τ
=

1

2

n∑
i=1

n∑
j=1

ρij
∂2V

∂xi∂xj
+

n∑
i=1

µi
∂V

∂xi
− rV,

−∞ < xi <∞, i = 1, 2, . . . , n . (A.1)

Define a new set of variables

yi = xi + µiτ, i = 1, 2, . . . , n , (A.2a)

and

φ = erτV, (A.2b)

then the above equation can be transformed into

∂φ

∂τ
=

1

2

n∑
i=1

n∑
j=1

ρij
∂2φ

∂yi∂yj

=
1

2

(
∂

∂y1

∂

∂y2
· · · ∂

∂yn

)
R



∂

∂y1

∂

∂y2

...

∂

∂yn


φ, −∞ < yi <∞ , (A.3)

where R is a n× n symmetric matrix whose entries are Rij = ρij , i, j = 1, 2, . . . , n.

The correlation coefficients are specified such that R is positive definite, otherwise,

arbitrage opportunities can be derived from the assets and their derivatives. As a

consequence, there exists an orthonormal matrix Q such that

QTRQ = Λ , (A.4)

where Λ is a diagonal matrix whose entries are the eigenvalues of R. When R is

positive definite, all eigenvalues of R are positive. We apply the following linear

transformation of variables:

(z1 z2 . . . zn)T = Λ−
1
2QT (y1 y2 . . . yn)T , (A.5)
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where Λ−
1
2 denotes the inverse of the positive square root of the diagonal matrix

Λ. This leads to the following prototype n-dimensional diffusion equation:

∂φ

∂τ
=

1

2

n∑
i=1

∂2φ

∂z2
i

. (A.6)

The fundamental solution to (A.6) in the infinite domain is known to be

φ(z1, z2, . . . , zn, τ) =
1

(2πτ)
n
2

exp

(
−z

2
1 + z2

2 + · · ·+ z2
n

2τ

)
,

−∞ < zi <∞, i = 1, 2, . . . , n . (A.7)

Let y = (y1 y2 . . . yn)T and observe that z2
1 + z2

2 + · · · + z2
n = yTR−1y and the

Jacobian of the transformation (A.5) is 1√
detR

. The above fundamental solution

can be rewritten as

φ(y1, y2, . . . , yn, τ) =
1

(2πτ)
n
2

1√
det R

exp

(
− 1

2τ
yTR−1y

)
,

−∞ < y1, y2, . . . , yn <∞ . (A.8)

Appendix B

We would like to find η in terms of ξ such that G(y, τ − u; ξ) = 0 at xn = 0.

Observe that in general the following quantity

F =
exp

(
− 1

2(τ−u)(y− ξ)TR−1(y− ξ)
)

exp
(
− 1

2(τ−u) (y− η)TR−1(y− η)
) ∣∣∣∣∣

xn=0

(B.1)

is a function of ξ and τ − u. We determine η such that F is a function of ξ only;

otherwise, the Green function cannot be expressed in the form given in (7). Now

consider

− 1

2(τ − u)
[(y− ξ)TR−1(y − ξ)− (y − η)TR−1(y − η)]

= − 1

2(τ − u)
{(ξTR−1ξ − ηTR−1η)

− 2[y1e
T
1 R
−1(ξ − η) + . . .+ yn−1e

T
n−1R

−1(ξ − η) + yneTnR
−1(ξ − η)]} , (B.2)

and observe that at xn = 0, the last term 1
τ−uyneTnR

−1(ξ − η) becomes

µneTnR
−1(ξ − η), which is independent of τ − u. Hence, it becomes possible to

make F to be independent of τ − u by choosing η1, η2, . . . , ηn such that{
ξTR−1ξ = ηTR−1η

eTi R
−1(ξ − η) = 0, i = 1, 2, . . . , n− 1 .

