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Abstract

Convexity correction arises when one computes the expected value of an
interest rate index under a probability measure other than its own nat-
ural martingale measure. As a typical example, the natural martingale
measure of the swap rate is the swap measure with annuity as the nu-
meraire. However, the evaluation of the discounted expectation of the
payoff in a constant maturity swap (CMS) derivative is performed under
the forward measure corresponding to the payment date. In this paper, we
propose a generalization of the static replication formula by exploring the
linkage between replication, convexity correction and numeraire change.
We illustrate how the static replication of a CMS caplet by a portfolio
of payer swaptions is related to convexity correction associated with the
bond-annuity numeraire ratio. We also demonstrate the use of the gen-
eralized static replication approach for hedging the in-arrears clean index
principal swaps and annuity options.

Keywords: Convexity adjustment, static replication, constant maturity
swap, clean index principal swap, annuity option.

1 Introduction

A constant maturity swap (CMS) is an example of a basis swap. One of the
legs, known as the CMS leg, is indexed to a swap rate of fixed maturity (say,
10-year swap rate). This swap rate of fixed maturity is commonly called the
CMS rate, and it is reset on each of the preset fixing dates. The other leg in the
CMS can be indexed either to a floating rate (say, LIBOR) or a fixed rate. The
class of CMS derivatives, like the CMS caps and floors, are derivative products
whose payoff structures have dependence on the CMS rates. When we consider
pricing of the CMS derivatives, it is convenient to compute the expectation of
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the future CMS rates under the forward measure that is associated with the
payment date. However, the natural martingale measure of the CMS rate is the
underlying annuity. Convexity correction arises when one computes the expected
value of the CMS rate under the forward measure that differs from the natural
swap measure with the underlying annuity as the numeraire. The CMS convexity
correction is then the difference between the expectation of the CMS rate under
the forward measure and swap measure. A good review of the mathematics of
convexity correction can be found in Pelsser (2003a).

Carr and Madan (1998) propose the static replication formula which demon-
strates how to replicate a European contingent claim with a twice differentiable
payoff using a static replication strategy involving zero coupon bonds and vanilla
call and put options. It has been well known among practitioners in the fixed
income markets that a CMS caplet can be replicated by a portfolio of payer swap-
tions whose terminal payoff matches with that of the CMS caplet. The linkage
between convexity correction and static replication of CMS derivatives has been
explored in the literature (Hagan, 2003; Reiner and Selami, 2006; Mercurio and
Pallavicini, 2006). In this paper, we would like to illustrate the linkage between
convexity correction and static replication through pricing and hedging of var-
ious CMS products and annuity instruments, like the CMS caplets, in-arrears
clean index principal swaps and annuity options. We also propose a generalized
static replication approach that allows for more general choices of option-type
instruments (not just limited to vanilla options as in the Carr-Madan replica-
tion formula). In addition, with regard to convenient valuation of the contingent
claim, our generalized static replication formula allows for the flexibility on the
choices of different numeraires for the contingent claims and the replicating in-
struments.

This paper is organized as follows. In the next section, we present the ap-
proximate static replication of a CMS caplet using a portfolio of payer swaptions
with varying discrete strike prices. This approximate hedging procedure has been
widely used by practitioners. By taking the continuous limit of the differential in-
terval width between the strike prices of the payer swaptions, we are able to relate
the continuous limit of this approximate static replication with other replication
procedures that are derived using convexity correction arguments. This exam-
ple of static replication of a CMS caplet serves to provide the linkage between
replication and convexity correction. In Section 3, we derive the generalization
of the static replication approach that incorporates change of measure into the
formulation and allows for the use of a wider class of option-type products in
the replicating portfolio. We then illustrate how to apply the generalized static
replication approach to the pricing and hedging of the in-arrears clean index
principal swaps and annuity options. In Section 4, we present sample calcula-
tions of finding the replication portfolios of CMS caplets and annuity options.
Concluding remarks are presented in the last section.

2 Static replication of a CMS caplet

Since both the CMS caplet and the payer swaption share the CMS rate as the
underlying, practitioners have commonly adopted the approximate hedging strat-
egy of static replication of the less liquid CMS caplet using a portfolio of the more
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liquid payer swaptions with discrete strikes. In this section, the continuous limit
of this approximate replication procedure is shown to agree with that derived us-
ing the convexity correction technique (Hagan, 2003; Mercurio and Pallavicini,
2006).

