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ABSTRACT

We develop efficient fast Fourier transform algorithms for pricing and hedging discretely sam-

pled variance products and volatility derivatives under additive processes (time-inhomogeneous

Lévy processes). Our numerical algorithms are non-trivial versions of the Fourier space time

stepping method to nonlinear path dependent payoff structures, like those in variance products

and volatility derivatives. The exotic path dependency associated with the discretely sampled

realized variance is captured in the numerical procedure by updating two path dependent state

variables across monitoring dates. The time stepping procedure between successive monitoring

dates can be performed using fast Fourier transform calculations without the usual tedious time

stepping calculations in typical finite difference algorithms. We also derive effective numerical

procedures that compute the hedge parameters of variance products and volatility derivatives.

Numerical tests on pricing various variance products and volatility derivatives were performed

that illustrate efficiency, accuracy, reliability and robustness of the proposed Fourier transform

algorithms.

1 Introduction

Volatility is an important risk measure in managing vega exposure in a portfolio of assets.

Also, one may view volatility as the underlying state variable in the asset class of variance

products and volatility derivatives. For example, investors can trade on the spread between the

realized and implied volatility levels. Unlike equity options, volatility derivatives can provide

pure exposure to volatility of the underlying equity. The volatility measure used to define

the payoff structures in volatility derivatives may be either the implied volatility derived from

option prices or taking the square root of the discretely sampled realized variance obtained

by summing the square of the logarithm return of observed asset prices over successive time

instants. The trading of volatility derivatives first appeared in 1993 in the form of variance

swaps. In the past two decades, we have witnessed the proliferation of different types of

variance products and volatility derivatives traded in the financial markets. A recent review

of the market for these volatility derivatives can be found in Carr and Lee (2009).

The nonparametric approach of developing various replicating strategies for continuously

sampled variance swaps have been proposed in several pioneering works in 1990s. Under the

assumption of continuous dynamics of the price process of the underlying stock and existence

of the limit of the sum of squared returns, Neuberger (1994) shows that the delta-hedging of

a log contract provides a payoff that is related to the variance of the stock’s return. Dupire

(1993) develops the first preference-free stochastic volatility model that can be used to price
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continuously sampled volatility derivatives that are more exotic than the vanilla variance swaps.

Carr and Madan (1998) demonstrate how to replicate the payoff of a continuously monitored

variance swap by taking a static position in a continuum of options plus dynamic position in

the underlying asset. Later works on pricing variance options and volatility derivatives adopt

the assumption of jumps in asset returns (Carr et al., 2005) or jumps in both returns and

volatility (Sepp, 2008). In more recent works, Kallsen et al. (2011) consider pricing options

on the quadratic variation of asset return under the affine stochastic volatility model. Drimus

(2012) considers pricing and hedging options on continuously sampled realized variance under

the non-affine stochastic volatility models and the general class of Log-OU models. Also, Carr

et al. (2012) consider pricing variance swaps via log contracts under arbitrary exponential

Lévy dynamics that is stochastically time-changed by an arbitrary continuous clock.

The contractual specifications of most variance products and volatility derivatives are based

on the discretely sampled realized variance of the underlying asset price process. Zhu and

Lian (2011) obtain closed form pricing formulas for discretely sampled vanilla variance swaps

under stochastic volatility. Zheng and Kwok (2013a) derive pricing formulas for discretely

sampled generalized variance swaps, like conditional variance swaps and corridor variance

swaps, under the affine stochastic volatility model with simultaneous jumps. They also examine

the convergence of the fair strikes of variance swaps under discretely sampled variance to their

continuously sampled counterparts [see also a related study by Crosby and Davis (2011)].

Itkin and Carr (2010) obtain closed form pricing formulas of discretely monitored quadratic

variation derivatives under a class of Lévy processes with stochastic time change. Broadie and

Jain (2008) examine the effect of discrete sampling and asset price jump on the fair strikes of

variance and volatility swaps. They show that the well known convexity correction formula

may not provide a good approximation of the fair strikes of volatility swaps with jumps in

the underlying asset price process. Jarrow et al. (2011) examine the sufficient conditions

under which the fair strikes of swap products on discretely sampled realized variance converge

to those of their continuous counterparts. Keller-Ressel and Muhle-Karbe (2011) propose two

methods, one is analytic approximation while the other is exact, for pricing options on discretely

sampled realized variance. Zheng and Kwok (2013b) develop the saddlepoint approximation

methods for pricing derivatives on discretely sampled realized variance under Lévy models and

affine stochastic volatility models. Sepp (2012) analyzes the effect of the discrete sampling

on the valuation of options on the realized variance under the Heston stochastic volatility

model. He proposes a method that mixes the discrete variance in a log-normal model and

the quadratic variation in a stochastic volatility model. Bernard and Cui (2012) study the

fair strike of discretely sampled variance swap under a general time-homogeneous stochastic

volatility model. They manage to derive asymptotic pricing formulas for the discrete variance

swaps.

The analytic derivation of exact or approximation formulas for volatility derivatives under
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general type of stochastic processes requires high level of mathematical sophistication and the

procedure is invariably quite tedious. In most circumstances, analytic tractability is limited

to payoff structures that are mostly linear on quadratic variation of the asset price process.

For effective pricing and hedging of volatility derivatives, it would be highly desirable to de-

rive versatile and reliable numerical pricing algorithms for computing prices and their hedge

parameters for most types of payoff structures and underlying stochastic price processes.

In this paper, we propose various time stepping algorithms for pricing variance products and

volatility derivatives in the Fourier domain. Our fast Fourier transform (FFT) algorithms are

distinctive from earlier pricing algorithms that perform numerical calculations in the domain

of the original state variable of asset price. Little and Pant (2001) propose a finite difference

method for numerical valuation of discretely sampled variance swaps under the local volatility

model. Windcliff et al. (2006) develop robust numerical schemes that solve the partial integral-

differential option pricing equation under jump-diffusion asset price dynamics. The high level

of path dependence in discretely sampled volatility derivatives is handled by tracking two

stochastic state variables that capture the jump of the sampled variance across a monitoring

date. When we consider option pricing under Lévy processes, it is more effective to consider

time stepping calculations in the Fourier domain. Lord et al. (2008) and Jackson et al. (2008)

propose effective FFT algorithms for pricing derivatives with mild path dependence in the

payoff structures, like the barrier options and American options. A recent review of various

FFT algorithms in option pricing under Lévy processes can be found in Kwok et al. (2012).

