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Abstract
We consider pricing of various types of exotic discrete variance swaps, like the gamma swaps
and corridor variance swaps, under the 3/2-stochastic volatility models with jumps in asset
price. The class of stochastic volatility models (SVM) that use a constant-elasticity-of-
variance (CEV) process for the instantaneous variance exhibit nice analytical tractability
only when the CEV parameter takes just a few special values (namely, 0, 1/2, 1 and 3/2).
The popular Heston model corresponds to the choice of the CEV parameter to be 1/2.
However, the stochastic volatility dynamics implied by the Heston model fails to capture
some important empirical features of the market data. The choice of 3/2 for the CEV
parameter in the SVM shows better agreement with empirical studies while it maintains
a good level of analytical tractability. By using the partial integro-differential equation
formulation, we manage to derive quasi-closed-form pricing formulas for the fair strike prices
of various types of exotic discrete variance swaps with various weight processes and different
return specifications under the 3/2-model. Pricing properties of these exotic discrete variance
swaps with respect to various model parameters are explored.

Keywords: Variance swaps, gamma swaps, corridor variance swaps, 3/2-volatility model

1 Introduction

Variance and volatility derivatives have become more popular in the financial market since
their introduction in the late nineties. Since volatility is likely to grow when uncertainty
and risk increase, hedge funds and retail investors may use these derivatives to manage
their exposure to the volatility risk associated with their trading positions. Speculators
can also place their bids on the future movement of the underlying volatility via trading
these instruments. Stock options are far from ideal as the instruments to provide exposure
to volatility since they have exposure to both volatility and direction of the asset price
movement. One may argue that exposure to the asset price in an option can be hedged.
However, delta hedging is costly and inaccurate given that volatility cannot be estimated
exactly. On the other hand, writers of variance swaps can almost perfectly hedge their
positions via replication by using a portfolio of options traded in the markets. The provision
of pure exposure of volatility and effective replication by traded options provide the impetus
for the growth of the markets for swaps and other derivatives on discrete realized variance.
Readers may refer to Carr and Madan (1998) for an introduction to the theory of volatility
trading.

Variance swaps are essentially forward contracts on discrete realized variance. In recent
years, other variants of variance swaps that target more specific features of variance exposure,
like the gamma swaps and corridor variance swaps (commonly called the third generation
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volatility derivatives), are also structured in the financial markets. The product specifications
of these exotic variance swap products will be presented in Section 3. The potential uses
in hedging and betting the various forms of volatility exposure can be found in numerous
articles (Demeterfi et al., 1999; Carr and Lee, 2009; Bouzoubaa and Osseiran, 2010). Most
of the earlier works on pricing discrete variance swaps concentrate on the vanilla variance
swaps under the Heston stochastic volatility model (Broadie and Jain, 2008; Zhu and Lian,
2011; Rujivan and Zhu, 2012; Elliott and Lian, 2013) and time-changed Lévy processes
(Itkin and Carr, 2010). There are two recent papers that consider the pricing of variance
swaps with exotic payoff structures on the discrete realized variance. Crosby and Davis
(2012) consider the pricing of generalized variance swaps, like the self-quantoed variance
swaps, gamma swaps, skewness swaps and proportional variance swaps under time-changed
Lévy processes. Zheng and Kwok (2014) study the pricing of highly path dependent swaps
on discrete corridor realized variance under the Heston stochastic volatility model (Heston,
1993) with simultaneous jumps in the asset price and variance.

The Heston stochastic volatility model has been commonly used for pricing variance and
volatility derivatives due to its affine structure that lead to nice analytic tractability. How-
ever, the Heston model does not receive as much support as the 3/2-model from empirical
studies. Itkin (2013) considers the class of stochastic volatility models (SVM) whose in-
stantaneous variance is modeled by a constant-elasticity-of-variance (CEV) process. The
number of analytically tractable models is rather limited, which is limited to only 4 specific
values: 0, 1/2, 1 and 3/2 of the CEV parameter. The Heston model (square root process)
corresponds to the choice of γ = 1/2, and it enjoys the best analytical tractability. Indeed,
the Heston model belongs to the class of affine models and the methodologies for finding the
corresponding joint moment generating functions are well established (Duffie et al., 2000).
Unfortunately, the Heston model has been shown to be inconsistent with observations in the
variance markets. In particular, it leads to downward sloping volatility of variance smiles,
contradicting with empirical findings from market data (Drimus, 2012). On the other hand,
the 3/2-model (choice of γ = 3/2) exhibits better agreement with empirical studies while
maintains some level of analytical tractability. For example, based on S&P 100 implied
volatilities, Jones (2003) and Bakshi et al. (2006) estimate that γ should be around 1.3,
which is close to 3/2 over 1/2 (Heston model). In addition, Jones concludes that jumps are
needed in the underlying process for fitting short maturity options. Under the statistical
measure, Javaheri (2004) analyzes the CEV type instantaneous variance process with the
exponent of the volatility of variance process either being 1/2, 1 or 3/2 by using the time
series data of S&P 500 daily returns and finds that the 3/2-power performs the best. Ishida
and Engle (2002) estimate the power to be 1.71 for S&P 500 daily return for a 30-year
period. Chacko and Viceira (2003) employ the technique of the Generalized Method of Mo-
ments on a 35-year period of weekly return and a 71-year period of monthly return. They
estimate the power to be 1.10 and 1.65, respectively, over the two periods. By using S&P
500 index options over a period of 7 years, Poteshman (1998) concludes that the drift of the
instantaneous variance is not affine as assumed in the Heston model.

There have been several recent works that use the 3/2-model for pricing variance and
volatility derivatives. Drimus (2012) compute the fair strike prices for the continuously
monitored variance and volatility derivatives under the 3/2-model without jumps. Instead of
modeling the dynamics of the instantaneous volatility directly, Carr and Sun (2007) adopt a
new approach by assuming continuous dynamics for the variance swap rate, taking advantage
of the liquidity of the variance swap market. They argue that the 3/2 specification for the
instantaneous variance is a direct consequence of the model consistency requirement. They
manage to derive an analytic closed form formula for the joint conditional Fourier-Laplace
transform of the log-asset price and its quadratic variation for the 3/2-model. Chan and
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Platen (2012) derive exact pricing and hedging formulas of continuously monitored long
dated variance swaps under the 3/2-model using the benchmark approach, a pricing concept
that provides minimal fair strike prices for variance swaps when an equivalent risk neutral
probability measure does not exist. Itkin and Carr (2010) derive closed form pricing formulas
for discrete variance swaps and options on quadratic variation under a class of time-changed
Lévy models, which includes the 3/2-power clock change.

In this paper, we propose a two-step partial integro-differential equation (PIDE) approach
for pricing exotic discrete variance swaps with two different return specifications (actual rate
of return and log rate of return) under the 3/2-model. The major contributions of our work
are three-fold. First of all, we develop a unified PIDE approach for pricing European contin-
gent claims with terminal payoffs depending on the asset prices monitored at discrete time
instants. The use of the partial differential equation (PDE) was first proposed by Little
and Pant (2001) for pricing discrete variance swaps under local volatility models and later
extended to the Heston model by Zhu and Lian (2011). We further extend this approach
to the 3/2-model with jumps and different return specifications of the discrete realized vari-
ance. Secondly, we use the PIDE approach to derive analytic pricing formulas for swaps
on discrete (weighted) realized variance, including the variance swaps, gamma swaps, and
corridor variance swaps. As an important step in the derivation procedure, we derive an
analytic formula for the Fourier transform of the joint density of the log asset price and the
instantaneous variance. Once the joint density is known analytically, quasi-closed-form (up
to a double integration) pricing formulas for these exotic discrete variance swaps can be ob-
tained. Thirdly, we perform sensitivity analysis of the prices of these exotic discrete variance
swaps with respect to model parameters under the 3/2-model and report some interesting
findings on the pricing behaviors of these swap products.