First, we fix the mathematical notations for the tenor structure, bond price
function and swap rate. The spot time is taken to be time 0 and the tenor
structure of the reference swap rate is assumed to be {T0, T1, · · · , Tn}. Here, T0

is the start date of the swap, {Ti, i = 0, 1, · · · , n − 1} are the reset dates and
{Ti, i = 1, · · · , n} are the payment dates. We let δi be the accrual factor for
the time interval [Ti−1, Ti] based on certain day count convention, and write δ
for all δi if a constant accrual factor is assumed. The time-t price of the Ti-
maturity discount bond is denoted by B(t, Ti), i = 0, 1, · · · , n, where t ∈ [0, T0].
The annuity stream with k payments is defined by Ak(t) =

∑k
i=1 δiB(t, Ti), for

k = 1, 2, · · · , n, and A(t) is used to denote An(t) for short. We let S(t; T0, Ti)
denote the forward swap rate at time t, t ∈ [0, T0], with start date T0 and payment
dates {T1, T2, · · · , Ti}, i = 1, 2, · · · , n. Provided that no confusion arises, we
may use St to denote S(t; T0, Tn) for short. As usual, we use ETi

[·] to denote
the expectation under the forward measure QTi

, where the Ti-maturity discount
bond B(t, Ti) is used as the numeraire, i = 1, · · · , n. Also, EQN

[·] denotes the
expectation under the martingale measure QN associated with the numeraire
N(t).

The most basic CMS derivative is the CMS caplet whose payoff on the pay-
ment date Tp, where Tp ≥ T0, is given by

F (ST0 , Tp; K) = (ST0 − K)+. (2.1)

Here, the notation ( · )+ denotes max{· , 0} and K is the strike of the caplet. Re-
call that a European swaption allows its holder to enter into a fixed-floating swap
of the preset tenor and pre-specified fixed rate K on maturity. A payer (receiver)
swaption allows the holder to pay (receive) the fixed rate. Swaptions can be either
physically settled or cash-settled. We would like to illustrate how to replicate the
caplet payment on the payment date Tp approximately using a portfolio of phys-
ically settled payer swaptions with discrete strikes K + m∆x, m = 0, 1, 2, · · · ,
where ∆x represents a small increment on the strike rate starting from K, then
K + ∆x,K + 2∆x, etc. Let Nm denote the notional amount of the payer swap-
tion with strike K + m∆x, m = 0, 1, 2, · · · . We illustrate how to determine
N0, N1, N2, · · · successively in order that the caplet payoff at Tp agrees with that
of the replicating portfolio of payer swaptions under various scenarios of the
observed swap rate at T0, that is, the realized value of ST0 .

When ST0 ≤ K, the caplet has zero payoff and all the payer swaptions in
the replicating portfolio are not in-the-money, so matching of the two payoffs is
achieved. Next, we determine the notional amount of each of the payer swaptions
successively by matching the payoffs of the caplet and replicating portfolio at
various possible discrete values assumed by ST0 .

First, suppose ST0 = K + ∆x, the caplet’s payoff is ∆x at Tp and the corre-
sponding discounted value at T0 is ∆xB(T0, Tp)

∣∣
ST0

=K+∆x
. On the other hand,

only the payer swaption with strike rate K is in-the-money while all the other
swaptions with higher strike rate have zero payoff. The time-T0 payoff of the
payer swaption with strike rate K when ST0 = K + ∆x is given in the form of
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an annuity ∆x
∑n

i=1 δiB(T0, Ti)
∣∣
ST0

=K+∆x
. To achieve matching of the payoffs of

the caplet and replicating portfolio when ST0 = K + ∆x, the notional amount
N0 must be set uniquely equal to the following bond-annuity ratio:

N0 =
B(T0, Tp)∑n

i=1 δiB(T0, Ti)

∣∣∣∣
ST0

=K+∆x

. (2.2)

Naturally, the above bond-annuity ratio exhibits dependence on the swap rate
ST0 . Similar to Hagan (2003), we write formally the functional dependence of
the bond-annuity ratio on ST0 in the form

G(ST0) =
B(T0, Tp)∑n

i=1 δiB(T0, Ti)
. (2.3)

Accordingly, we may express the notional of the payer swaption with strike rate
K in terms of G as follows:

N0 = G(K + ∆x). (2.4)

Next, we determine the notional amount N1 of the payer swaption with strike
K + ∆x by matching the payoffs when ST0 assumes the value K + 2∆x. Under
such scenario, only the two swaptions with respective strike K and K + ∆x are
in-the-money so that

(2N0 + N1)∆x
n∑

i=1

δiB(T0, Ti)
∣∣
ST0

=K+2∆x
= 2∆xB(T0, Tp)

∣∣
ST0

=K+2∆x

giving
N1 = 2

[
G(K + 2∆x) − G(K + ∆x)

]
.