The fast Fourier transform technique can be extended to pricing path dependent options

under stochastic volatility, like pricing American options (Zhylyevskyy, 2010) and Bermudan

and barrier options (Fang and Oosterlee, 2011). One can also extend the FFT method to

time-changed Lévy process by performing appropriate numerical integration over the activi-

ty rate dynamics. In this paper, we consider various enhanced versions of the Fourier space

time stepping algorithm that extend the class of the underlying price processes to exponential

additive processes (time-inhomogeneous exponential Lévy processes) by relaxing the assump-

tion of stationarity of increments in the underlying exponential Lévy processes. Also, the

usual requirement of closed form expression for the characteristic function of the underlying

asset price process can be relaxed. We simply require the availability of numerical values of

the characteristic function at a set of discrete grid points. Our algorithms are constructed

to handle exotic path dependence associated with discretely sampled variance (through the

incorporation of a set of appropriate jump conditions on the path dependent state variables

across monitoring dates). While most analytic approximation formulas in the literature do

not include the evaluation of the hedge parameters of the price functions of variance products

and volatility derivatives, the set of common hedge parameters like delta and gamma can be

computed efficiently using our Fourier transform algorithms. Though our discussion of FFT

algorithms is limited to pricing volatility derivatives under the additive process, the pricing
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methodologies developed in this paper can be extended at relative ease to other processes like

the time-changed Lévy processes and stochastic volatility models. However, these extended

versions of FFT algorithms would encounter higher order of computational complexity since

additional state variables are included in the pricing models.

The paper is organized as follows. In the next section, we present a brief review of additive

processes and the model formulation of discretely sampled variance products and volatility

derivatives under additive processes. In Section 3, we first review the FFT algorithms for

option pricing using the CONV method (Lord et al., 2008). We then discuss the details of

our enhanced FFT pricing algorithms that handle strong path dependence as exhibited in

various exotic variance products and volatility derivatives. We also show how to perform the

calculations of hedge parameters efficiently. In Section 4, we demonstrate how to compute

the fair price functions and their hedge parameters of various types of variance products and

volatility derivatives under the piecewise double exponential model (a simple example of an

additive process). We report the results from our numerical experiments that were performed

to test for accuracy and convergence of the Fourier transform algorithms for pricing different

types of variance products and volatility derivatives. Properties on the price functions and

hedge parameters of some exotic variance products are also discussed. Conclusive remarks are

presented in the last section.

2 Exponential additive processes and derivatives on dis-

cretely sampled realized variance

An exponential Lévy process can offer versatile asset return distribution for fitting the ac-

tual return distribution and volatility smiles. Equipped with the advantage of nice analytic

tractability, Lévy processes have been widely adopted as the underlying asset price processes

in pricing various types of exotic derivatives (Carr et al., 2005). However, Lévy processes are

well known to have limitations in capturing the term structures of smiles, largely due to the

stationarity of increments of Lévy processes. One remedy is to introduce stochastic volatility

by time-changing a Lévy process (Carr and Wu, 2004), where the time-changed process is

modeled by a non-decreasing process. Under the assumption that the time-changed process is

a continuous process, one can introduce an activity rate process that is always positive. In this

way, the time-changed process can be represented as an integral of the activity rate process.

Though the time-changed Lévy models can fit the volatility smile surface better, an increase in

dimensionality adds computational complexity and difficulties in calibration. An alternative

approach is to remove stationarity in Lévy processes and take into account deterministic time

inhomogeneities (Cont and Tankov, 2003). An advantage of this approach is that most of the

nice analytic tractability and computational simplicity of Lévy processes can be carried over
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to additive processes. The emphasis of this work is more on the design of FFT algorithms, so

we take the class of additive processes as the assumed underlying asset price dynamics in our

pricing models of derivatives on discretely sampled realized variance. The numerical pricing

methodologies developed in this paper can be extended at relative ease to accommodate more

realistic models of asset price dynamics, like stochastic volatility models and time-changed

Lévy processes (Fang and Oosterlee, 2011; Itkin and Carr, 2010; Zhylyevskyy, 2012).

Additive processes

A short summary of the properties of additive processes is presented below.

Definition. Let B = (Ω,F , (Ft)0≤t≤T , P ) be a complete stochastic basis. An additive process

is an R-valued, adapted, càdlàg process {Xt : t ≥ 0} such that:

1. For any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, the random variables Xt0, Xt1−Xt0 , · · · , Xtn−
Xtn−1 are independent.

2. X0 = 0 a.s.

3. Xt is stochastically continuous.

Remark: When the distribution of Xt+s − Xs is assumed to be independent of s, the corre-

sponding category of additive processes are known as Lévy processes.

Additive processes belong to a subclass of semimartingales that can be fully characterized

by its associated triplet (B,C, ν) of characteristics, where B,C are predictable processes and ν

is a predictable random measure on R+×R. The first characteristic B depends on a truncation

function, say, h(x) = x1{|x|≤1}, which is chosen a priori. A semimartingale is an additive process

if and only if its characteristics are non-random.

In practice, the characteristics are usually assumed to be absolutely continuous in time,

where

Bt =

∫ t

0

bs ds, Ct =

∫ t

0

cs ds, ν([0, t]×G) =

∫ t

0

Fs(G) ds, ∀G ∈ B,

with predictable processes b, c and a transition kernel F from (Ω × R+,P) to (R,B). In

this case, we call (b, c, λ) to be the differential characteristics of X. A semimartingale with

these differential characteristics resembles locally a Lévy process with triplet (b, c, F )(ω, t).

Hereafter, we implicitly assume (b, c, F ) to be a good version in the sense that cs is nonnegative,

Fs({0}) = 0 and the triplet satisfies∫ T

0

(
|bs|+ |cs|+

∫
R
(1 ∧ |x|2)Fs(dx)

)
ds <∞.
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In the literature, an additive process with absolutely continuous characteristics (also known as

an time-inhomogeneous Lévy process) is frequently adopted as the building block for financial

modeling (Cont and Tankov, 2003). In financial engineering, the existence of the exponential

moments of the driving process is usually required, which naturally leads to the following

assumption.