It is worth noting that there are alternative methods for pricing discrete variance swaps
in the literature. For instance, Itkin and Carr (2010) price discrete variance swaps using the
forward characteristic function approach under the general stochastic volatility framework.
We find that their approach leads to the same pricing formula for the discrete variance swap
as that derived via the PIDE approach. Unfortunately, the forward characteristic function
approach cannot be naturally extended to pricing exotic variance swaps. Rujivan and Zhu
(2012), Zheng and Kwok (2014) use the conditional expectation technique to evaluate discrete
variance swaps and exotic variance swaps, respectively, under the Heston model with jumps.
While it is plausible to extend the conditional expectation approach to price exotic variance
swaps, we prefer the PIDE approach since the PIDE approach provides a unified pricing
formulation for exotic discrete variance derivatives regardless of the return specification for
the discrete realized variance. On the other hand, the conditional expectation approach has
to deal with each type of return specification separately.

The rest of this paper is organized as follows. In the next section, we present the model
specification of the 3/2-stochastic volatility model with jumps in the dynamics of the asset
price process. We then propose the PIDE formulation for pricing contingent claims with
payoffs that are dependent on the asset prices monitored at discrete time instants. We
illustrate how to use specific integral transform techniques to find the fundamental solutions
of the partial integro-differential equations. The pricing formula for the discrete variance
swap is derived as a demonstrative example. In Section 3, we consider analytic pricing of a
pair of third generation variance derivatives: gamma swaps and corridor variance swaps. In
Section 4, we present the results of our numerical tests that were performed to illustrate the
effective numerical valuation of the quasi-closed-form pricing formulas of the exotic variance
swaps. Also, we present detailed analysis on the pricing properties of the exotic variance
swaps with respect to different sets of parameters, like the correlation between asset price and
its instantaneous variance, sampling frequency, volatility of variance. Moreover, we examine
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accuracy and numerical stability issues in the numerical valuation of the pricing formulas.
The conclusive remarks and summary of findings are presented in the last section.

2 3/2-stochastic volatility models and pricing formu-

lation of variance derivatives

In this section, we first present the 3/2 stochastic volatility model specification. We then
derive the PIDE formulation for pricing a contingent claim on the discrete realized variance.
Since each component term in the discrete realized variance is the squared asset return, which
involves asset prices Sti−1

and Sti at successive monitoring instants ti−1 and ti, the backward
induction procedure for calculating the time-t0 expected value naturally breaks down into
a two-step procedure over the successive time intervals (ti−1, ti) and [t0, ti−1). Across the
monitoring time instant ti−1 that separates the two time intervals, an appropriate jump
condition on a specified path dependent state variable in the PIDE formulation is applied.
As an illustration of the pricing procedure, we show how to find the fair strike of a vanilla
variance swap under the 3/2-model with jumps.

2.1 3/2-model with jumps

We assume that the dynamics of the asset price St and its instantaneous variance vt under
a risk neutral measure Q is governed by

dSt

St

= (r − d− λm) dt+
√
vt dW

1
t + (eJ − 1) dNt,

dvt = vt[p(t)− qvt] dt+ ǫv
3/2
t dW 2

t ,

(2.1)

where r is the riskfree interest rate, d is the dividend yield, W 1
t and W 2

t are two correlated
standard Brownian motions with dW 1

t dW
2
t = ρ dt. Also, Nt is a Poisson process with

constant arrival rate λ, assumed to be independent of W 1
t and W 2

t . The random jump size
of the log asset price is denoted by J , which has a normal distribution with mean ν and
variance ζ2. Also, J is assumed to be independent of the two Brownian motions and the
Poisson process Nt. The compensator parameter m is given by EQ[e

J − 1] = eν+ζ2/2 − 1.
The drift term q and the correlation coefficient ρ are assumed to be constant. To allow for
flexibility in model calibration, we may generalize the level parameter p(t) in the dynamics
of vt to be a deterministic continuous function of time.

The 3/2-dynamics of the variance process exhibits the mean-reverting feature. The mean-
reverting rate depends on the current variance level, thus establishing a more volatile volatil-
ity structure than that of the Heston model. We let wt be the reciprocal of the variance vt.
By applying Ito’s lemma, wt is seen to follow the time-inhomogeneous CIR process:

dwt = [q + ǫ2 − p(t)wt] dt− ǫ
√
wt dW

2
t . (2.2)

Certain technical conditions are required in order to avoid anomalies in the 3/2-process. For
a CIR process (like the variance process in the Heston model and wt defined above), it is well
known that the coefficients have to satisfy the Feller boundary condition in order to avoid
hitting the zero value, causing vt in the 3/2-process to explode with nonzero probability. In
our model, this condition is expressed as q ≥ −ǫ2/2. When pricing options under the share
measure, Lewis (2000) shows that vt has zero probability of explosion if and only if ρ < ǫ/2.
By imposing the two constraints: q > 0 and ρ < 0 in our model, it becomes sufficient to
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avoid unboundedness in the variance process. Note that ρ < 0 is not that restrictive since
negative correlation between St and vt confirms quite well with the leverage effect commonly
observed in the market: volatility goes up as asset price drops.

For the purpose of option pricing, the analytical tractability of the 3/2-model relies on
the availability of the closed-form joint conditional Fourier-Laplace transform of the terminal
log asset price and the quadratic variation. By assuming St in eq. (2.1) to be free of jump,
and letting lnSte

(r−d)(T−t) be denoted by Xt, Carr and Sun (2007) obtain

E

[
eikXT−µ

∫
T

t
vs ds
∣∣∣Xt, vt

]
= eikXt

Γ(γ − α)

Γ(γ)

[ 2

ǫ2y(vt, t)

]α
M
(
α, γ,− 2

ǫ2y(vt, t)

)
, (2.3)

where

y(vt, t) = vt

∫ T

t

e
∫
u

t
p(s) ds du,

α = −
(1
2
− q̃k

ǫ2

)
+

√(1
2
− q̃k

ǫ2

)2
+

2ck
ǫ2

,

γ = 2
(
α + 1− q̃k

ǫ2

)
, q̃k = ρǫik − q, ck = µ+

k2 + ik

2
.

The confluent hypergeometric function M(α, γ, z) is defined as

M(α, γ, z) =
∞∑

n=0

(α)n
(γ)n

zn

n!
,

where (α)n = (α)(α − 1) · · · (α + n− 1) is the Pochhammer symbol. Baldeaux and Badran
(2014) extend the above result by adding a compound Poisson jump component to the
dynamics of St in the case where p(t) is a constant.

However, the joint density of the log asset price and the instantaneous variance is required
in pricing exotic variance swaps, like the discrete gamma swaps and corridor variance swaps.
To the best of our knowledge, the joint density of the pair (Xt, vt) under the 3/2-model
derived in this paper is new in the literature. In Section 3, we present the derivation of
the joint density of (Xt, vt) and show how to use it to derive the pricing formulas of exotic
variance swaps.

2.2 PIDE pricing formulation

Let {ti|i = 0, 1, · · · , N} be an increasing sequence of monitoring dates within [0, T ] such
that 0 = t0 < t1 < · · · < tN = T . For any fixed i 6= 0, we try to evaluate the European
contingent claim whose terminal payoff at maturity ti is given by the integrable bivariate
function Fi(Sti , Iti), where Iti is the recorded asset price at an earlier time ti−1.