In general, by matching the payoffs of the caplet and the replicating portfolio
when ST0 = K + (m + 1)∆x, the notional amount Nm, m ≥ 1, must be set
uniquely equal to

Nm = (m + 1)
[
G(K + (m + 1)∆x) − G(K + m∆x)

]
− (m − 1)

[
G(K + m∆x) − G(K + (m − 1)∆x)

]
.

(2.5)

Let C0(K) denote the time-0 value of the payer swaption with strike rate K
and V caplet

0 denote the time-0 value of the CMS caplet. Since the payoff of the
replicating portfolio agrees with that of the caplet at discrete strikes according
to this approximate static replication procedure, by applying the no-arbitrage
principle, the fair value of the CMS caplet is approximately given by the value
of this portfolio of payer swaptions with discrete strikes:

V caplet
0 ≈ N0C0(K) +

∞∑
m=1

NmC0(K + m∆x). (2.6)

There exists a slight mismatch of the two payoffs if ST0 does not fall exactly
on one of these discrete strike values. The order of approximation can be shown
to be O(∆x2). In reality, the replicating portfolio may include payer swaptions
with strike up to K + M∆x for some sufficiently large positive integer value M .
The value of the payer swaption with exceedingly large value of strike would be
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vanishingly small, so the error incurred by this truncation to a finite portfolio of
sawptions would be small.

Continuous limit

Apparently, the replication using payer swaptions with discrete strikes corre-
sponds to the discretization in the space of the strike price of the interval [K,∞)
into discrete sub-intervals of uniform width ∆x. It would be interesting to con-
sider the continuous limit of the approximation formula (2.6) when ∆x → 0.
Writing xm = K +m∆x for notational convenience, and assuming G to be twice
differentiable, we obtain

Nm = 2G′(xm)∆x + G′′(xm)m∆x2 + O(∆x3)

= 2G′(xm)∆x + G′′(xm)(xm − K)∆x + O(∆x3).

In the continuous limit ∆x → 0, the price formula of the CMS caplet then
becomes

V caplet
0 = G(K)C0(K) +

∫ ∞

K

[
2G′(x) + G′′(x)(x − K)

]
C0(x) dx. (2.7)

The above caplet price formula is essentially the same as that derived indepen-
dently by Hagan (2003) and Mercurio and Pallavicini (2006) using convexity
correction arguments. Indeed, Hagan obtains the caplet price formula in the
form:

V caplet
0 =

B(0, Tp)

A(0)
C0(K) +

[
G(K) − B(0, Tp)

A(0)

]
C0(K)

+

∫ ∞

K

[
2G′(x) + G′′(x)(x − K)

]
C0(x) dx.

(2.8)

The sum of the last two terms is considered by Hagan to be the convexity cor-
rection for the CMS caplet. Thus, we observe the analogy between replication
and convexity correction. In particular, when the caplet is at-the-money so that
the strike observes the following relation:

G(K) = G(S0) =
B(0, Tp)

A(0)
,

then the convexity correction is merely given by the integral term in Eq. (2.8).

3 Generalized static replication formula

Let {Xt} denote the underlying asset price process and f(XT ) denote the time-T
payoff of a European contingent claim, where f is a function that is at least twice
differentiable. Carr and Madan (1998) show that

f(XT ) = f(κ) + f ′(κ)
[
(XT − κ)+ − (κ − XT )+

]
+

∫ κ

0

f ′′(x)(x − XT )+dx +

∫ ∞

κ

f ′′(x)(XT − x)+dx,
(3.1)

where κ ≥ 0 is an arbitrary real number. The above static replication formula
reveals the static replication of a European contingent claim using zero-coupon
bonds and a portfolio of vanilla call and put options. However, it is desirable to
extend the static replication procedure so as to cope with the following general-
izations:
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1. The contingent claims and the replicating instruments may use different
choices of numeraires that are adopted for convenient valuation.

2. In order to allow for greater flexibility in the choices of liquid replicating
instruments, the payoff structure of the option-type replicating instruments
may not resemble exactly the vanilla call or put option payoff.