Assumption. There exists a constant M > 1, such that the Lévy measure λs satisfies∫ T

0

∫
R

exp(ux)Fs(dx) ds <∞, ∀u ∈ [−M,M ]. (2.1)

Based on the above assumption, by the Lévy-Khintchine formula, the moment generating

function is given by

eψt(u) = E[euXt ] = exp
(∫ t

0

[
bsu+

1

2
csu

2 +

∫
R
(eux − 1− ux1{|x|≤1})Fs(dx)

]
ds
)
. (2.2)

Let ψt,T (u) denote the cumulant generating function of the increment XT −Xt. By the inde-

pendency of the increments, we have

ψt,T (u) = lnE[eu(XT−Xt)] = ln
E[euXT ]

E[euXt ]
= ψT (u)− ψt(u)

=

∫ T

t

[
bsu+

1

2
csu

2 +

∫
R
(eux − 1− ux1{|x|≤1})Fs(dx)

]
ds. (2.3)

Let St denote the asset price process with constant dividend yield d and r be the constant

riskless interest rate. Suppose the risk neutral dynamics of asset price process is assumed to

be an exponential time-inhomogeneous Lévy process under a risk neutral measure Q, where

St = S0e
(r−d)teXt−ψt(1), t ≥ 0. (2.4)

Here, Xt is a time-inhomogeneous Lévy process with the triplet of differential characteristics

(b, c, F ) satisfying the conditions stated above. Note that the compensation term e−ψt(1) is ap-

pended so that the discounted and dividend-stripped asset price process is a martingale under

the risk neutral measure Q.

Derivatives on discretely sampled realized variance

Next, we present the product specifications of various types of derivatives on discretely sampled

realized variance. Let 0 = t0 < t1 < · · · < tM = T be the monitoring dates for the discretely

sampled variance and T be the maturity date. We define Rm = ln Stm

Stm−1
to be the log return of

the underlying asset price over (tm−1, tm]. The discretely sampled realized variance over [0, T ]
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based on the log asset return is defined by

V(0, T ;M) =
1

T

M∑
m=1

R2
m =

1

T

M∑
m=1

(
ln

Stm
Stm−1

)2

. (2.5)

The simple asset return is sometimes used as an alternative definition, where the simple asset

return is defined by Rm = Stm

Stm−1
− 1.

The terminal payoff of the put option, volatility swap and capped variance swap on the

discretely sampled realized variance are defined by

p(S,V(0, T ;M), T ) = max(Kp −V(0, T ;M), 0), (2.6a)

w(S,V(0, T ;M), T ) =
√
V(0, T ;M)−Kw, (2.6b)

Vc(S,V(0, T ;M), T ) = min(V(0, T ;M), C)−Kc (2.6c)

respectively, where Kp is the strike of the put option, Kw is the strike of the volatility swap

and Kc is the strike of the capped variance swap. The cap C is usually chosen to be some

multiple of the fair strike price of the corresponding variance swap without cap. An example

of the third generation exotic variance swaps is the downside variance swap. Let U be the

specified upper barrier, the discretely sampled downside realized variance is defined by

D(0, T ;M,U) =
M∑
m=1

(
ln

Stm
Stm−1

)2

1{Stm≤U}, (2.6d)

where 1{·} is the indicator function. In this corridor-type variance swap, the square of the log

asset return over (tm−1, tm] is counted toward the discretely sampled realized variance only

when the asset price Stm stays at or below the upper barrier U . The corresponding terminal

payoff of the downside variance swap is given by D(0, T ;M,U)−Kd, where Kd is the strike of

the swap.

3 Fourier transform algorithms for pricing variance prod-

ucts and volatility derivatives

Our proposed Fourier transform algorithms for pricing variance products and volatility deriva-

tives are visualized as a synthetic combination of the Convolution (CONV) method (Lord at

al., 2008) and the Fourier space time stepping (FST) method (Jackson et al., 2008) for numer-

ical option pricing in the Fourier domain. Also, we adopt the treatment of jump conditions

for path dependent state variables in Windcliff et al.’s algorithm that deals with the exotic

embedded path dependence associated with discretely sampled realized variance. The imple-
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mentation of the CONV method requires the conditional probability density of the underlying

asset process fXT |Xt(y|x) to be dependent on x and y only via their difference y − x, where

fXT |Xt(y|x) = fXT−Xt(y − x). (3.1)

A sufficient condition for satisfying the above requirement is that the distribution of XT −Xt

is independent of Xt.

FFT technique and CONV method

We perform analytic continuation of w to the complex number field and write w = α+iβ. The

generalized Fourier transform f̂ of the given function f is defined as follows:

f̂(w) =

∫ ∞
−∞

f(x)ewx dx, (3.2a)

where α is a constant (known as the damping factor) that is properly chosen to ensure the

existence of the generalized Fourier transform f̂ . With α being held fixed, the integration with

respect to w amounts to integration with respect to β. The Fourier inversion formula can be

expressed as

f(x) =
1

2π

∫ ∞
−∞

f̂(w)e−wx dβ, where w = α + iβ. (3.2b)

Next, we present a brief discussion of the use of the FFT techniques in the CONV method for

pricing European options [refer to Lord et al. (2008) and Kwok et al. (2012) for details].

Let Xt denote the stochastic process of the underlying stochastic state variable that defines

the option payoff. For convenience, we consider the valuation of the undiscounted time-t price

function u(x, t) of a European option with the terminal payoff u(XT , T ) at maturity date

T , where Xt = x. Let p(x, t; y, T ) be the transition density from (x, t) to (y, T ). From the

renowned Parseval relation in Fourier transform, we have

u(x, t) = EQ[u(XT , T )|Ft]

=

∫ ∞
−∞

u(y, T ) p(x, t; y, T ) dy

=
1

2π

∫ ∞
−∞

p̂(x, t;w, T )ǔ(w, T ) dβ. (3.3)

Here, p̂(x, t;w, T ) denotes the generalized Fourier transform of p(x, t; y, T ) and can be visualized

as the conditional moment generating function

EQ[ewXT |Xt = x] = ewx+ψt,T (w).
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Also, ǔ(w, T ) is defined by

ǔ(w, T ) = ǔ(α + iβ, T ) =

∫ ∞
−∞

e−(α+iβ)yu(y, T ) dy. (3.4)

Some special precaution on the choice of α may be required to ensure the existence of ǔ(w, T ).

We may rewrite Eq. (3.3) into the following form:

u(x, t) =
eαx

2π

∫ ∞
−∞

eiβxeψt,T (α+iβ)

∫ ∞
−∞

e−(α+iβ)yu(y, T ) dy dβ, (3.5)

Recall that the CONV method can be applied only if the generalized Fourier transform of

the terminal payoff function exists. In fact, in order that ǔT (α + iβ) is finite for all β, the

terminal payoff is required to have at least one-sided boundedness with respect to XT . This

requirement is satisfied for equity options with either call-type or put-type payoff function.

However, it may become a problem for derivatives on discretely sampled realized variance.

This stems from the observation that the realized variance is unbounded when XT goes to ±∞
(corresponding to ST approaching +∞ and 0, respectively). As a result, the payoff of a variance

swap fails to meet this technical requirement of the FFT scheme. Also, there does not exist

an appropriate choice of the damping factor α that can ensure the boundedness on both ends.