To establish the PIDE formulation, we introduce the state variable It (Little and Pant,
2001) to capture the realization of the asset price at ti−1, where

It =

∫ t

0

δ(u− ti−1)Su du =

{
Sti−1

ti−1 ≤ t
0 0 ≤ t < ti−1,

(2.4)

where δ(·) is the Dirac delta function. Since It changes value only at ti−1 and remains constant
over [0, ti−1) and [ti−1, ti], the governing equation of the price function can be solved in a
two-step backward procedure. This is done by solving the PIDE backward in time from ti to
ti−1, applying an appropriate jump condition at ti−1, and then solving PIDE backward again
from ti−1 to t0. Subsequently, we write Si as Sti , i = 0, 1, · · · , N , for notational convenience.
Also, similar notations are used for vti and Iti .
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Let Ui(S, v, It, t) be the time-t price function of the contingent claim with terminal payoff
Fi(Si, Ii) on maturity date ti. For t ≤ ti, the risk neutral valuation principle gives

Ui(S, v, I, t) = e−r(ti−t)Et
Q[Fi(Si, Ii)], (2.5)

where Et
Q[·] denotes the expectation conditional on the information by time t under the risk

neutral measure Q. By the Feymann-Kac theorem, the governing PIDE for Ui(S, v, I, t) is
given by

∂Ui

∂t
+

1

2
vS2∂

2Ui

∂S2
+ ρǫv2S

∂2Ui

∂S∂v
+

ǫ2

2
v3

∂2Ui

∂v2
+ (r − d− λm)S

∂Ui

∂S
+ [p(t)v − qv2]

∂Ui

∂v

+ δ(t− ti−1)S
∂Ui

∂I
− rUi + λEQ[Ui(Se

J , v, I, t)− Ui(S, v, I, t)] = 0. (2.6)

By the definition of It stated in eq. (2.4), there is a jump in the value for I across ti−1 while I
assumes constant value across [t0, ti−1) and [ti−1, ti]. Therefore,

∂U
∂I

= 0 at t 6= ti−1. However,
there should be no jump in the value of Ui across ti−1. Since I = 0 at times prior to ti−1 and
I = S at times immediately after ti−1, the jump condition across ti−1 is stated as

lim
t→t+

i−1

Ui(S, v, S, t) = lim
t→t−

i−1

Ui(S, v, 0, t). (2.7)

Since I assumes constant value over the two subintervals (t0, ti−1) and (ti−1, ti), we may omit
the dependency of Ui on I in the PIDE for simplicity. In summary, we have the following
two-step backward procedure for solving the PIDE:

(i) For t ∈ (ti−1, ti), the governing PIDE reduces to

∂Ui

∂t
+

1

2
vS2∂

2Ui

∂S2
+ ρǫv2S

∂2Ui

∂S∂v
+

ǫ2

2
v3

∂2Ui

∂v2
+ (r − d− λm)S

∂Ui

∂S

+ [p(t)v − qv2]
∂Ui

∂v
− rUi + λEQ[Ui(Se

J , v, I, t)− Ui(S, v, I, t)] = 0, (2.8)

with terminal condition: Ui(S, v, ti) = Fi(S, Si−1). Here, Si−1 is the realized asset price
at ti−1 as captured by I, which can be regarded as a known parameter since the value
of I does not change in (ti−1, ti).

(ii) For t ∈ [t0, ti−1), we also solve the same governing PIDE subject to the terminal
condition at time ti−1 as specified by the jump condition prescribed in eq. (2.7).

A close scrutiny of eq. (2.8) reveals that Ui is explicitly solvable over the time interval
(ti−1, ti) since the terminal payoff function Fi(S, Si−1) is independent of v and Si−1 is a
known parameter. However, since the solution Ui at t

−
i−1 has dependence on v, the solution

of Ui at t0 cannot be obtained in analytic closed form. We manage to express Ui at t0 in a
quasi-closed form in terms of an integral, where the integrand is the product of the transition
density and the known solution Ui at t

−
i−1.

For convenience, we introduce x = lnS and τ = ti − t for t ≤ ti. To solve eq. (2.8)
for Ui(x, v, t) over (ti−1, ti), we take the Fourier transform of the governing equation with
respect to x. The Fourier transform of Ui(x, v, τ) is defined by

F [Ui(x, v, τ)](k) =

∫ ∞

−∞

e−ikxUi(x, v, τ) dx, (2.9)

where k is the transform variable. We define Hi(k, v, τ) to be

Hi(k, v, τ) = exp(−s(k)τ)F [Ui(x, v, τ)](k),
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where

s(k) = ik(r − d− λm)− (r + λ) + λ exp(ikν − ζ2

2
k2).

By taking the Fourier transform on both sides, eq. (2.8) is transformed into an one-dimensional
partial differential equation in Hi as follows:

∂Hi

∂τ
= −ckvHi + [p(t) + q̃kv

2]
∂Hi

∂v
+

ǫ2

2
v3

∂2Hi

∂v2
, (2.10)

with initial condition: F [Fi(e
x, Si−1)](k), where ck = (k2 + ik)/2 and q̃k = ρǫik − q.

Proposition 1 Let Ĥi(k, v, τ) denote the fundamental solution to eq. (2.10) with initial

condition: Ĥi(k, v, 0) = 1, then

Ĥi(k, v, τ) =
Γ(γ − α)

Γ(γ)

[ 2

ǫ2y(v, t)

]α
M
(
α, γ,− 2

ǫ2y(v, t)

)
, (2.11)

where y(vt, t), α and γ are given in eq. (2.3) (with µ = 0 in ck). Moreover, the solution for
Ui(x, v, t) over (ti−1, ti) is given by

Ui(x, v, τ) = F
−1
[
exp(s(k)τ)Ĥi(k, v, τ)F [Fi(e

x, Si−1)](k)
]
. (2.12)

Proof. The proof of Proposition 1 is relegated to Appendix A.

To proceed with the solution of Ui(x, v, τ) over [t0, ti−1), once Ui(x, v, t
+
i−1) has been

obtained using eq. (2.12), we apply the jump condition in eq. (2.7) to obtain Ui(x, v, t
−
i−1).

In general, Ui(x, v, t
−
i−1) would have functional dependence on both x and v [see eqs. (3.3a,

3.3b) for the gamma swaps]. Consequently, the joint transition density function of (x, v) is
required to find the second-step solution of the PIDE. Given a closed-form joint transition
density function, the solution Ui(x, v, τ) over [t0, ti−1] can be obtained by evaluating its
martingale representation as a double integral, by virtue of the Feynman-Kac Theorem.
Interestingly, for discrete variance swaps, it can be shown that Ui(x, v, t

−
i−1) depends on v

only [see eqs. (2.15a, 2.15b)]. As a result, only the marginal density function of v is required
in the solution procedure.

2.3 Fair strike formulas for discrete variance swaps

Suppose {ti|i = 0, 1, · · · , N} are the discrete sampling dates for the discrete realized variance
over [0, T ], where T is the maturity date of the variance swap contract. The discrete realized
variance is commonly computed based on either the actual rate of return or log rate of return.
Let V (1) be the discrete realized variance over [0, T ] based on the actual rate of return as
defined by

V (1) =
FA

N

N∑

i=1

(Si − Si−1

Si−1

)2
, (2.13a)

where FA is the annualized factor. We take FA = 252 for daily monitoring and FA = 52 for
weekly monitoring. Alternatively, the discrete realized variance over [0, T ] based on the log
rate of return is given by

V (2) =
FA

N

N∑

i=1

(
ln

Si

Si−1

)2
. (2.13b)
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We assume the time intervals between successive monitoring dates to be uniform and denote
this common time interval as △t. For the stochastic volatility model with jumps defined in
eq. (2.1), it is known that as ∆t → 0, we have

lim
△t→0

N∑

i=1

(
ln

Si

Si−1

)2
=

∫ T

0

vt dt+

NT∑

k=1

J2
k ,

where the last term sums all the squared jumps occurring within [0, T ]. The fair strike of
the vanilla swap on discrete realized variance (either in actual return or log return) is given
by

K(n) = EQ[V
(n)], n = 1, 2.

Due to the additivity property of expectation, calculating the fair strike amounts to evaluat-
ing individual risk neutral expectation of the squared return: EQ[(

Si−Si−1

Si−1
)2] or EQ[(ln

Si

Si−1
)2].

The generalized Fourier transform of the terminal payoff Fi(S, Si−1) associated with a
discrete vanilla variance swap takes the following forms, depending on whether the actual
rate of return or log rate of return is used:

(i) Actual rate of return

F
[
F

(1)
i (S, Si−1)

]
= F

[(S − Si−1

Si−1

)2]
= F

[( ex

Si−1

− 1
)2]

= 2π
[δ(k + 2i)

S2
i−1

− 2δ(k + i)

Si−1

+ δ(k)
]
. (2.14a)

(ii) Log rate of return

F
[
F

(2)
i (S, Si−1)

]
= F

[(
ln

S

Si−1

)2]
= F [(x− lnSi−1)

2]

= 2π[−δ′′(k)− 2i δ′(k) lnSi−1 + δ(k)(lnSi−1)
2], (2.14b)

where δ(·) is the Dirac delta function, and δ′(·), δ′′(·) denote the first order and second
order derivatives of δ(·), respectively.