For example, in the static replication of the CMS caplet by a portfolio of payer
swaptions, the payoff of the CMS caplet with strike x when normalized by the
numeraire B(T0, Tp) is (ST0 −x)+ while the payoff of the physically settled payer
swaption with strike x when normalized by the numeraire A(T0) is (ST0−x)+. On
the other hand, suppose we use the cash-settled payer swaptions as the replicating
instruments, the payoff of the cash-settled payer swaption with strike x when
normalized by the numeraire B(t, T0) becomes the non-vanilla style option payoff∑n

i=1
δ

(1+δST0
)i (ST0 − x)+, where a constant accrual factor δ is assumed.

In this section, we would like to derive a generalized replication formula that
allows the use of tradeable instruments with more generalized form of option-
type payoffs in the replication of a European contingent claim. Our generalized
replication formula also allows the contingent claim and replicating instruments
to use different choices of numeraires that are preferred for convenient valuation.

Let f(XT ) denote the time-T payoff of a European contingent claim relative
to the numeraire M(T ), where f is twice differentiable and Xt is the underlying
asset price process. The time-T payoff function of the call-type and put-type
replicating instruments with strike x relative to the numeraire N(T ) take the
form g(XT )(XT −x)+ and g(XT )(x−XT )+, respectively, where g is some positive
and twice differentiable function. Let the time-0 value of these call-type and put-
type instruments be denoted by C0(x) and P0(x), respectively.

Proposition 1. Suppose the numeraire ratio M(T )/N(T ) can be expressed as
a function of XT , i.e., M(T )/N(T ) = Λ(XT ), where λ is assumed to be twice
differentiable. Suppose there exists κ ≥ 0 such that f(κ) = 0. Let V0 be the

time-0 value of the contingent claim and let w(x) = f(x)Λ(x)
g(x)

, then we have the
following static replication formula:

V0 = w′(κ)[C0(κ) − P0(κ)]

+

∫ κ

0

w′′(x)P0(x) dx +

∫ ∞

κ

w′′(x)C0(x) dx.
(3.2)

The proof of the proposition is presented in Appendix A.

The challenge in the use of the generalized static replication formula is to
find the functional dependence of the numeraire ratio in terms of the underlying
asset price process XT . Next, we would like to illustrate how to apply formula
(3.2) to perform the static replication of the CMS caplets, in-arrears clean index
principal swaps and annuity options.

CMS caplets

Using the generalized static replication formula (3.2), it is relatively straightfor-
ward to reproduce the replication formula (2.8) which reveals the static replica-
tion of the CMS caplet using a portfolio of payer swaptions. When normalized by
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the annuity numeraire A(T0), the payoff of the physically settled payer swaption
is (ST0 − x)+, giving g(ST0) ≡ 1. The payoff of the caplet when normalized by

B(T0, Tp) is f(ST0) = (ST0 − K)+. Now, the numeraire ratio is B(T0,Tp)

A(T0)
which

can be assumed to be Λ(ST0). After substituting the above expressions into for-
mula (3.2), the resulting replication of the CMS caplet via a portfolio of physically
settled payer swaptions agrees with that given in Eq. (2.8).

Alternatively, if the terminal payoff of the payer swaption is cash-settled, we
take N(t) to be the bond price B(t, T0) so that the time-T0 payoff of the payer
swaption is g(ST0)(ST0 − x)+, where g(ST0) =

∑n
i=1

δ
(1+δST0

)i . The corresponding

numeraire ratio can be written as

Λ(ST0) =
B(T0, Tp)

B(T0, T0)
.

Furthermore, we obtain

w(x) =
(x − K)+Λ(x)∑n

i=1
δ

(1+δx)i

.

By taking κ = 0 in the generalized static replication formula, the replication of
the CMS caplet by a portfolio of cash-settled payer swaptions can be expressed
as

V caplet
0 =

∫ ∞

0

w′′(x)C0(x) dx. (3.3)

Since w′′(x) = 0 for x < K, Eq. (3.3) can be further reduced to

V caplet
0 = w′(K)C0(K) +

∫ ∞

K

w′′(x)C0(x) dx (3.4)

When we take Tp = T0, we obtain Λ(x) ≡ 1. In this case, the replication formula
agrees with that given by Reiner and Sellami (2006).

As a remark, the above procedure requires the specification of the functional
dependence of the numeraire ratios in terms of ST0 . Though the discount factors
and the swap rate are related, sometimes it may be quite tricky to find the explicit
form of Λ(ST0). Under certain yield curve models, Hagan (2003) and Mercurio
and Pallavicini (2006) have shown that several forms of functional dependence
do provide reasonably good approximation. Some of these choices of Λ(ST0) are
discussed in Section 4 [see Eqs. (4.1) and (4.2)].