In our calculations, we simply take α = 0. To resolve this difficulty in our numerical pricing

problems, we impose a cap and floor on the underlying asset price and consider the truncated

form of the price function u(x, t)1|x|≤L instead of u(x, t). On one hand, the parameter L is

chosen to be sufficiently large in order to minimize the approximation error arising from this

truncation procedure. On the other hand, L should not be chosen to be too large; otherwise, the

discretization error in the FFT calculations would become intolerant. Suppose the computing

power allows a sufficiently large value of N (number of grids in the FFT calculations), L can

take a large value that is in par with N . This truncation procedure can be justified as follows:

given that the resulting expectation value in derivative valuation is finite, the risk neutral

density of the asset price distribution should decay faster than any polynomials in X. That

is, at a sufficiently large value of X, the value of the density function is close to zero. As a

remark, a similar type of truncation in the computational domain is commonly adopted in most

numerical option pricing schemes since numerical schemes are operated within the confinement

of a finite computational domain.

In the FFT procedure, the Fourier integrals are approximated by a discrete sum via nu-

merical integration quadrature rules. We choose uniform grids for β, x and y, where

βn = β0 + n∆β, xn = x0 + n∆x, yn = y0 + n∆y, n = 0, 1, · · · , N − 1,

with N = 2k for some positive integer k. It is common to choose β0 = −N
2

∆β, ∆x = ∆y and

10



x0 = y0 = −N
2

∆x so that the grids are centered at the origin.

For notational convenience, we write u(x, t) and ǔ(w, T ) as ut(x) and ǔT (w), respectively.

Suppose we approximate the Fourier integrals in Eqs. (3.5) and (3.4) by the trapezoidal rule,

we obtain

ut(xk) =
eαxk

2π

N−1∑
m=0

eiβmxkeψt,T (α+iβm)

N−1∑
n=0

γne
−iβmyne−αynuT (yn)∆y∆β, (3.6)

where γ0 = 1
2
, γN−1 = 1

2
, γn = 1 for n = 1, 2, · · · , N − 2. We introduce the following notation

for the column vector x:

x = {xn}N−1n=0 = (x0, x1, · · · , xN−1)T ,

and let x · y denote the element-wise multiplication, where

x · y = {xnyn}N−1n=0 .

In vector forms, the discrete Fourier transform and its inverse transform are denoted by

D(x) =

{
N−1∑
n=0

einm2π/Nxn

}N−1

m=0

and D−1(x) =

{
1

N

N−1∑
m=0

e−imn2π/Nxm

}N−1

n=0

,

respectively, where D(x) and D−1(x) are column vectors. Taking the usual Nyquist relation:

∆β∆x =
2π

N
,

then Eq. (3.6) can be expressed as

ut(x) = a · D(D−1(b · uT (y)) · c), (3.7)

where the column vectors a, b and c are defined by

a =
{

(−1)keαxk
}N−1
k=0

,

b =
{

(−1)nγne
−αyn

}N−1
n=0

,

c =
{
eψt,T (α+iβm)

}N−1
m=0

.

The evaluation of ut(x) can be efficiently performed via two successive FFT calculations. The

CONV method works well provided that the existence of the corresponding generalized Fourier

transform is assured.

Path dependence and jump conditions across monitoring dates
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We follow the approach in Windcliff et al.’s algorithm, where the original multi-state pric-

ing problem is decomposed into a series of one-dimensional model problems indexed by two

additional state variables that are updated at discrete monitoring dates.

Let P and Z denote the logarithm of the asset price on the previous monitoring date and

the running average of the squared returns accumulated up to the current time, respectively.

Apparently, P and Z are only updated on the monitoring dates and stay constant between

two consecutive monitoring dates. The updating rules are given by

Pt+m = Xtm , Zt+m = Zt−m +
R2
m − Zt−m
m

, (3.8)

where t−m and t+m represent the time instant immediately before and after the monitoring date

tm, m = 1, 2, · · · ,M . We set P0 = X0 and Z0 = 0. The time-t value of the volatility derivative

can be regarded as a function of the logarithm of the underlying asset price Xt and time t.

Between two consecutive monitoring dates, the price function U = U(X, t;P,Z) is a function

of X and t while the state variables P and Z are treated as parameters.

Time stepping calculations between consecutive monitoring dates

Since P and Z remain constant between two consecutive monitoring dates, the martingale

pricing theory gives

U(Xtm−1 , t
+
m−1;P,Z) = e−r(tm−tm−1)E[U(Xtm , t

−
m;P,Z)|Ft+m−1

]. (3.9)

The numerical calculation of the expectation can be done using the CONV method presented

earlier. For the terminal condition, we initiate our time stepping calculations at the instant

right before maturity T−, where

U(X,T−;PT− , ZT−) = f

(
1

T
[(M − 1)ZT− + (X − PT−)2]

)
(3.10)

for some specified terminal payoff function f .

Jump condition across a monitoring date

Since there is no cash flow to the holder of the derivative across a monitoring date, by no

arbitrage argument, the value of the derivative should remain the same at time right before

and after any monitoring date tm. The jump condition is exemplified by

U(X, t−m;Pt−m , Zt−m) = U(X, t+m;Pt+m , Zt+m). (3.11)

Backward induction calculations

As in typical option pricing algorithms, we proceed the backward induction calculations from
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time tm to tm−1, m = M,M − 1, · · · , 1, until we reach the initiation time t0. The price of the

derivative on the discretely sampled realized variance at initiation is then obtained.

Choice of the grids

For each state variable, we assign a grid of its respective truncated computational domain. Let

N be the number of grid points along the X-grid. We take ∆x = L/N , where L is chosen based

on the compromise of truncation error and discretization error. Quite often, some trial and

error runs are required to search for the appropriate value of L. By the Nyquist relation, it then

follows that ∆β = 2π/L. For the state variable P , we may assign the same uniform grid as that

of X. The determination of the Z-grid is a subtle task. While a fine grid improves accuracy

of derivative valuation at the expense of computational cost, it is observed that different types

of variance and volatility products may have different sensitivity to the choice of the Z-grid.

In our numerical tests, we find that derivatives with linear payoff on the (generalized) realized

variance are less sensitive to the Z-grid. When the linear property in the payoff is observed,

only two points are needed and the derivative values at some intermediate value of Z can be

well estimated by linear interpolation. As a remark, we explain the linear payoff in Zt for a

variance swap as follows. Suppose the current time t lies between tk and tk+1, the expectation

of the discretely sampled realized variance would be given by

k∑
i=1

ln2 Sti
Sti−1

+ Et

[
n∑

i=k+1

ln2 Sti
Sti−1

]
= kZt + Et

[
n∑

i=k+1

ln2 Sti
Sti−1

]
.