Recall x = lnS and let U
(n)
i (x, v, τ) denote the solution to eq. (2.8) corresponding to the

terminal condition: F
(n)
i (ex, Si−1), n = 1, 2. Using eq. (2.12), we derive the solution for U

(1)
i

and U
(2)
i at t = ti−1 (τ = ∆t) as follows:

U
(1)
i (x, v,∆t)

= F
−1
[
exp(s(k)∆t)Ĥi(k, v,△t)F

[( ex

Si−1

− 1
)2]]

=

∫ ∞

−∞

eikx exp(s(k)∆t)Ĥi(k, v,∆t)
[δ(k + 2i)

S2
i−1

− 2δ(k + i)

Si−1

+ δ(k)
]
dk

= es(−2i)∆tĤi(−2i, v,∆t)− 2es(−i)∆t + e−r∆t (2.15a)

and

U
(2)
i (x, v,∆t)

= F
−1[exp(s(k)∆t)Ĥi(k, v,∆t)F [(x− lnSi−1)

2]]

=

∫ ∞

−∞

eikx exp(s(k)∆t)Ĥi(k, v,∆t)
[
− δ′′(k)− 2iδ′(k) lnSi−1 + δ(k)(lnSi−1)

2
]
dk

= −f ′′(0) + 2if ′(0) lnSi−1 + f(0)(lnSi−1)
2

= −g′′(0), (2.15b)
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where
f(k) = g(k)eikx, g(k) = exp(s(k)∆t)Ĥi(k, v,∆t).

The above calculation clearly shows that for the discrete variance swap, the intermediate
solution U

(n)
i (x, v, τ) depends on v only. This observation greatly simplifies the calculation

of the second-step solution, since we only need to evaluate a univariate expectation using
the known marginal transition density function. The required transition density of vt can
be obtained by observing that wt = 1/vt is a CIR process. In fact, Jeanblanc et al. (2009)
show that

pvt(vt, t|v0, 0)

= p̃wt

( 1

vt
, t
∣∣∣ 1
v0
, 0
) 1

v2t

=
l(0, t)

2l∗(0, t)v2t
exp

(
− 1

v0
− 1

vt
l(0, t)

2l∗(0, t)

)(
v0 l(0, t)

vt

)ν̄/2

Iν̄

( √
l(0, t)

l∗(0, t)
√
v0vt

)
, (2.16)

where

ν̄ =
2

ǫ2
(q + ǫ2)− 1, l(s, t) = exp

(∫ t

s

p(u) du
)
, l∗(s, t) =

ǫ2

2

∫ t

s

l(s, u) du.

Note that Iν̄ is the modified Bessel function of the first kind of order ν̄ as defined by

Iν̄(z) =
(z
2

)ν̄ ∞∑

k=0

(
z2

2

)k

k!Γ(ν̄ + k + 1)
.

More precisely, the risk neutral expectation of the first term (i = 1) can be computed by
a one-step backward procedure since S0 is known. For i ≥ 2, it is necessary to implement
the two-step backward calculation from ti to ti−1, then ti−1 to t0. Summarizing the above
results, we obtain the following pricing formula for discrete variance swaps.

Proposition 2 The fair strike of a variance swap with discrete sampling on dates: 0 = t0 <
t1 < · · · < tN = T is given by

K(n) =
FA

N
er∆t

[
U

(n)
1 (x0, v0,∆t) +

N∑

i=2

∫ ∞

0

U
(n)
i (x, v,∆t)pv(v, ti−1|v0, 0) dv

]
, n = 1, 2.

(2.17)

3 Third generation variance derivatives: Gamma swaps

and corridor variance swaps

The exotic discrete variance swaps considered in this section are commonly known as the
third generation variance derivatives. They are structured so as to provide more specific ex-
posure to equity variance by adding weights at different monitoring instants in the evaluation
of the accumulated discrete realized variance. Embedded with the weight mechanism, they
are also called weighted variance swaps. The discrete weighted realized variance assumes the
form

FA

N

N∑

i=1

wi

(Si − Si−1

Si−1

)2
or

FA

N

N∑

i=1

wi ln
( Si

Si−1

)2
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based on actual rate of return or log rate of return, respectively. In this section, we consider
two particular types of weighted variance swaps, namely, the gamma swaps and corridor
variance swaps. The respective wi takes the forms

wi =
Si

S0

and wi = 1{L<Si−1≤U} (or wi = 1{L<Si≤U}).

The motivation for these two weighted variance swaps and their uses have been discussed in
Lee (2010) and Zheng and Kwok (2014).

Analogous to the variance swap, the fair strike price of the weighted variance swap
requires the evaluation of the risk neutral expectation of the weight-adjusted squared returns,
which is given by

EQ

[
wi

(Si − Si−1

Si−1

)2]
or EQ

[
wi

(
ln

Si

Si−1

)2]
i = 1, 2, · · · , N.

For both the gamma swaps and corridor variance swaps, wi is essentially a function of Si

or Si−1. Therefore, the weight-adjusted squared return defined in the above can still be
regarded as a European contingent claim with a bivariate payoff function Ei(Si, Si−1). As
a result, the two-step PIDE approach for pricing discrete variance swaps can be applied to
pricing gamma swaps and corridor variance swaps.

Due to the existence of wi, the payoff function Ei is no longer homogeneous in Si and
Si−1. As a result, unlike the discrete vanilla variance swaps, the time-ti−1 value of U

(n)
i for

a weighted variance swap has dependence on both Si−1 and vi−1. This poses the technical
requirement of finding the joint transition density of lnSt and vt in the risk neutral expecta-
tion calculation over [t0, ti−1). We write xt = lnSt, and let px,v(xt, vt, t|xs, vs, s) denote the
joint transition density function of xt and vt from time s to t. The analytic expression of
px,v is first derived in Lewis’ unpublished monograph under the assumption that the mean
reversion parameter p(t) is constant. Based on this analytic result, we can evaluate the risk
neutral expectation in the second-step calculation via a double integration with respect to
xi−1 and vi−1.

However, this direct approach does not take into account the special functional form of
the first-step solution that admits a separable form of exi−1h(vi−1), where h(·) is a univariate
function in vi−1. The exponential form in xi−1 inspires us to define the log-price-transformed
joint density function as follows

G̃(τ ;−z, vt|xs, vs) =

∫ ∞

−∞

eizypx,v(y, vt, t|xs, vs, s) dy. (3.1)

To achieve better analytic tractability, henceforth we take p(t) to be a constant. The log-
price transformed joint density admits an analytic representation as shown in Proposition
3.

Proposition 3 The log-price-transformed joint density function of log asset price and in-
stantaneous variance under the 3/2-model with jumps is given by

G̃(τ ;−z, vt|xs, vs) = G(τ ;−z, vt, vs)e
izxs exp(h(z)τ),

where

G(τ ;−z, vt, vs) =
e(1+µz)pτ

epτ − 1
exp

(
− 2p

(epτ − 1)vsǫ2
− 2pepτ

(epτ − 1)vtǫ2

)

( 2p

ǫ2vt

)(vs
vt

)µz

Iνz

(
4pepτ/2

(epτ − 1)ǫ2
√
vsvt

)
,
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and

h(z) = i(r − d− λm)z + λ[exp(iνz − ζ2z2/2)− 1],

µz =
1

2
(1 + θ̂z), θ̂z =

2(q + izρǫ)

ǫ2
, cz =

(z2 − iz)

2
,

c̃z =
2cz
ǫ2

, νz = 2
√
µ2
z + c̃z, τ = t− s.

Here, Iνz(·) is the modified Bessel function of the first kind of order νz.

Proof. The proof is presented in Appendix B.

As shown in the following subsection, the analytic formula of G̃ plays a key role in
the second-step solution procedure for pricing exotic discrete variance swaps. In particular,
the analytic form of G̃ helps reduce the dimensionality of integration by one, compared with
the pricing formula obtained based on the use of the joint transition density function.

3.1 Fair strike formulas for gamma swaps

The derivation of the fair strike formula for the gamma swap, either in actual rate of return
or log rate of return, amounts to the following respective risk neutral expectation calculation:

EQ

[
Si

(Si − Si−1

Si−1

)2]
and EQ

[
Si

(
ln

Si

Si−1

)2]
.