In-arrears clean index principal swaps

The in-arrears clean index principal swap (IPS) is a variation of the standard
IPS embedded with two additional features: (i) the LIBORs are reset in arrears;
(ii) the notional principal P is reset according to the LIBOR prevailing on the
payment date. To be specific, the time-Ti net value of the swap transaction
payments to the floating rate receiver is given by δiP

(
Li(Ti)

)[
Li(Ti)−K

]
. Here,

the notional principal P
(
Li(Ti)

)
has dependence on the in-arrears LIBOR Li

observed at the prevailing time Ti. The appropriate replicating instruments
would be the vanilla caplets and floorlets whose terminal payoffs at time Ti+1 are

δi+1

(
Li(Ti) − x

)+
and δi+1

(
x − Li(Ti)

)+
,
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respectively. Now, the numeraire ratio should be

Λ
(
Li(Ti)

)
=

B(Ti, Ti)

B(Ti, Ti+1)
= 1 + δi+1Li(Ti);

and g
(
Li(Ti)

)
= δi+1. Also, κ should be conveniently chosen to be K. Substitut-

ing all of the above quantities into the generalized static replication formula, we
obtain the static replication of this IPS by a portfolio of caplets and floorlets.

As an illustrative example, suppose we choose the notional P
(
Li(Ti)

)
to be

1{x≥K} + [b(x − K) + 1]+1{x<K}, where b > 0. The notional, which is bounded
below by zero, has its value decrease linearly when LIBOR falls below the strike
rate K. This feature provides the floating rate receiver the protection of miti-
gating the loss by reducing the principal of the swap. By the generalized static
replication formula, the net time-0 value of the swap payment transacted at Ti

is given by

V i
0 =

δi

δi+1

{
(1 + δi+1K)[C0(K) − P0(K)] − [1 + δi+1

(
K − 1

b

)
]P0

(
K − 1

b

)
1{K≥ 1

b
}

}
+

∫ K(
K− 1

b

)+
2b

δi

δi+1

(1 + δi+1x)P0(x) dx +

∫ K

0

2δiP0(x) dx +

∫ ∞

K

2δiC0(x) dx.

(3.5)

Here, C0(x) and P0(x) denote the time-0 value of the vanilla caplet and floorlet

with respective terminal payoff δi+1

[
Li(Ti) − x

]+
and δi+1

[
x − Li(Ti)

]+
at Ti+1.

If we let b → 0, then the notional principal tends to the constant unit value. The
in-arrears IPS reduces to an in-arrears swap, and formula (3.5) becomes

V i
0 =

δi

δi+1

(1 + δi+1K)[C0(K) − P0(K)]

+

∫ K

0

2δiP0(x) dx +

∫ ∞

K

2δiC0(x) dx;

(3.6a)

which is the static replication formula for the in-arrears swaplet. On the other
hand, if we let b → ∞, then the payoff equals δi[Li(Ti) − K]+. The in-arrears
IPS swaplet becomes a caplet on the in-arrears LIBOR. In this case, the static
replication formula (3.5) reduces to

V i
0 =

δi

δi+1

(1 + δi+1K)C0(K) +

∫ ∞

K

2δiC0(x) dx; (3.6b)

which is the usual convexity correction formula for the Ti-maturity caplet on
in-arrears LIBOR.

Annuity options

A forward start annuity pays the amount ci at the future time Ti, i = 0, 1, · · · , n.
An option on this annuity gives the holder on the expiration date T0 the right but
not the obligation to enter into this annuity at the fixed strike A. The terminal
payoff at time T0 of the annuity option is given by

V a.o.
T0

= max

{
n∑

i=0

ciB(T0, Ti) − A, 0

}
.
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Pelsser (2003b) proposes a procedure of performing the static replication of the
annuity option using a portfolio of receiver swaptions with different swap tenors.
We would like to illustrate how to derive an alternative static replication portfolio
via the generalized static replication formula (3.2).

It is convenient to rewrite the terminal payoff V a.o.
T0

into the following form:

An(T0)

[
n∑

i=1

ciB(T0, Ti)

An(T0)
− A − c0

An(T0)

]+

.

We may assume
B(T0, Ti)

An(T0)
= fi(ST0), i = 0, 1, · · · , n.

This is consistent with the observation that the term structures of interest rates
almost move in parallel at long maturities so that the long end of the yield curve
is well described by the swap rate. With the use of the numeraire M(t) = An(t),
the normalized terminal payoff of the annuity option can be expressed as

f(ST0) =
V a.o.