This illustrates the linear property in the state variable Zt for a variance swap. However, for

nonlinear payoff structures such as volatility swaps and options on discretely sampled realized

variance, the distribution of the Z-grid points should be chosen to be sufficiently dense and

appropriately placed. To develop the numerical algorithm that is more effective, a nonuniform

grid structure (an example is shown in Figure 1) that allocates more points to the left side

of the range seems to enhance convergence of the numerical results significantly for pricing

put options on discretely sampled realized variance. The possible explanation is that most of

the effective contribution to the put option value arises from a very small subinterval of the

computational range of Z, within which the option value is significantly different from zero.

Essentially, one has to strike a subtle balance between efficiency and accuracy in the choice of

nonuniform grids.

Given the grids x = {xi}Ni=1, p = {pj}Nj=1 and z = {zk}Ki=1 for the discretization of X, P

and Z, respectively (the adoption of the same uniform grid for x and p has been explained

earlier), a naive approach would be to compute U(x, t+m−1; pj, zk) from U(x, t−m; pj, zk) via FFT

for each pair (pj, zk). This requires the storage of N2×K values in total. When N is large, say

N = 210 as a typical level in the actual computation, this requires prohibitively huge memory.

We propose an improvement on this memory usage issue by taking advantage of the updating
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rule P (t+m) = Xtm , for m = 1, · · · ,M . In fact, not each value in these N2×K values obtained

in the FFT computation is used to start the next loop. We only need to keep track of those

values that correspond to xi = pj.

The key steps in our FFT algorithm are summarized as follows.

For m = M to 1

For each (pj, zk), determine U(x, t−m; pj, zk) using the updating rule Eq. (3.8).

If m = M

Apply the terminal payoff function in Eq. (3.10) directly

Else

Use an interpolation method

EndIf

Compute U(x, t+m−1; pj, zk) via FFT in Eq. (3.7)

If m = 1

Output U(x, t0;P0, Z0); return

Else

Store U(pj, t; pj, zk)

EndIf

Next j, k

Next m

Calculations of the hedge parameters

Though the price functions of the derivatives on discretely sampled variance have no depen-

dency on the spot price when evaluated at the initiation date t0, the derivative values do have

sensitivities with respect to the spot price St when we consider the values of in-progress deriva-

tives. Let t ∈ (tk−1, tk], where k is fixed, the discretely sampled realized variance on [0, T ] can

be decomposed into three terms as follows:

V(0, T ;M) =
1

T

[
k−1∑
i=1

(
ln

Sti
Sti−1

)2
+
(

ln
Stk
St

+ ln
St
Stk−1

)2
+

M∑
i=k

(
ln

Sti
Sti−1

)2]
.

The first term is a known quantity by time t with no dependency on St while the last term

is the future part of the realized variance whose distribution is independent of the spot price

under the exponential additive model. The dependency on the spot price stems from the second

term. For options on discretely sampled realized variance, the above decomposition cannot be

performed due to optionality in the payoff. The CONV method, however, can provide both

analytical expressions and numerical schemes for the two important hedge parameters ∆ and
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Γ as well. For convenience, we write these hedge parameters in terms of the log price X as

follows:

∆ =
∂U

∂S
= e−X

∂U

∂X
, Γ =

∂2U

∂S2
= e−2X

(
− ∂U
∂X

+
∂2U

∂X2

)
.

Since the differentiation can be performed analytically in Eq. (3.5), we have

∆ =
e(α−1)x

2π

∫ ∞
−∞

eiβx(α + iβ)eψt,T (α+iβ)ǔT (α + iβ) dβ, (3.12a)

and

Γ =
e(α−2)x

2π

∫ ∞
−∞

eiβx(α2 − α− β2 + i(2α− 1)β)eψt,T (α+iβ)ǔT (α + iβ) dβ. (3.12b)

To compute the above greeks, one just need to perform two additional FFTs and inverse FFTs

in the final step.

An alternative method is to compute the finite difference approximation of the values of the

price function to obtain the values of the hedge parameters. One can make use of the option

values at X = x ± ∆x, which are readily known in the procedure of computing u(x, t), then

apply the standard centered finite difference approximation formulas:

∆ =
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
, (3.13a)

Γ =
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
. (3.13b)

4 Numerical examples

In this section, we report the numerical tests that were performed using our proposed FFT

algorithms for computing the price functions and their hedge parameters of various variance

and volatility products under a “piecewise” double exponential model.

Piecewise double exponential model

In our sample calculations, we take the underlying asset price process to follow the piecewise

double exponential model, chosen as a simple example of Lévy process with time inhomogeneity.

A “piecewise” double exponential model is constructed by modeling the underlying asset price

process with different double exponential models over different time intervals. Consider a

typical “piece” of the piecewise double exponential model over a specified time interval within
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the life of the derivative, the risk neutral dynamics of the asset price St observes the following

jump diffusion process of double exponential type:

dSt
St

= (r − d−mλ)dt+ σ dWt + (eY − 1) dNt, (4.1)

where Nt is a Poisson process with intensity λ that is independent of Wt, and Y denotes

the independent random jump size and has an asymmetric double exponential distribution

specified by

Y =

ξ+ with probability p

−ξ− with probability 1− p
.

Here, ξ± are exponential random variables with means 1/η±, respectively; and

m = E[eY − 1]

= p

(∫ ∞
0

η+e
−(η+−1)ydy − 1

)
+ (1− p)

(∫ ∞
0

η−e
−(η−+1)ydy − 1

)
=

p

η+ − 1
− 1− p
η− + 1

.

For simplicity, we adopt the two-piece double exponential model. We assume the asset price

process to follow a double exponential jump diffusion process on [0, t0] and another double

exponential jump diffusion process with a different set of parameters on (t0, T ]. The combi-

nation of these two pieces of separate double exponential jump diffusion processes is a time-

inhomogeneous Lévy process.

t σ λ η+ η− p

[0, 0.05] 0.3 3.97 16.67 10 0.15

(0.05, T ] 0.18 1.43 10 6.25 0.01

Table 1: Model parameters of the two-piece double exponential model.