Similar to the derivation of the fair strike formula for the vanilla variance swap, we compute
the generalized Fourier transform of the terminal payoff of the gamma swap as follows:

(i) actual rate of return

F [E
(1)
i (S, Si−1)] = F

[
S
(S − Si−1

Si−1

)2]

= 2π
[δ(k + 3i)

S2
i−1

− 2δ(k + 2i)

Si−1

+ δ(k + i)
]
; (3.2a)

(ii) log rate of return

F [E
(2)
i (S, Si−1)] = F

[
S
(
ln

S

Si−1

)2]

= 2π[−δ′′(k + i)− 2iδ′(k + i) lnSi−1 + δ(k + i)(lnSi−1)
2]. (3.2b)

Let U
(n)
i (x, v, τ) denote the solution to eq. (2.8) with initial value E

(n)
i (ex, Si−1), n = 1, 2.

Using Proposition 1, we obtain U
(1)
i (x, v,∆t) and U

(2)
i (x, v,∆t) as follows:

U
(1)
i (x, v,∆t)

= F
−1

[
exp(s(k)∆t)Ĥi(k, v,∆t)

[δ(k + 3i)

S2
i−1

− 2δ(k + 2i)

Si−1

+ δ(k + i)
]]

= ex[es(−3i)∆tĤi(−3i, v,∆)− 2es(−2i)∆tĤi(−2i, v,∆t) + es(−i)∆t], (3.3a)

and

U
(2)
i (x, v,∆t)

= F
−1
[
exp(s(k)∆t)Ĥi(k, v,∆t)[−δ(2)(k + i)− 2iδ(1)(k + i) lnSi−1 + δ(k + i)(lnSi−1)

2]
]

= −f ′′(−i) + 2if ′(−i) lnSi−1 + f(−i)(lnSi−1)
2

= ex[−g′′(−i)], (3.3b)
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where functions f and g are defined in eq. (2.15b). As mentioned earlier, Ui(x, v, t
−
i−1) of the

gamma swap is seen to have dependence on both x and v, and in a separable form of exf(v).
In a similar manner as in the computation of the fair strike of the vanilla variance swap,

the risk neutral expectation calculation of the first term in the discrete realized variance
[corresponding to i = 1 in the discrete variance formulas shown in eqs. (2.13a) and (2.13b)]
does not require the two-step procedure since S0 is known. For i ≥ 2, it is necessary to
perform the following double integration that evaluates the risk neutral expectation from
ti−1 to t0 in the second step of the backward procedure:

E
[
er∆tU

(n)
i (x, v,∆t)

]
= er∆t

∫ ∞

0

∫ ∞

−∞

U
(n)
i (x, v,∆t)px,v(x, v, ti−1|x0, v0, 0) dx dv.

For i ≥ 2, we denote the inner integral by Ψ
(n)
i (v,∆t|x0, v0) and obtain

Ψ
(1)
i (v,∆t|x0, v0)

=

∫ ∞

−∞

U
(1)
i (x, v,∆t)px,v(x, v, ti−1|x0, v0, 0) dx

=

∫ ∞

−∞

[
ex
(
es(−3i)∆tĤi(−3i, v,∆t)− 2es(−2i)∆tĤi(−2i, v,∆t) + es(−i)∆t

)]

px,v(x, v, ti−1|x0, v0, 0) dx

=
[
es(−3i)∆tĤi(−3i, v,∆t)− 2es(−2i)∆tĤi(−2i, v,∆t) + es(−i)∆t

]
G̃(ti−1; i, v|x0, v0), (3.4a)

and

Ψ
(2)
i (v,∆t|x0, v0)

=

∫ ∞

−∞

U
(2)
i (x, v,∆t)px,v(x, v, ti−1|x0, v0, 0) dx

=

∫ ∞

−∞

[
ex
(
− g′′(−i)

)]
px,v(x, v, ti−1|x0, v0, 0) dx

=− g′′(−i)G̃(ti−1; i, v|x0, v0). (3.4b)

The formula for the fair strike of the gamma swap priced under the 3/2-model with jumps
is presented in the following proposition.

Proposition 4 The fair strike of a gamma swap with discrete sampling on dates: 0 = t0 <
t1 < · · · < tN = T is given by

K(n) =
er∆t

S0

FA

N

[
U

(n)
1 (x0, v0,∆t) +

N∑

i=2

∫ ∞

0

Ψ
(n)
i (v,∆t|x0, v0) dv

]
, n = 1, 2. (3.5)

3.2 Fair strike formulas for corridor variance swaps

In a corridor variance swap, the realized squared return monitored at time ti is added to the
accumulated variance only if Si−1 falls within the corridor (L,U ]. The calculation of the fair
strike amounts to evaluating the following risk neutral expectation:

EQ

[(Si − Si−1

Si−1

)2
1{L<Si−1≤U}

]
and EQ

[(
ln

Si

Si−1

)2
1{L<Si−1≤U}

]
.
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Alternatively, one may use Si rather than Si−1 as the monitoring asset price of the corridor
feature on the ith sampling date for the calculation of the accumulated realized variance. The
corresponding risk neutral expectation terms under the two return specifications become

EQ

[(Si − Si−1

Si−1

)2
1{L<Si≤U}

]
and EQ

[(
ln

Si

Si−1

)2
1{L<Si≤U}

]
.

Carr and Lewis (2004) develop an approximate pricing and hedging method for the
discrete corridor variance swaps by using a portfolio of European options with a continuum
of strikes. Zheng and Kwok (2014) present closed form formula for the fair strike of the
downside variance swap2 under the Heston stochastic volatility model with jumps. They
argue that a corridor variance swap can be replicated by a downside variance swap and a
vanilla variance swap. Therefore, it suffices to compute the respective downside conditional
expectation as follows:

EQ

[(Si − Si−1

Si−1

)2
1{Si−1≤U}

]
and EQ

[
ln
( Si

Si−1

)2
1{Si−1≤U}

]
.

Notice that the indicator function is a function of Si−1 which is a known quantity by time
ti−1, and hence it can be treated as a constant factor in the first-step backward calculation
over (ti−1, ti). Therefore, the first-step solution to eq. (2.8) in the case of downside variance

swap is 1{x≤u}U
(n)
i , where U

(n)
i is given by eqs. (2.15a) and (2.15b) and u = lnU . For i ≥ 2, we

adopt the same technique as in Zheng and Kwok (2014) to transform the indicator function
into the following Fourier integral, so that the state variable x enters into the exponent:

1{Si−1≤U} = 1{xi−1≤u} =
1

2π

∫ ∞

−∞

eiuω

iω
e−iωxi−1dωr, (3.6)

where ω = ωr+ iωi and ωi ∈ (−∞, 0). By changing the order of integration of x with ωr, the
expectation calculation coupled with the Fourier transform representation of the indicator
function can be expressed as

EQ

[
1{x≤u}e

r∆tU
(n)
i (x, v,∆t)

]

= er∆t

∫ ∞

0

∫ ∞

−∞

[ ∫ ∞

−∞

1

2π

eiuω

iω
e−iωxU

(n)
i (x, v,∆t)px,v(x, v, ti−1|x0, v0, 0) dωr

]
dx dv

=
er∆t

2π

∫ ∞

0

∫ ∞

−∞

eiuω

iω
U

(n)
i (x, v,∆t)G̃(ti−1;ω, v|x0, v0) dωr dv. (3.7)

Furthermore, we define

Φ
(1)
i (ω, v,∆t|x0, v0) =U

(1)
i (x, v,∆t)G̃(ti−1;ω, v|x0, v0)

=
[
es(−2i)∆tĤi(−2i, v,∆t)− 2es(−i)∆t + er∆t

]
G̃(ti−1;ω, v|x0, v0), (3.8a)

Φ
(2)
i (ω, v,∆t|x0, v0) =U

(2)
i (x, v,∆t)G̃(ti−1;ω, v|x0, v0) = −g′′(0)G̃(ti−1;ω, v|x0, v0). (3.8b)

Combining the above results, we obtain the analytic formula for the fair strike of the downside
variance swap in the form of a sum of double integrals as summarized in Proposition 5.