T0

M(T0)
=

[
n∑

i=1

cifi(ST0) − (A − c0)f0(ST0)

]+

.

The fixed strike A should be chosen such that A− c0 remains positive, otherwise
the optionality feature in the annuity option becomes superfluous. When the
physically settled swaptions are adopted as the replicating instruments, the cor-
responding numeraire N(t) for the swaptions is the annuity An(t). The numeraire
ratio is then given by

M(t)

N(t)
= 1,

and g(ST0) = 1. Our generalized formula gives the following static replication
formula:

V a.o.
0 = f ′(κ)[C0(κ) − P0(κ)] +

∫ κ

0

f ′′(x)P0(x) dx +

∫ ∞

κ

f ′′(x)C0(x) dx (3.7)

where κ has been chosen such that f(κ) = 0, C0(x) and P0(x) denote the time-0
value of the unit notional payer swaption and receiver swaption with strike x,
respectively.

As an illustrative example, suppose we take the annualized annuity rate µ to
be constant, that is, µ = ci

δi
, i = 1, · · · , n. In this case, the terminal payoff V a.o.

T0

can be simplified as

An(T0)

[
µ − A − c0

An(T0)

]+

.

Take Tp = T0 in the function G(ST0) defined earlier in Eq. (2.3), we then have

G(ST0) =
B(T0, T0)

An(T0)
=

1

An(T0)
.

We define the function f̃(x) = µ − (A − c0)G(x) so that f(x) = [f̃(x)]+. The
first-order and second-order derivatives of f are found to be

f ′(x) = f̃ ′(x)1{f̃(x)≥0},

f ′′(x) = δ
(
f̃(x)

)
f̃ ′(x)2 + 1{f̃(x)≥0}f̃

′′(x),

9



where δ(·) is the Dirac delta function. It is observed that G(x) → ∞ monoton-
ically as x → ∞, and G(x) grows asymptotically like a linear function. Since

A − c0 and µ are positive, thus f̃(x) is monotonically decreasing with f̃(0) > 0

and f̃(∞) = −∞. Therefore, there exists K > 0 such that f̃(x) ≥ 0 if and only
if x ≤ K. Consequently, we may choose κ to be the positive infinity so that the
static replication involves the receiver swaptions only. Observing that f ′(κ) = 0
when κ = ∞, we obtain the following static replication of the annuity option
using a portfolio of receiver swaptions:

V a.o.
0 =

∫ ∞

0

f ′′(x)P0(x) dx

= (A − c0)G
′(K)P0(K) −

∫ K

0

(A − c0)G
′′(x)P0(x) dx.

(3.8)

4 Numerical results

To demonstrate the interplay between static replication and convexity correction,
we performed the numerical calculations that find the corresponding replicating
portfolio for the CMS caplet and the annuity option based on formulas (2.6) and
(3.8). First of all, it is necessary to establish the functional dependence of the
bond-annuity ratio on ST0 [see Eq. (2.3)] based on certain assumptions on the
yield curve. Here, we consider two common types of yield curve models: the
standard model and the parallel shifts model (Hagan, 2003). These two models
are known to work well when the pricing problems are more concerned with the
long-maturity segment of the yield curve. In the present context, the CMS rates
are usually the medium-term to long-term rates, and the underlying annuity is
also usually long-term. Therefore, the adoption of these two yield curve models
is justified.

In the standard model, we assume a constant accrual factor 1
q

(q = 1 for

annual, q = 2 for semi-annual), and the discount bond prices can be expressed
in terms of ST0 as follows:

B(T0, Ti) =
1(

1 +
ST0

q

)i , i = 1, 2, · · · , n.

Also, we assume

B(T0, Tp) =
1(

1 +
ST0

q

)p ;

so that

G(ST0) =
ST0(

1 +
ST0

q

)p
[
1 −

(
1 +

ST0

q

)−n
] . (4.1)

On the other hand, when we assume a parallel yield curve shift of a fixed amount
x in the parallel shifts model, the bond prices at time 0 and time t are related by

B(t, Ti)

B(t, T0)
=

B(0, Ti)

B(0, T0)
e−(Ti−T0)x, i = 1, 2, · · · , n.
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The parallel shift amount x is implicitly determined by the following equation:

ST0 =
B(0, T0) − B(0, Tn)e−(Tn−T0)x∑n

k=1 δkB(0, Tk)e−(Tk−T0)x
.