In Table 1, we list the model parameters of the two-piece double exponential model used in

our numerical examples. Both sets of parameters are calibrated to the DAX implied volatility

on 5 July, 2002. The first set of parameters [taken from Sepp (2004)] are calibrated to options

with the shortest maturity (2 weeks or 0.04 year), while the second set [from Sepp and Skachkov

(2003)] are calibrated to options with medium-term maturity (6 months or 0.5 year). In

our numerical calculations, we take the change point to be at t = 0.05 (shown in Table 1).
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Correspondingly, the moment generating function of ln St

S0
is a piecewise function, where

eψt(u) = exp

{
t(r − d)u+ min{t, t0}

[
σ2

2
(u2 − u) + λu

(
p

η+ − u
− 1− p
η− + u

−m
)]

+ (t− t0)+
[
σ̃2

2
(u2 − u) + λ̃u

(
p̃

η̃+ − u
− 1− p̃
η̃− + u

− m̃
)]}

,

for −min(η−, η̃−) < u < min(η+, η̃+). The corresponding Lévy measure in each piece is given

by λfY (x) dx, where

fY (x) = pη+e
−η+x1{x≥0} + (1− p)η−eη−x1{x<0}.

For simplicity, we choose r = d = 0 and S0 = 1 in our sample calculations.

Variance swaps

Suppose the evaluation time t ∈ (tk−1, tk], where k is fixed. The value of a variance swap with

strike KV is given by

Vt(0, T ;M) =
1

T

{
k−1∑
i=1

(
ln

Sti
Sti−1

)2

+

(
ln

St
Stk−1

+ ψ′t,tk(0)

)2

+ ψ′′t,tk(0)

+
M∑

i=k+1

[(
ψ′ti−1,ti

(0)
)2

+ ψ′′ti−1,ti
(0)
]}
−KV .

(4.2)

One can compute its delta and gamma readily by the following formulas:

∆V =
1

T

2

St

(
ln

St
Stk−1

+ ψ′t,tk(0)

)
, (4.3a)

ΓV =
1

T

2

S2
t

(
1− ln

St
Stk−1

− ψ′t,tk(0)

)
. (4.3b)

Since the calculation of the value of a variance swap essentially only involves the evaluation

of the floating leg, we set the strike price KV to be zero for convenience in all variance swap

calculations reported below.

In Table 2, we show the comparison of the time-t value of a typical 3-month (M = 60)

variance swap contract with daily sampling (∆t = 1/252) and zero strike as well as the greek-

s computed using our FFT algorithm with the exact values computed by analytical pricing

formulas (4.3a, 4.3b). We take t = ∆t/2 and St = S0 = 1. The values of L and N (which

are the corresponding number of X-grid points) chosen in our sample calculations are shown

in the first and second columns in Table 2, respectively. Here, N is taken to be a power of 2
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delta gamma
L N price CPU time Eq. (3.12a) Eq. (3.13a) Eq. (3.12b) Eq. (3.13b)
2 27 0.133523 2s −0.115486 −0.115522 9.242968 9.133254
4 28 0.115984 5s −0.002936 −0.002886 8.408088 8.408410
6 29 0.115723 15s −0.001315 −0.001312 8.401562 8.400184
8 210 0.115721 56s −0.001299 −0.001299 8.401300 8.400001
10 211 0.115721 214s −0.001299 −0.001299 8.401299 8.400000

exact 0.115721 −0.001299 −0.001299 8.401299 8.401299

Table 2: The time-∆t/2 price and the corresponding greek values of a three-month (M = 60)
daily sampled variance swap with zero strike price under the two-piece double exponential
model.

for effective implementation of the FFT algorithms. Our numerical experiments demonstrate

that a fixed value of L for all choices of N is inappropriate as this causes oscillation and in-

stability to the numerical results. By choosing an increasing sequence for L as N increases,

we manage to keep ∆x and ∆β to be in par. That is, both ∆x and ∆β are reduced to attain

a more accurate discretization of the Fourier integrals. Unfortunately, such a procedure may

implicitly force us to choose an unrealistic small value of L (like L = 2 when N = 27). This

may cause significant truncation error, as demonstrated by the numerical results in the row

of L = 2 and N = 27 in Table 2. The third column in Table 2 lists the numerical results of

the time-∆t/2 price of the variance swap under the given two-piece double exponential model

(parameter values are presented in Table 1) corresponding to an increasing number of X-grid

points. We also record the CPU time required for the FFT calculations that were implemented

with Matlab2011 under a 32-bit Windows 7 system. The CPU time roughly increases by 4-fold

when we double the value of N . In the columns labelled “delta” and “gamma”, we present the

respective hedge parameter values computed using direct differentiation of the Fourier integral

[Eqs. (3.12a) and (3.12b)] and the finite difference formulas [Eqs. (3.13a) and (3.13b)], respec-

tively. We observe the apparent convergence of the numerical results of the price function and

its hedge parameters to the respective exact value (shown in the last row). However, one has to

be alerted that N must be chosen to be sufficiently large (N ≥ 28 in our sample calculations)

in order to achieve a reliable approximation to the exact value, especially in the calculations

of delta and gamma values.

Variance options, volatility swaps and capped variance swaps

We now apply our FFT algorithm to pricing and hedging nonlinear contingent claims on the

discretely sampled realized variance, namely, variance options, volatility swaps (volatility is

the positive square root of the realized variance) and capped variance swaps. Note that the

payoff of a put option on discretely sampled realized variance falls to a low value at very high
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or low underlying asset price since the discretely sampled realized variance would achieve a

high value under this scenario. This phenomenon is desirable in our implementation of the

numerical algorithm since the truncation in the log asset price beyond a sufficiently large value

of L would hardly cause any substantial error. For the calculation of the value of a call option

on discretely sampled realized variance, one can employ the well known put-call parity relation

to deduce the call value from the corresponding put value. For a volatility swap or a capped

variance swap, the growth rate of its value is apparently limited by that of a variance swap at

the extreme values of the underlying asset price. Therefore, our algorithm should not face any

difficulty to deal with these swap products as long as the algorithm performs well for variance

swaps. As a remark, choosing proper values for the parameters in the numerical scheme in

the implementation procedure is of vital importance. From our experience in pricing variance

swaps, we observe that L = 6 and N = 29 represent an appropriate set of parameters to ensure

sufficient accuracy of the numerical results.

Discretization error of the quadratic variation approximation

It is known that accuracy of the quadratic variation approximation deteriorates for short-dated

options on realized variance. Keller-Ressel and Muhle-Karbe (2010) have successfully quanti-

fied the discretization error using their asymptotic approximation method and confirm that the

discretization effect cannot be ignored for short-dated options on realized variance when the

underlying model has nonzero diffusion term. In Table 3, we present the numerical values of

prices of various at-the-money put options, volatility swaps and capped variance swaps based

on daily sampled realized variance obtained from our FFT algorithm and Monte Carlo simu-

lation. We also include the approximate prices obtained based on quadratic variation against

number of days to maturity. The range of maturity covers from one week (5 trading days)

to three months (60 trading days). Like in our earlier pricing of variance swaps, we set the

strikes of the volatility swaps Kw and capped variance swaps Kc to be zero for convenience.