2The downside variance swap is a special type of corridor variance swap with upper barrier U only.
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Proposition 5 For a discretely sampled downside variance swap with an upper barrier U
on dates: 0 = t0 < t1 < · · · < tN = T , with Si−1 as the monitoring asset price on the ith

monitoring date, the fair strike is given by

K(n) =
FA

N
er∆t

[
1

2π

∫ ∞

−∞

eiuω

iω

(∫ ∞

0

N∑

i=2

Φ
(n)
i (ω, v,∆t|x0, v0) dv

)
dωr

+ 1{x0≤u}U
(n)
1 (x0, v0,∆t)

]
, n = 1, 2, (3.9)

where u = lnU and U
(n)
1 (x0, v0,∆t) are given by eqs. (2.15a) and (2.15b).

By following a similar approach, we can derive the analytic fair strike formula for the
downside variance swap with Si as the monitoring asset price on the ith monitoring date.
By adopting a similar Fourier integral representation to eq. (3.6), it is clear that one has to
evaluate the expectation of the squared return multiplied by e−iωxi . For this new terminal
payoff function, the first-step risk neutral expectation calculation of our PIDE approach can
be performed as follows:

(i) actual rate of return

U
(3)
i (ω, x, v,∆t)

=F
−1
[
exp(s(k)∆t)Ĥi(k, v,∆t)F

[
e−iωx

(ex
I

− 1
)2]]

= e−iωx
[
es(−2i−ω)∆tĤi(−2i− ω, v,∆t)− 2es(−i−ω)∆tĤi(−i− ω, v,∆t)

+ es(−ω)∆tH̃i(−ω, v,∆t)
]
; (3.10a)

(ii) log rate of return

U
(4)
i (ω, x, v,∆t)

=F
−1[exp(s(k)∆t)Ĥi(k, v,∆t)F [e−iωx(x− ln I)2]]

= e−iωx
[
− g′′(−ω)

]
. (3.10b)

The second-step risk neutral expectation calculation leads to the following solutions:

Φ
(3)
i (ω, v,∆t|x0, v0)

=

∫ ∞

−∞

U
(3)
i (ω, x, v,∆t) px,v(x, v, ti−1|x0, v0, 0) dx

=
[
es(−2i−ω)∆tĤi(−2i− ω, v,∆t)− 2es(−i−ω)∆tĤi(−i− ω, v,∆t)

+ es(−ω)∆tĤi(−ω, v,∆t)
]
G̃(ti−1;ω, v|x0, v0), (3.11a)

and

Φ
(4)
i (ω, v,∆t|x0, v0)

=

∫ ∞

−∞

U
(4)
i (ω, x, v,∆t) px,v(x, v, ti−1|x0, v0, 0) dx

=− g′′(−ω)G̃(ti−1;ω, v|x0, v0). (3.11b)

Combining the above results, we obtain the analytic fair strike formula of the downside
variance swap under the alternative definition of corridor as summarized in Proposition 6.
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Proposition 6 For a discretely sampled downside variance swap with an upper barrier U
on dates: 0 = t0 < t1 < · · · < tN = T with Si as the monitoring asset price on the ith

monitoring date, the fair strike is given by

K(n) =
FA

N

[
er∆t

2π

∫ ∞

−∞

eiuω

iω

(
U

(n)
1 (ω, x0, v0,∆t) +

∫ ∞

0

N∑

i=2

Φ
(n)
i (ω, v,∆t|x0, v0) dv

)
dωr

]
, n = 3, 4.

(3.12)

4 Numerical results

In this section, we present the numerical results that were preformed for demonstrating
efficiency and accuracy in the numerical evaluation of the fair strike formulas. We also
investigate the impact of different parameters on the fair strikes of the various types of
weighted variance swaps. We show the comparison of the values obtained in our method
with the benchmark results obtained from Monte Carlo simulation for assessing the level of
accuracy of our analytic formulas. We also show the relation between the sampling frequency
N and the fair strikes for different types of variance swaps. The impact of various model
parameters, including correlation coefficient ρ and volatility of variance ǫ, on the fair strikes
of the different types of variance swaps are examined.

In our numerical calculations, we adopted the same set of model parameter values from
Drimus (2012). These parameter values are obtained through simultaneous calibration of the
3-month and 6-month S&P 500 implied volatilities on July 31, 2009 for the 3/2-model under
the assumption of zero jump in the asset price process (see Table 1). We assume d = 0,
S0 = 1 and T = 1. Besides, we take the interest rate to be flat at r = 0.48% with reference to
the Treasury 1-Year Yield Curve on the calibrated date. Furthermore, we assume U = 1 for
the upper barrier in the corridor of the downside variance swaps and there are 252 trading
days in one year.

Parameter v0 p q ǫ ρ
Value 0.060025 4.9790 22.84 8.56 -0.99

Table 1: Model parameters of the 3/2-model.

Assessment of numerical accuracy in evaluation of analytic formulas

To assess the accuracy of the newly derived analytic pricing formulas, we compare the numer-
ical fair strike prices of discrete weighted variance swaps to the benchmark results produced
by Monte Carlo simulation. The Euler discretization scheme is adopted for performing the
Monte Carlo simulations. As pointed out by Drimus (2012), the 3/2-model exhibits more
erratic behaviors of the volatility dynamics compared to the Heston model. When calibrated
to the same set of option data, the 3/2-variance process is seen to generate more volatile
sample paths than the Heston model. We also notice that exceedingly small time step is
required in order to minimize numerical instabilities in the Monte Carlo simulation. Also,
in order to achieve 4 significant figures accuracy, we may need to perform 1 million paths in
Monte Carlo simulation (see Table 2).

Our numerical experiments suggest that the range of vi−1 for integration should be taken
to be [0, 10] and that of ωr to be [−100, 100] while ωi = −0.02 would be sufficient for
convergence of the generalized Fourier transform. The calculations were performed on an
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Intel i7 PC. By taking advantage of the multi-cores CPU in parallel computing, we have
designed parallel codes for the Monte Carlo simulation and numerical integration.

In Table 2, we list the numerical fair strike prices for N = 52 produced by the Monte
Carlo simulation and numerical integration of the analytic pricing formulas, respectively.
The CPU times are also recorded for comparison of computational efficiency. It is obvious
from the table that the analytic formulas produce highly accurate results with significantly
less computation time. It is worth noting that longer computational time is required in
the numerical evaluation of the analytic pricing formulas to produce fair strike prices of
the discrete weighted variance swaps based on the log return specification than their actual
return counterparts. This is because more time is needed to compute the second derivatives
in the formulas. The computation of the fair strike prices of downside variance swaps requires
more effort since evaluation of double integrals in the complex domain is involved.

swap type variance swap gamma swap downside corridor
return convention actual log actual log actual log

analytic 0.080939 0.083874 0.071909 0.073409 0.054224 0.056786
CPU time (s) (0.742) (5.742) (1.341) (4.232) (37.50) (247.89)
MC (0.1M) 0.080853 0.083827 0.071852 0.073355 0.054247 0.056797
CPU time (s) (211.571) (211.571) (211.418) (211.418) (220.02) (220.02)

SE 0.000142 0.000179 0.000074 0.000084 0.000174 0.000207
MC (1M) 0.080937 0.083891 0.071890 0.073394 0.054318 0.056856

CPU time (s) (2859.911) (2859.911) (2839.121) (2839.121) (4384.84) (4384.84)
SE 0.000045 0.000056 0.000023 0.000027 0.000055 0.000064

Table 2: We show the comparison of the fair strike prices of the variance swap, gamma
swap and downside corridor swap obtained from the numerical integration of the analytic
strike formulas and Monte Carlo simulation. The computational times are measured in
units of second. Here, “analytic” stands for numerical evaluation of the analytic formulas via
numerical integration, MC (0.1M) and MC (1M) for Monte Carlo simulation using 0.1 million
paths and 1 million paths, respectively, and SE for the standard error in the simulation. For
Monte Carlo simulation, computational times quoted are the same for both actual return
and log return since the discrete realized variance under both conventions can be computed
by using the same set of simulation paths.

To illustrate robustness and effectiveness of our pricing method, we performed more
detailed numerical tests on pricing variance swaps under different sampling frequencies. In
Table 3, we report the numerical comparison of the fair strike prices obtained from numerical
valuation of the pricing formulas with the benchmark Monte Carlo simulation results for
varying sampling frequencies. Good agreement of numerical results is observed, implying
that our pricing method is reliable for any reasonable choice of sampling frequency.

