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CLOSED FORM PRICING FORMULAS FOR DISCRETELY SAMPLED
GENERALIZED VARIANCE SWAPS

WENDONG ZHENG AND YUE KUEN KWOK

Hong Kong University of Science and Technology

Most of the existing pricing models of variance derivative products assume contin-
uous sampling of the realized variance processes, though actual contractual specifica-
tions compute the realized variance based on sampling at discrete times. We present
a general analytic approach for pricing discretely sampled generalized variance swaps
under the stochastic volatility models with simultaneous jumps in the asset price and
variance processes. The resulting pricing formula of the gamma swap is in closed form
while those of the corridor variance swaps and conditional variance swaps take the form
of one-dimensional Fourier integrals. We also verify through analytic calculations the
convergence of the asymptotic limit of the pricing formulas of the discretely sampled
generalized variance swaps under vanishing sampling interval to the analytic pricing
formulas of the continuously sampled counterparts. The proposed methodology can
be applied to any affine model and other higher moments swaps as well. We examine
the exposure to convexity (volatility of variance) and skew (correlation between the
equity returns and variance process) of these discretely sampled generalized variance
swaps. We explore the impact on the fair strike prices of these exotic variance swaps
with respect to different sets of parameter values, like varying sampling frequencies,
jump intensity, and width of the monitoring corridor.

KEY WORDS: generalized variance swaps, stochastic volatility models, Fourier transform, discrete
sampling.

1. INTRODUCTION

Volatility measures the standard deviation of the logarithm of returns of an underlying
asset, thus it gives a measure of the risk of holding that asset. Volatility risk has drawn
a wider attention in the financial markets in recent years, especially after the global
financial crisis. Volatility trading becomes an important topic of risk management. In a
bearish market environment, volatility typically stays at a high level, so holding a long
position of volatility may be useful in hedging an equity portfolio. Indeed, volatility can
be viewed as an asset class in its own right. Investors may use volatility derivatives to
perform directional trading of volatility levels, say, trading the spread between the realized
and implied volatility levels, or hedging an implicit volatility exposure. These volatility
derivatives are investment tools for investors with specific views on the future market
volatility or with particular risk exposures by allowing them to deal with these views or
risks without taking a direct position in the underlying asset and/or delta-hedging their
position (Brockhaus and Long 2000).
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Volatility products can be generally classified into two types. The historical-variance-
based volatility derivatives include products whose payoff depends on the realized
variance of the underlying asset. Another class of volatility products are the implied-
volatility-based products, like the VIX futures traded in the Chicago Board Options
Exchange (CBOE). The VIX stands for the CBOE Volatility Index, and it measures the
30-day expected future volatility of the S&P 500 index (Carr and Wu 2006). In recent
years, the third generation of volatility products, which are known as the generalized
variance swaps, including the corridor variance swaps, conditional variance swaps, and
gamma swaps, have gained wider popularity as volatility trading instruments. These ex-
otic variance swaps can offer investors a more finely tuned volatility exposure than the
traditional variance swaps (see the review articles by Carr and Lewis 2004; Bouzoubaa
and Osseiran 2010; Lee 2010). Their product specifications and potential uses in hedging
or betting the various forms of volatility exposures will be presented in later sections. One
of the objectives of this paper is to present a systematic and efficient analytic approach for
pricing these discretely sampled generalized variance swaps under the stochastic volatility
models with simultaneous jumps in the asset price and variance processes.

Assuming that the stock prices evolve without jumps, Neuberger (1994) shows how
a continuously sampled variance swap can be theoretically equivalent to a dynamically
adjusted constant dollar exposure to the stock, in combination with a static long po-
sition in a portfolio of options and a forward contract that replicate the payoff of a
log contract. Carr and Madan (1998) propose various methods of trading the realized
volatility, like taking a static position in options, delta-hedging an option position, etc.
They demonstrate that the delta-hedged option approach exhibits a large amount of
path dependency in the underlying in the final profit/loss. On the other hand, volatility
derivatives are shown to provide the pure exposure to realized market volatility without
an inherent price path dependency. Demeterfi et al. (1999) provide a nice review on the
pricing behavior and theory of both variance and volatility swaps.

As a common approximation assumption in the pricing models of volatility deriva-
tives in the literature, the discretely sampled realized variance in the actual contractual
specification is approximated by a continuously sampled variance (as quantified by the
quadratic variation of the log asset price process). For some volatility products, it occurs
that the assumption of continuous sampling falls short of providing pricing results with
sufficient accuracy when the actual discrete sampling becomes less frequent. Since it
is not so straightforward to estimate the approximation errors in a unified framework,
practitioners trading on contracts that are based on the realized variance with a low
sampling frequency cannot properly assess the pricing errors caused by the continuous
sampling assumption. A review on the replication errors for the discretely monitored
variance swaps can be found in Carr and Lee (2009). Keller-Ressel and Muhle-Karbe
(2010) discuss the rate of convergence of the approximation of the realized variance via
the notion of quadratic variation and examine the errors of the approximation in pricing
short-dated options with nonlinear payoffs.