We computed the prices of the put options based on quadratic variation using the saddle-

point approximation formula in Zheng and Kwok (2013b). On the other hand, the prices of

the volatility swaps based on quadratic variation are computed by the numerical quadrature

method. For the capped variance swaps, the terminal payoff defined in Eq. (2.6c) can be

rewritten as

V(0, T ;M)−Kc −max(V(0, T ;M)− C, 0). (4.4b)

In other words, the terminal payoff of the capped variance swap is equal to that of its non-

capped counterpart plus a short position of an out-of-the-money call on the realized variance

with strike C. Thus, the prices of the capped variance swaps based on quadratic variation can

be computed similarly as those for the put options. Since our goal is to compare the perfor-

mance of the quadratic variation approximation for at-the-money put options, it is necessary

to set different values of Kp for put options with differing maturities (note that different choices
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of Kp represent different put options). The Monte Carlo simulation results are also presented

in Table 3 as benchmark comparisons.

From Table 3, we observe the significant discretization error arising from the quadratic

variation approximation for short-dated (5 days) put options on the daily sampled realized

variance, though the discretization errors become smaller for put options with longer maturities.

Similar properties on discretization errors are observed for short-dated volatility swaps. For

capped variance swaps, the discretization error is not as substantial as those in put options

or volatility swaps. Intuitively, though the cap introduces some degree of nonlinearity in the

terminal payoff of the variance swap, the capped variance swap still resembles closely its non-

capped counterpart under normal market conditions. In fact, we deduce from Eq. (4.4b) that

under normal market conditions the deep-out-of-the-money call contributes very little to the

overall value of the capped variance swap. Our calculations illustrate that poor accuracy of the

quadratic variation approximation is common among nonlinear contingent claims on discretely

sampled realized variance with short maturities.

maturity (days) 5 15 20 40 60

Kp 0.161800 0.152741 0.140850 0.123014 0.117069

put MC 0.072538 0.063682 0.062796 0.059806 0.057037

option FT 0.072781 0.063628 0.062608 0.059730 0.057144

QV 0.067528 0.062739 0.062158 0.059472 0.056941

volatility MC 0.323547 0.331815 0.314073 0.288844 0.283305

swap FT 0.323247 0.331801 0.313866 0.288786 0.283209

(Kw = 0) QV 0.337483 0.336619 0.317506 0.290531 0.284315

capped C 0.323600 0.305482 0.281700 0.246028 0.234138

variance MC 0.100589 0.101587 0.090180 0.076021 0.073866

swap FT 0.100517 0.101912 0.090353 0.076007 0.073735

(Kc = 0) QV 0.101409 0.102233 0.090682 0.076382 0.074175

Table 3: The prices of various at-the-money put options, volatility swaps and capped variance

swaps based on the daily sampled realized variance calculated by the Fourier transform algo-

rithm (labelled “FT”) are compared to those obtained using quadratic variation approximation

(labelled “QV”). The cap level C in the capped variance swap is chosen to be 2Kp, where

Kp is the at-the-money strike. The numerical results obtained by Monte Carlo simulation

(labelled “MC”) using 105 simulation paths are seen to agree favorably well with those of the

FFT calculations.

Calculations of prices and hedge parameters

While options on the quadratic variation have no direct dependence on the spot value of the

20



underlying asset price, it is not true for their discretely sampled realized variance counterparts

when the valuation time is not at the initiation time. Consequently, it is useful to compute the

delta and gamma of these products for hedging purposes. In our calculations, we assume the

valuation time to be ∆t/2, which lies in the middle of the first and second monitoring dates.

We would like to investigate the properties of the hedge parameters of a typical one-month

(20-day) put option on daily sampled realized variance. Figures 2(a,b,c) show the plots of the

price, delta and gamma of the put option versus the spot price St. The price of the put option

versus the spot price exhibits a bell shape. First, consider the scenario where St = S0, the next

squared return to be accumulated is expected to be the smallest among all scenarios. This

would lead to the smallest expected realized variance, so the highest value for the put option

price is resulted. On the other hand, when St is far away from S0, a larger squared return is

expected to be accumulated. This then drives the put option price down to a smaller value.

When the spot price St is less than the initial stock price S0, the delta value stays positive. This

deduced result confirms well with the plot of the price function against St in Figure 2(a). The

opposite effect on the delta value holds when the spot price is larger than S0. However, when

the spot price is sufficiently far away from S0, the put option is bound to be out-of-the-money

at maturity and any small change in the spot price will have little effect on the option price.

As a result, the delta value is close to zero at the two ends far from S0. Moreover, since gamma

is the rate of change of delta with respect to the spot value, the curvature pattern in the plot

of gamma against St in Figure 2(c) can be fully inferred from the plot of delta in Figure 2(b).

Note that the minimum value of gamma is realized when St = S0 at which the gamma is

negative, indicating that any significant change in the spot price will be unfavorable to the

put option holder. We also observe good agreement between numerical results for the hedge

parameters obtained using FFT calculations of the Fourier integral formulas [see Eqs. (3.12a,

3.12b)]and finite difference formulas [see Eqs. (3.13a, 3.13b)].

Choice of the Z-grid

Lastly, we would like to illustrate the vital importance of the choice of the Z-grid for the

convergence of the numerical results in our FFT algorithms. In Table 4, we present the

numerical results obtained using different choices of the distribution of Z-grid points. In

the first column, an increasing sequence of the number of Z-grid points is presented. The

numerical values of the price of a one-month (20-day) put option using the uniform Z-grid are

shown in the second column with increasing value of K. The third and fourth columns show

similar numerical values of the put option price obtained based on two nonuniform Z-grids

that put more points on the left hand side of the range of Z. The graphic plots of the various

choices of the distribution of the grid points are shown in Figure 1. The bottom row labelled

“MC” presents the simulation results with 105 simulation paths as the benchmark. Note

that the “nonuniform-2” grid is the best performer and it has been adopted in our previous

calculations of option prices. It is disquieting to observe that the uniform Z-grid fails to give
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any reasonable approximation value to the true price while the nonuniform-1 Z-grid exhibits

oscillations around the true value.

K uniform nonuniform-1 nonuniform-2

26 0.138473 0.076182 0.060856

27 0.138232 0.067148 0.062276

28 0.137756 0.060535 0.062601

MC 0.062638 0.062638 0.062638

Table 4: The numerical results of the price of the one-month at-the-money put option under the

two-piece double exponential model computed using different choices of Z-grid distribution and

number of Z-grid points, K. In particular, L = 6 and N = 29 are fixed in the FFT calculations.