Pricing properties of discrete weighted variance swaps

We would like to investigate pricing properties of these exotic discrete variance swaps under
the 3/2-model. First of all, convergence of the fair strike prices as ∆t → 0 is of particular
interest. Under the Heston model, Zhu and Lian (2011) show that the fair strike prices of
discrete variance swap typically decrease with the sampling frequency, whereas the fair strike
prices of discrete weighted variance swaps are not guaranteed to be a decreasing function
(Zheng and Kwok, 2014). In Figure 1, we show the plots of the fair strike price of various
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swap type variance swap gamma swap downside corridor
return convention actual log actual log actual log
N=12 analytic 0.077464 0.086275 0.067708 0.071866 0.050810 0.057640

MC 0.077680 0.086639 0.067843 0.072056 0.051011 0.058150
N=26 analytic 0.079642 0.084734 0.070318 0.072857 0.052837 0.057163

MC 0.079443 0.084472 0.070201 0.072708 0.052755 0.056984
N=78 analytic 0.081458 0.083541 0.072546 0.073620 0.054804 0.056640

MC 0.081754 0.083927 0.072683 0.073786 0.055016 0.056931
N=104 analytic 0.081740 0.083362 0.072893 0.073733 0.055109 0.056524

MC 0.081624 0.083230 0.072847 0.073676 0.054989 0.056405

Table 3: We show the comparison of the fair strike prices of the variance swap, gamma swap
and downside corridor swap obtained from the numerical integration of the analytic strike
formulas and Monte Carlo simulation under different sampling frequencies. The computa-
tional times are measured in units of second. Here, “analytic” stands for numerical evaluation
of the analytic formulas via numerical integration, MC for Monte Carlo simulation using 0.1
million paths.

types of discrete weighted variance swaps against the sampling frequency. We find that the
fair strike prices of the vanilla variance swaps and gamma swaps based on the log return
specification are always greater than those based on the actual return. A similar pattern has
been observed by Zhu and Lian (2011) for discrete variance swaps under the Heston model.
For the discrete variance swap based on log return, the fair strike price decreases when the
sampling frequency increases. However, when the actual return is used, the fair strike price
increases steadily when N increases.3 Interestingly, the gamma swaps based on both actual
return and log return exhibit an increasing trend as the sampling frequency increases. As
for the less frequently sampled downside variance swaps, the difference in the fair strike
prices can be substantial under the two different corridor monitoring conventions. This
indicates that the corridor monitoring convention is more influential in determining the fair
strikes than the return specification. Despite the inconclusive monotonicity in the sampling
frequency, we do observe that the fair strike price of each type of discrete weighted variance
swap eventually converges to a steady level that corresponds to the fair strike price of their
continuous counterpart regardless of the return specification and monitoring convention.

Next, we investigate the pricing sensitivity of these discrete weighted variance swaps
with respect to the parameter value of correlation coefficient and volatility of variance,
respectively. For convenience, we only present the plots of the fair strike prices based on
the log return specification. Figure 2 exhibits the sensitivity of the fair strike price against
correlation coefficient, ρ. The fair strike price of the vanilla variance swap is less sensitive
to ρ than that of the gamma swap. The fair strike of the variance swap is almost flat with
varying ρ, whereas the gamma swap exhibits a moderate increasing trend as ρ increases. This
is expected, since the fair strike of the continuously sampled variance swap is independent of
ρ. On the other hand, the weight process of the gamma swap has the function of mitigating
extreme variance spikes if ρ < 0 and intensifying extreme variance if ρ > 0, which explains
the observed increasing trend. The fair strike price of the downside variance swap is seen
to be the most sensitive to the change of ρ and it is a decreasing function of ρ. This is

3As discussed in Bernard and Cui (2014), one needs to be cautious in making any conclusion on the
monotonicity out of these numerical experiments, since it is possible that the observed pattern is only true
for a particular range of model parameter values.
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consistent with the intuition that the correlation would play a decisive role through the
barrier feature. The downside variance swaps are worth more when the asset and volatility
innovations are negatively correlated. A higher value of the volatility of variance ǫ normally
indicates more volatile behavior of the volatility dynamics in the Heston model, and hence
makes volatility derivatives more valuable. However, the corresponding pricing behavior is
quite different under the 3/2-model. Figure 3 demonstrates the relation of the fair strike
prices with varying values of ǫ. As ǫ increases, the fair strike prices of all discrete weighted
variance swaps decrease in a convex manner.4

5 Conclusion

In this paper, we propose a two-step partial integro-differential equation approach to de-
rive analytic price formulas for various discrete weighted variance swaps, including variance
swaps, gamma swaps and corridor variance swaps. Quasi-closed-form pricing formulas are
obtained by virtue of the closed-form log-price-transformed joint transition density of the
log asset price and instantaneous variance. Though alternative methods for deriving these
pricing formulas may exist, we find that the proposed method is more robust and flexible.
Our approach provides a unified pricing framework for all types of discrete weighted variance
swaps based on either type of return specification. We remark that the proposed method can
be applied to price other path dependent derivatives under the 3/2-model as well, such as
the moment swaps. We performed comprehensive numerical tests with the analytic pricing
formulas and made comparison on the numerical results with the benchmark Monte Carlo
simulation. The pricing of exotic variance swaps using numerical integration of analytic
price formulas compete favorably well over the Monte Carlo simulation method with re-
gard to run time efficiency. Some interesting and unique pricing behaviors of these discrete
weighted variance swaps under the 3/2-model are revealed. Despite its small impact on the
value of fair strike price, the return specification may affect the convergence behavior of the
fair strike price significantly. The corridor convention can cause a significant difference in
the fair strike price of a downside variance swap, in particular when the sampling frequency
is small. While the pricing properties of these discrete weighted variance swaps with respect
to the correlation coefficient exhibit similar behavior as that under the Heston model, their
sensitivity with respect to varying value of the volatility of variance is completely different.
In fact, the fair strike price of each type of discrete weighted variance swaps decreases as the
volatility of variance increases.

4As an attempt to provide an intuitive explanation of this pricing behavior, we consider the continuous
monitoring variance swap since the fair strike prices of the continuous and discrete monitoring variance swaps
should exhibit a similar behavior when ǫ changes. The reciprocal wt of the 3/2 variance process is a CIR
process with mean equals (q + ǫ2)/p [see eq. (2.3)]. The expected value of wt changes with this long term
mean, and so does ǫ2 in the numerator. When ǫ2 increases, E[wt] is increasing with leading order of ǫ2. We
expand E[1/wt] by Taylor series as: E[1/wt] ≈ 1/E[wt]+var(wt)/(E[wt])

3. Since E[wt] increases with leading
order of ǫ2, we can estimate that var(wt) = O(ǫ4) as var(wt) involves squared term of wt. Since 1/E[wt] and
var(wt)/(E[wt])

3 are decreasing functions of ǫ2, so E[1/wt] would be a decreasing function of ǫ2 as well. For

the continuous variance swap, the expected value E[
∫
T

0
vs ds] = E[

∫
T

0
1/wt ds] is then a decreasing function

of ǫ2.
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Appendix A. Proof of Proposition 1

At τ = 0, we have

Ui(x, v, 0) = F
−1
[
exp(s(k)0)Ĥi(x, v, 0)F [Fi(e

x, Si−1)]
]
= Fi(e

x, Si−1),

so the initial condition is easily seen to be satisfied. Next, we take

Hi(k, v, τ) = Ĥi(k, v, τ)F [Fi(e
x, Si−1)],

and substitute into the two sides of eq. (2.10). By canceling out the term F [Fi(e
x, Si−1)] on

both sides, Hi is seen to satisfy eq. (2.10). The Fourier transform of Ui is obtained by the
relation:

Ũi(k, v, τ) = exp(s(k)τ)Hi(k, v, τ) = exp(s(k)τ)Ĥi(x, v, τ)F [Fi(e
x, Si−1)]

]
.