Under the parallel shifts model, we have

G(ST0) =
ST0e

−(Tp−T0)x

1 − B(0,Tn)
B(0,T0)

e−(Tn−T0)x
, (4.2)

where x has an implicit dependence on ST0 .

In Figures 1(a) and 1(b), we plot the dependence of G(ST0) on the swap rate
ST0 based on the flat yield curve model and parallel shifts model, respectively,
for various values of n (the number of payment dates in the tenor structure
{T0, T1, · · · , Tn}). We assume Tp = T1, and q = 2 in our calculations. The values
of the discount factors in the initial discount curve are tabulated in Table 1.
The “almost linear” property of G is observed in the figures even when ST0

assumes a conceivably large value; that is consistent with the use of the linear
approximation assumption in the Linear Swap Rate Model (Pelsser, 2003b).

Discount Factors from T0 to T6

T0 T1 T2 T3 T4 T5 T6

0.9537 0.9330 0.9139 0.8953 0.8568 0.8383 0.8204

Discount Factors from T7 to T13

T7 T8 T9 T10 T11 T12 T13

0.8032 0.7863 0.7695 0.7527 0.7361 0.7196 0.7031

Discount Factors from T14 to T20

T14 T15 T16 T17 T18 T19 T20

0.6868 0.6707 0.6546 0.6387 0.6231 0.6080 0.5932

Table 1: Discount factors in the initial discount curve.

There exist other more general yield curve models, like the non-parallel shifts
model (Hagan, 2003). The calculations on other models can be performed in an
almost identical manner. We expect that the illustrated features would be very
similar.

CMS caplets

Based on the replication formula (2.6), we find the replicating portfolios of a set
of at-the-money CMS caplets using payer swaptions of varying discrete strikes.
The respective strike rate K of the at-the-money CMS calpets, presented in
Table 2, is chosen to be the prevailing forward swap rates which are given by the
following equation:

S(0; T0, Tn) =
B(0, T0) − B(0, Tn)∑n

k=1 δkB(0, Tk)
.

The subinterval of the strike price ∆x is set to be 1%. The upper bound on the
strikes of the these swaptions is set to be 20%. The notional of each of these
swaptions can be computed using Eq. (2.5).
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n 8 10 20
K 4.89% 4.80% 4.81%

Table 2: Values of the strike rate under various tenor structures.

In Figures 2(a) and 2(b), we show the plot of the notional values of the
payer swaptions with varying strikes corresponding to different tenors, where
n = 8, 10, 20, based on the standard model and parallel shifts model, respectively.
The swaption with strike K (the same strike of the CMS caplet) is seen to be the
dominant one (in terms of notional and actual dollar value) in the replicating
portfolio. The convexity correction is provided by the other payer swaptions
at higher strikes. As revealed in Figures 2(a) and 2(b), the notional amounts of
these swaptions are relatively small compared to that of the dominant swaption at
strike K. Since G(ST0) is almost linear in ST0 , the notional values of the swaptions
relevant for the convexity correction are almost equal in value. When the tenor of
the underlying CMS rate is lengthened, corresponding to an increase in value of n,
the convexity correction becomes more significant. Thus the difference between
the notional of the dominant swaption at strike K and that of any swaption at
a higher strike decreases. This phenomenon is confirmed by the plots shown in
Figures 2(a) and 2(b).

To illustrate the impact on the notional values in the replicating portfolio
with regard to the choice of the yield curve model, we compute the numerical
values of the notional of the payer swaptions against varying strike rate under
the two yield curve models with different tenor structures (varying number of
payment dates n). The results are presented in Table 3.

n = 8 n = 10 n = 20
Notional Notional Notional

Strike Standard Parallel Strike Standard Parallel Strike Standard Parallel
rate model shifts rate model shifts rate model shifts

model model model
0.0489 0.2802 0.2873 0.0480 0.2314 0.2375 0.0481 0.1347 0.1380
0.0589 0.0090 0.0085 0.0580 0.0094 0.0091 0.0581 0.0109 0.0109
0.0689 0.0090 0.0081 0.0680 0.0095 0.0088 0.0681 0.0111 0.0110
0.0789 0.0091 0.0079 0.0780 0.0096 0.0086 0.0781 0.0114 0.0111
0.0889 0.0091 0.0077 0.0880 0.0097 0.0085 0.0881 0.0116 0.0113
0.0989 0.0092 0.0075 0.0980 0.0097 0.0084 0.0981 0.0119 0.0114

Table 3: Notional values of the payer swaptions in the replication portfolio of
the CMS caplet under the standard model and the parallel shifts model.