There have been numerous papers that consider pricing variance product contracts on
the discretely sampled realized variance. Little and Pant (2001) develop a finite differ-
ence approach for the valuation of the discretely sampled variance swaps in an extended
Black–Scholes framework with a local volatility function. They adopt an effective nu-
merical technique to capture the jumps in the realized variance across the sampling
dates. Windcliff, Forsyth, and Vetzal (2006) improve the pricing algorithm for the dis-
cretely sampled volatility derivatives by allowing jumps in the asset price process. Using
the Monte Carlo simulation method, Broadie and Jain (2008) investigate the effect of
discrete sampling and asset price jumps on the fair strike prices of variance and volatility
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swaps under various stochastic volatility models. Carr and Lee (2009) consider the repli-
cation of discretely sampled variance products (including exotic path dependent payoff
structures) using options, futures, and bonds with the same sampling frequency as that
of the variance products. Itkin and Carr (2010) use a forward characteristic function
approach to price discretely monitored variance and volatility swaps under various Lévy
models with stochastic time change. Crosby and Davis (2011) consider the pricing of gen-
eralized variance swaps, such as self-quantoed variance swaps, gamma swaps, skewness
swaps, and proportional variance swaps under the time-changed Lévy processes. They
show that the prices of discretely monitored variance swaps and their generalizations all
converge to the prices of continuously monitored counterparts as O(1/N), where N is
the number of monitoring instants. Sepp (2011) analyzes the impact of discrete sampling
on the pricing of options on the realized variance under Heston’s stochastic volatility
model. He proposes a method of mixing the discrete variance in a log-normal model
and the quadratic variance in a stochastic volatility model that approximates well the
distribution of the discrete variation. Drimus and Farkas (2010) show that conditioning
on the realization of the instantaneous variance process, the residual randomness aris-
ing from discrete sampling follows a normal distribution. They also provide a practical
analysis of the greeks sensitivity of options on discretely sampled variance. Following
the Little-Pant pricing formulation, Zhu and Lian (2011) manage to derive closed form
pricing formulas for the vanilla variance swaps under Heston’s stochastic volatility model
for the underlying asset price process by solving a coupled system of partial differential
equations. Lian (2010) extends the above analytic pricing approach to the underlying
asset price process that allows stochastic volatility with simultaneous jumps in both the
asset price and variance process (SVSJ model). The success of analytic tractability in the
Zhu–Lian approach lies on the exponential affine structure of the SVSJ model, where
the corresponding analytic formulas of the marginal characteristic functions can be de-
rived. When the payoff structures of the variance swap contracts become more exotic,
like those of the corridor variance swaps, conditional variance swaps, and gamma swaps,
the knowledge of the marginal characteristic functions alone may not be enough in the
derivation of the corresponding closed form pricing formulas. Instead, the joint moment
generating function plays a vital role in deriving the pricing formulas for exotic variance
swaps.

In this paper, we propose a general analytic approach for pricing various types of
discretely sampled generalized variance swaps, thanks to the availability of the analytical
expression of the joint moment generating function of the underlying processes. The ana-
lytic derivation of the associated moment generating function under the SVSJ model can
be accomplished via the solution to a Riccati system of ordinary differential equations.
Provided that the payoff function of a generalized variance swap can be transformed
into an exponential function of the state variables, closed form or semianalytic (in terms
of one-dimensional Fourier integrals) pricing formula of the derivative product can be
derived. Duffie, Pan, and Singleton (2000) and Chacko and Das (2002) demonstrate the
versatility of this analytic approach in pricing various types of fixed income derivatives.
These papers explore various invariant properties of the solutions to the Riccati systems
and manage to express the pricing formulas in terms of these solutions. Sepp (2007)
applies similar techniques to price continuously sampled variance derivatives and con-
ditional variance swaps via the derivation of the analytic representation of the Green
function associated with the governing partial integral-differential equation under the
SVSJ model.