Downside variance swaps

We apply our FFT algorithms to price the downside variance swaps, whose product nature

and some of its intriguing pricing properties have been discussed in Zheng and Kwok (2013a).

Despite the slight difference between the generalized realized variance and realized variance

with no restriction, we can handle the generalized variance swaps in a similar manner by

modifying the state variable Z in the numerical algorithm accordingly. Numerical tests show

that both the variance swaps and downside variance swaps are insensitive to the degree of fine

resolution in the Z-grid due to linearity in Z in the payoff structure. We may simply choose a

two-point grid of Z and use linear interpolation for other points.

L N U = 0.9 U = 1 U = 1.1 CPU time

2 27 0.075308 0.096388 0.113789 1s

4 28 0.071206 0.092287 0.109687 4s

6 29 0.071396 0.091777 0.109439 13s

8 210 0.070640 0.091325 0.109233 47s

10 211 0.070704 0.090987 0.108970 181s

exact 0.070746 0.090419 0.108804

Table 5: The numerical results of the time-∆t/2 price of the three-month daily sampled down-

side variance swap with zero strike price under the two-piece double exponential model are

listed with varying values of the upper barrier U . The convergence of the numerical swap val-

ues to the exact values with increasing value of N is apparent, though the rate of convergence

appears to be relatively slow. The last column presents the CPU time required for the FFT

calculations for varying values of N and L.

In Table 5, we show the comparison of the price at time ∆t/2 computed using our Fourier
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transform algorithms of various three-month (60-day) downside variance swaps with varying

values of the upper barrier U and explore the convergence to the respective exact value. Again,

we take S0 = 1 and set the strike price Kd = 0 for convenience. Similar to the variance swaps,

apparent convergence to the exact values with increasing value of N is observed. For the

downside variance swap with U < 1, we observe oscillation of the prices around the true value

as N increases.

Next, we focus on the examination of the pricing properties of the downside variance swap

with U = 1.1 and S0 = 1. In particular, we examine how the price as well as the hedge

parameters change with respect to the spot price of the underlying asset. In Figures 3(a,b,c),

we show the plots of the prices of the downside variance swap and its greeks with varying

values of the spot price. When St is less than S0, the price of the downside variance swap

tends to decrease as St increases since the squared return to be accumulated is expected to

decrease as a result. When St is above S0, the price of the downside variance swap first

increases in value as St does, like the variance swap. However, this trend cannot persist since

we have the upper barrier U (in this example, U is chosen to be slightly larger than S0). In

fact, when St approaches U , the probability that the squared return will not be accumulated

increases rapidly due to the violation of the corridor restriction of the underlying asset price.

When St comes closer to U , this ‘knock-out’ effect becomes more dominant and drives down

the price of the downside variance swap. The plot of the time-∆t/2 price of the downside

variance swap against St [shown in Figure 3(a)] agrees with the above intuitive arguments on

the pricing properties. For the greeks, the numerical results obtained using FFT calculations

of the Fourier integral formulas and finite difference formulas again show good agreement. The

deviation becomes slightly larger at the spot price that is far away from S0 [see Figures 3(b,c)].

At low values of St, the delta is negative and increases in value until it becomes close to zero

at St = S0. It then changes sign when St increases beyond S0. Interestingly, the delta value

starts to drop as the ‘knock-out’ effect becomes more significant, consistent with the earlier

discussion on the price function. It reaches a local minimum at St = U , at which the price

of the downside variance swap is extremely sensitive to the spot price. When St is close to

the upper barrier U , hedging of the downside variance swap becomes more difficult. This is a

phenomenon that is commonly shared by derivatives with an embedded barrier feature. Any

further increase in the spot price would cause less dramatic drop in the price of the downside

variance swap. This is easily seen since when St is sufficiently large, ‘knock-out’ is almost sure

to happen. This explains why the delta value asymptotically approaches zero from below [see

Figure 3(b)]. Lastly, the plot of the gamma value in Figure 3(c) can be well inferred from that

of the delta. The gamma value exhibits a high level of oscillation when St stays close to the

upper barrier U .
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5 Conclusion

We illustrate how to develop and apply effective fast Fourier transform algorithms for calculat-

ing the price functions and their hedge parameters of exotic variance and volatility derivatives

on discretely sampled realized variance under time-inhomogeneous Lévy models (additive pro-

cesses). We adopt the efficient procedure in the CONV method in the FFT calculations through

expressing the price function as a convolution integral. Our enhanced Fourier transform algo-

rithms represent non-trivial extension to the Fourier space time stepping algorithm. We show

how special precautions have to be taken in order to incorporate the exotic path dependence

associated with updating of the discretely sampled realized variance across discrete monitoring

dates. Also, we illustrate how to perform truncation of the computational domain in order

to avoid unboundedness of the solution values at the far ends of the computational domain

and choose a nonuniform set of grids for the path dependent variable of the running average

of squared returns. The usual difficulties in computing the hedge parameters in most option

pricing algorithms can be resolved under FFT calculations. The efficiency, accuracy, reliability

and robustness of our FFT algorithms are demonstrated through various numerical tests in

pricing different types of exotic variance products and volatility derivatives. Lastly, we ex-

plore various properties of the price functions and their hedge parameters of put options on

realized variance, volatility swaps, capped variance swaps and downside variance swaps. For

future works, one may consider the extension to pricing more exotic path dependent variance

products, like the timer options and target volatility options. One also explores how to deal

with pricing under other types of asset price models, like the stochastic volatility model with

jumps and time-changed Lévy processes.
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Figure 1: Plots of uniform and nonuniform Z-grids that are adopted for pricing put options on

discretely sampled realized variance. Here, n is the running index for the Z-grid points. The

plots indicate that more points are allocated to the left sides of the Z-range under nonuniform-

2.
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Figure 2: Plots of the option value, delta and gamma of the one-month put option on daily

sampled realized variance at valuation time ∆t/2 versus the spot price St. Good agreement

between the numerical results on the delta and gamma obtained using FFT calculations of

the Fourier integral formulas (labelled “FFT”) and finite difference formulas (labelled “FD”)

is observed.
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Figure 3: Plots of the swap value, delta and gamma of the three-month daily sampled downside-

variance swap with U = 1.1 at valuation time ∆t/2 versus the spot price St. Good agreement

between the numerical results on the delta and gamma obtained using FFT calculations of

the Fourier integral formulas (labelled “FFT”) and finite difference formulas (labelled “FD”)

is observed.
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