Annuity options

We apply the replication formula (3.8) to find the notional values of the receiver
swaptions in the replication of an annuity option. We assume a uniform annuity
rate of $1 in our calculations. The strike price A of the annuity option is set
equal to the forward price of the annuity such that the annuity option is initiated
at-the-money.

In a similar manner, we plot the notional values of the receiver swaptions
in the replicating portfolio corresponding to different tenors in Figures 3(a) and
3(b). Since G(x) is “almost” linear in both the standard model and parallel
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shifts model and so G′′(x) ≈ 0, the notional values of all receiver swaptions other
than the dominant swaption are very small. If we neglect the “small” convexity
of the function G(x), the annuity option is almost like a receiver swaption with

notional (A− c0)G
′(K) and strike rate K, where K is the unique root of f̃(x) =

µ−(A−c0)G(x). The values of K under various tenor structures are summarized
in Table 4.

Number of payment dates, n 8 10 20
Standard model 4.89% 4.80% 4.81%

Parallel shifts model 4.89% 4.80% 4.81%

Table 4: Values of the strike rate K under various tenor structures and yield
curve models.

Due to the small convexity in G(x), one would short a small number of units
of receiver swaptions at strikes lower than K in the replicating portfolio [see
Figures 3(a) and 3(b)].

5 Conclusion

We have proposed a generalized static replication formula by exploring the link-
age between replication, convexity correction and numeraire change. Our static
replication approach is under the one factor framework, where all uncertainty
in the term structure of the yield curve is captured by one single variable, say
the swap rate. The generalized replication formula allows the adoption of wider
choices of option-type products in the replicating portfolio and the use of nu-
meraires that are preferred for affective valuation of a contingent claim. We
demonstrate the use of the generalized replication approach for hedging exotic
swap products and annuity options using various types of swaptions. Interest-
ingly, the convexity of the functional dependence of bond-annuity ratio on swap
rate enters into the replication formulas of these exotic interest rate instruments.
The degree of the convexity determines the notional amounts of the swaptions
in the replicating portfolio, thus illustrating the interplay between convexity and
replication.
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Appendix A Proof of Proposition 1

First, we recall the martingale pricing formulas:

V0 = M(0)EQM
[f(XT )] = N(0)EQN

[
f(XT )

M(T )

N(T )

]
= N(0)EQN

[f(XT )Λ(XT )] ,

where QM and QN are the equivalent martingale measures associated with the
numeraires M(t) and N(t), respectively. Suppose we choose κ ≥ 0 such that

f(κ) = 0. Thus, w(κ) = f(κ)Λ(κ)
g(κ)

= 0. We apply the Carr-Madan formula (3.1)

to the payoff function w(XT ) and obtain

w(XT ) = w′(κ)[(XT − κ)+ − (κ − XT )+]

+

∫ κ

0

w′′(x)(x − XT )+dx +

∫ ∞

κ

w′′(x)(XT − x)+dx,

By multiplying both sides of the above equation by g(XT ) and taking expectation
under the martingale measure QN , we obtain

EQN
[f(XT )Λ(XT )] = w′(κ)EQN

[g(XT )((XT − κ)+ − (x − XT )+)]

+

∫ κ

0

w′′(x)EQN
[g(XT )(x − XT )]+dx

+

∫ ∞

κ

w′′(x)EQN
[g(XT )(XT − x)]+dx.

The values of the call-type and put-type replicating instruments are given by

C0(x) = N(0)EQN
[g(XT )(XT − x)+]

and
P0(x) = N(0)EQN

[g(XT )(x − XT )+],

respectively; so we finally obtain

V0 = w′(κ)[C0(κ) − P0(κ)]

+

∫ κ

0

w′′(x)P0(x) dx +

∫ ∞

κ

w′′(x)C0(x) dx.
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Figure 1: Plot of G(ST0) against ST0 under the assumption of (a) standard model,
(b) parallel shifts model. The “almost linear” property of G is observed.
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Figure 2: Plot of the notional of the payer swaption against strike rate under the
assumption of (a) standard model, (b) parallel shifts model, and corresponding
to different tenor structure (signified by the number of payment dates n in the
tenor). The payer swaption with the same strike as that of the CMS caplet is
the dominant one.
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Figure 3: Plot of the notional of the receiver swaption against strike rate under
the assumption of (a) standard model, (b) parallel shifts model, and with varying
tenor structure (signified by the number of payment dates n in the tenor). The
notional amounts of the receiver swaptions relevant for convexity correction are
seen to be very small due to the “almost linear” property of G.
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