(B.3)
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One observes that H(ξ) is given by F evaluated at xn = 0. This gives

H(ξ) = exp(µneTnR
−1(ξ − η)) = exp(2µnξn) . (B.4)

Appendix C

Consider the last exponential term in (11), we have

(y + 2ξnRen − ξ)TR−1(y + 2ξnRen − ξ),

= [y− (I − 2Rene
T
n )ξ]TR−1[y− (I − 2Rene

T
n )ξ]

= (A−1y− ξ)T R̂−1(A−1y− ξ) , (C.1)

where A = I − 2Rene
T
n and R̂−1 = ATR−1A. Further, let w = A−1y. For conve-

nience, we may take u = 0. Now, consider

exp(2µnξn) exp(− 1

2τ
(w − ξ)T R̂−1(w − ξ))

= exp

(
− 1

2τ
(w + 2µnτR̂en − ξ)T R̂−1(w + 2µnτR̂en − ξ)

)
× exp(2µneTnw) exp(2µ2

nτ(R̂en)Ten)

= exp

(
− 1

2τ
(v− ξ)T R̂−1(v − ξ)

)
exp(−2µnxn) , (C.2)

where v = w + 2µnτR̂en. It can be shown easily that A−1 = A and R̂−1 = R−1.

Hence, the Green function can be expressed in the form

Gn(y, τ ; ξ)

=
e−rτ

(2πτ)n/2
1√

detR

[
exp

(
− 1

2τ
(y − ξ)TR−1(y− ξ)

)

− exp(−2µnxn) exp

(
− 1

2τ
(y − 2xnRen − ξ)TR−1(y− 2xnRen − ξ)

)]
. (C.3)

Results shown in (11) and (C.3) simply reveal the symmetry property of a Green

function. In this new form of the Green function, the multiple function in the second

term is in terms of xn rather than ξn. Since the option price formulas are derived

based on the spatial integration with respect to ξ1, . . . , ξn, the new form avoids the

tedious procedure of performing completing squares in all subsequent integration.

Completing squares is now done once and for all.

Appendix D

Let cni,j denote the approximate value of c(i4x1, j4x2, n4τ), where 4x1 and

4x2 are the stepwidths in x1- and x2-directions, respectively, and 4τ is the time
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step. Let c̃n+1
i,j denote the provisional value of cn+1

i,j immediate between the nth and

(n+ 1)th time steps. Define the centered difference operators as

δ2
x1
ci,j =

ci+1,j − 2ci,j + ci−1,j

4x2
1

, Dx1ci,j =
ci+1,j − ci−1,j

24x1
, (D.1)

and similar definitions for δ2
x2

and Dx2 . The fractional step algorithm is depicted

as follows:

(i) provisional stage — implicit differencing of terms involving x1-derivatives

c̃n+1
i,j − cni,j
4τ =

1

2
δ2
x1

c̃n+1
i,j + cni,j

2
+

1

2
δ2
x2
cni,j + ρ12Dx1Dx2

c̃n+1
i,j + cni,j

2

− ρ12Dx1

c̃n+1
i,j+1 − cni,j+1

2
+ µ1Dx1

c̃n+1
i,j + cni,j

2
+ µ2Dx2c

n
i,j

− r
(
c̃n+1
i,j + cni,j

2

)
, (D.2a)

(ii) final stage — implicit differencing of terms involving x2-derivatives

cn+1
i,j − cni,j
4τ =

1

2
δ2
x1

c̃n+1
i,j + cnij

2
+

1

2
δ2
x2

cn+1
i,j + cni,j

2
+ ρ12Dx1Dx2

cn+1
i,j + cni,j

2

− ρ12Dx2

cn+1
i+1,j − cni+1,j

2
+ µ1Dx1

c̃n+1
i,j + cni,j

2
+ µ2Dx2

cn+1
i,j + cni,j

2

− r
(
cn+1
i,j + cni,j

2

)
, (D.2b)

The solution of the tridiagonal system at each stage in the computational pro-

cedure can be effected efficiently by the Thomas algorithm.

The extension to higher dimensional multi-asset option models is quite straight-

forward. For n-asset option models, n stages of splitting are required, where each

spatial direction is taken in sequence. In each stage, only implicit differencing of

terms involving derivatives of one spatial variable is taken. For other derivative

terms which are not chosen for implicit treatment, we follow the same spirit as the

Gauss–Seidel relaxation where the explicit differencing of average values of known

provisional new time level values and old time level values are taken once the pro-

visional values are available.
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