Subsequently, Ui is obtained by taking the inverse Fourier transform of Ũi. In fact, the
fundamental solution is closely related to the marginal Fourier-Laplace transform of x given
in eq. (2.3) with µ = 0. One can show this relationship by using the Parseval identity.

We decompose the governing stochastic differential equation of x into the continuous part
xC and the jump part xJ as follow:

xC =

∫ t

s

(r − d− λm− 1

2
v) du+

∫ t

s

√
vu dW

1
u and xJ =

Nt∑

i=Ns+1

Ji.

Let pxi
(xi, ti|x, v, t) denote the transition density of xi at time ti given v and x at time t.

Suppose we treat eikxĤi(k, v, τ) to be the marginal characteristic function given in eq. (2.3)
with µ = 0, then

Ĥi(k, v, τ) =
Γ(γ − α)

Γ(γ)

[ 2

ǫ2y(v, t)

]α
M
(
α, γ,− 2

ǫ2y(v, t)

)
,

where

y(v, t) = v

∫ ti

t

e
∫
u

t
p(s) ds du,

α = −
(1
2
− q̃k

ǫ2

)
+

√(1
2
− q̃k

ǫ2

)2
+

2ck
ǫ2

,

γ = 2
(
α + 1− q̃k

ǫ2

)
, q̃k = ρǫik − q, ck =

k2 + ik

2
.

By evaluating the risk neutral expectation of the discounted payoff, we obtain

Ui(x, v, τ) =

∫ ∞

−∞

e−rτFi(e
xi , Si−1)pxi

(xi, ti|x, v, t) dxi

=
1

2π

∫ ∞

−∞

e−rτ
F [Fi(e

xi , Si−1)]F [pxi
(xi, ti|x, v, t)] dk

=
1

2π

∫ ∞

−∞

e−rτ
F [Fi(e

xi , Si−1)]

∫ ∞

−∞

eikxipxi
(xi, ti|x, v, t) dxi dk

=
1

2π

∫ ∞

−∞

e−rτ
F [Fi(e

xi , Si−1)]E[e
ikx+ikxC+ikxJ |x, v] dk

=
1

2π

∫ ∞

−∞

F [Fi(e
xi , Si−1)]e

ikxĤi(k, v, τ) exp(s(k)τ) dk

= F
−1
[
F [Fi(e

xi , Si−1)]Ĥi(k, v, τ) exp(s(k)τ)
]
.

22



Appendix B. Deviation of Proposition 3

Let px,v(xt, vt, t|xs, vs, s) denote the joint density of xt and vt conditional on xs and vs at
time s ≤ t. By observing

xt = xs +

∫ t

s

(
r − d− λm− 1

2
v) du+

∫ t

s

√
vu dW

1
u +

Nt∑

i=Ns+1

Ji,

we obtain the following translation invariant relation

px,v(xt, vt, t|xs, vs, s) = px,v(xt − xs, vt, t|0, vs, s).

By virtue of the above relation, we may assume xs = 0 for simplicity. Though an explicit
formula for the joint transition density is not available, the xt-transformed joint density
G̃(τ ;−z, vt|xs, vs) of px,v(xt, vt, t|xs, vs, s) can be obtained in closed form, where τ = t − s
and z is the transform variable.

As the first step in our analytic derivation, we consider a pure diffusion process xt by
setting the jump component xJ = 0. Let pd(y, η, t|0, v, s) be the joint transition density of
the pure diffusion process, where y and η are assumed to be known at time t, then pd satisfies
the following Kolmogorov backward equation

∂pd
∂s

=
1

2
v
∂2pd
∂y2

+ ρǫv2
∂2pd
∂y∂v

+
ǫ2

2
v3

∂2pd
∂v2

+ (r − d− 1

2
v)
∂pd
∂y

+ (pv − qv2)
∂pd
∂v

,

with initial condition: pd(y, η, t|0, v, t) = δ(y)δ(v−η). The above partial differential equation
can be solved analytically by performing the Fourier transform with respect to the variable
y. We define the y-transformed density G(τ ;−z, η, v) as follows:

G(τ ;−z, η, v) =

[ ∫ ∞

−∞

eizypd(y, η, t|0, v, s) dy
]
e−i(r−d)zτ .

The above Kolmogorov backward equation can be simplified into a one-dimensional problem:

∂G

∂τ
=

ǫ2

2
v3

∂2G

∂v2
+ [pv − (q + izρ)v2]

∂G

∂v
− czvG,

where
cz = (z2 − iz)/2,

with initial condition: G(0; z, η, v) = δ(v − η). We define the following set of transformed
variables:

ỹ =
p̃

v
, Y =

p̃

η
, t̃ = pτ, p̃ =

2p

ǫ2
, c̃z =

2cz
ǫ2

, q̃z =
2(q + izρǫ)

ǫ2
,

and assume that G(τ ; z, η, v) takes the form

G(τ ; z, η, v) =
Y 2

p̃

( ỹ

Y

)R(z)

e[1−R(z)t̃ ]g(t̃, ỹ, Y, z),

where

R(z) = −µz − δz, µz =
1

2
(1 + q̃z), δz =

√
µ2
z + c̃z,

the partial differential equation for G(τ ; z, η, v) can be further transformed to an ordinary
differential equation in terms of g(t̃, ỹ, Y, z) with the independent spatial variable ỹ. The solu-
tion of this ordinary differential equation is readily available by taking the Laplace transform
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in the variable ỹ. By combining all the above results, we obtain the closed form solution for
G(τ ;−z, η, v).

The derivation of the Fourier transform of the joint density of xt and vt can be extended
to the inclusion of jumps in the log asset price process xt. Recall from eq. (2.1) that xt

under the 3/2-model can be decomposed into the continuous component xC and the jump
component xJ . By applying the above result for the continuous process on xC and evaluating
the compound Poisson process xJ separately, we obtain the log-price-transformed density
function G̃(τ ;−z, vt|xs, vs) of px,v(xt, vt, t|xs, vs, s) as follows:

G̃(τ ;−z, vt|xs, vs) =

∫ ∞

−∞

eizypx,v(y, vt, t|xs, vs, s) dy

= E
[
eizxt |xs, vt, vs

]

= E
[
eizxs+izxC+izxJ |xs, vt, vs

]

= eizxsE
[
eizx

C |xs = 0, vt, vs
]
E
[
ejzx

J ]

= eizxs

[ ∫ ∞

−∞

eizx
C

pd(x
C , vt, t|0, vs, s) dxC

]
e[exp(iνz−ζ2z2/2)−1]λτ

= G(τ ;−z, vt, vs)e
i(r−d−λm)τeizxse[exp(iνz−ζ2z2/2)−1]λτ

= G(τ ;−z, vt, vs)e
izxs exp(h(z)τ),

where

h(z) = i(r − d− λm)z + λ[exp(iνz − ζ2z2/2)− 1].

24



0 50 100 150 200 250
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

N (Times/Year)

F
ai

r 
st

rik
e

 

 VSA
VSL
GSA
GSL
DSA1
DSL1
DSA2
DSL2

Figure 1: Plots of the fair strike prices of the vanilla variance swaps, gamma swaps and
downside variance swaps against sampling frequency, N . The label VSA stands for the
vanilla variance swap defined by actual return, VSL for log return. Similarly, GSA stands
for the gamma swap defined by actual return, and GSL for log return. Also, DSA1 and
DSL1 stand for the downside variance swaps with Si−1 as the monitoring asset price on the
ith monitoring date based on actual and log return, respectively, while DSA2 and DSL2 for
Si as the monitoring asset price.
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Figure 2: Plots of the fair strike prices of the vanilla variance swap, gamma swap and
downside variance swap against correlation coefficient, ρ. The label VSL stands for the vanilla
variance swap, GSL for the gamma swap. Also, DSL1 stands for the downside variance swap
with Si−1 as the monitoring asset price on the ith monitoring date. All discrete variance
calculations are based on the convention of log return.
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Figure 3: Plots of the fair strike prices of the vanilla variance swap, gamma swap and
downside variance swap against volatility of variance, ǫ. The label VSL stands for the vanilla
variance swap, GSL for the gamma swap. Also, DSL1 stands for the downside variance swap
with Si−1 as the monitoring asset price on the ith monitoring date. All discrete variance
calculations are based on the convention of log return.
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