This paper is organized as follows. In the next section, we present the formulation of
the SVSJ model with a discussion on various possible extensions of the underlying joint
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dynamics of the asset returns and its variance. Thanks to the exponential affine structures
of the SVSJ model, we manage to obtain an analytic representation of the corresponding
joint moment generating function by solving a Riccati system of ordinary differential
equations. In Section 3, we present the product specification and potential uses of various
generalized variance swaps. We then show how to derive the closed form pricing formula
of each of these discretely sampled generalized variance swaps under the SVSJ model.
The continuously sampled gamma swap is known to provide a constant share gamma
exposure. We illustrate how this gamma exposure property is modified under discrete
sampling. The pricing of the conditional variance swap requires the computation of the
expected occupation time of the asset price within a specified corridor. For the formulas
of the fair strikes of the discretely monitored variance swaps and gamma swaps, we take
the asymptotic limit by letting the sampling interval approach zero and illustrate that
one can recover the same set of formulas of their continuously sampled counterparts
(Sepp 2008). Also, we manage to obtain the pricing formulas of corridor and conditional
variance swaps under continuous sampling. In Section 4, we report the numerical tests
that examine the convergence of the fair strike prices with increasing sampling frequencies
to the fair strike price of the continuously sampled counterparts. Our numerical tests
show that an almost linear rate of convergence with respect to the sampling interval
of the fair strike price under discrete sampling to that under continuously sampling is
revealed for variance swaps. However, such convergence behavior may not always be
observed for other exotic variance swaps. We also examine the exposure to convexity
(volatility of variance), skew (correlation between equity returns and variance process),
and jump intensities of these exotic swap products under the more realistic framework
of discrete sampling of the realized variance. The fair strike prices in these generalized
variance swaps are shown to be dependent on their contractual specifications. Summary
and conclusive remarks are presented in the last section.

2. STOCHASTIC VOLATILITY MODELS WITH SIMULTANEOUS JUMPS
AND JOINT MOMENT GENERATING FUNCTION

There have been numerous empirical studies on the dynamics of asset returns that illus-
trate evidence for both jumps in the price level and its volatility. A prominent continuous
time model that has been widely adopted is the affine simultaneous jump model (Duffie
et al. 2000) where the asset return and its variance follow the jump-diffusion process for
which the drift, covariance, and jump intensities are assumed to have an affine depen-
dence on the state vector. The analytic pricing under the affine simultaneous jump model
can be performed by solving the corresponding Riccati system of ordinary differential
equations (Chacko and Das 2002).

In this paper, we adopt the following stochastic volatility model with simultaneous
jumps (SVSJ) to describe the joint dynamics of the stock price St and its instantaneous
variance Vt. Under the risk neutral pricing measure Q, the joint dynamics of St and Vt

assumes the form:⎧⎪⎨
⎪⎩

dSt

St
= (r − d − λm) dt +

√
Vt dWS

t + (eJS − 1) dNt,

dVt = κ(θ − Vt) dt + ε
√

Vt dWV
t + JVdNt,

(2.1)

where WS
t and WV

t are a pair of correlated standard Brownian motions with dWS
t dWV

t =
ρ dt, and Nt is a Poisson process with constant intensity λ that is independent of the
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two Brownian motions. Here, ρ is the constant correlation coefficient. We let JS and
JV denote the random jump size of the log price and variance, respectively, and these
random jump sizes are assumed to be independent of WS

t , WV
t , and Nt. Also, we let

r and d denote the riskless interest rate and the constant dividend yield, respectively,
and m = EQ

t [eJS − 1]. Throughout the paper, all the expectation calculations EQ
t [ · ] are

performed under the risk neutral pricing measure Q and conditional on filtration Ft

at the current time t. In the sequel, we suppress the superscript and subscript in the
expectation operator for notational convenience.

It is well known that jumps in the stock price provide a more realistic description of
the short-term behavior of the stock price dynamics while jumps in the variance give
the more accurate modeling of the volatility skew. Various empirical studies reveal that
jumps in the price level and variance in general occur together, and they are strongly
interdependent and have opposite sign. One may argue that the above SVSJ model
with specific affine forms of the parameter functions may be somewhat restrictive. Some
recent nonparametric studies of the high frequency movements in stock market volatility
reveal that volatility may follow quite different forms of jump behavior (Todorov and
Tauchen 2010). Various extended versions of the stochastic volatility models have also
been proposed. For example, Kangro, Parna, and Sepp (2004) propose to generalize the
intensity of the Poisson process to be a nonreverting stochastic process. Carr and Wu
(2007) assume stochastic hazard rate for the Poisson process, where the stochastic hazard
rate parameter is assumed to be the sum of the instantaneous variance and a latent risk
factor that follows a diffusion process with mean reversion drift rate. Cont and Kokholm
(2008) model directly the forward variance swap rates for a discrete tenor of maturities,
somewhat analogous to the LIBOR market model in interest rates modeling. In some
of these extended models, analytic tractability that is similar to the SVSJ model can
be maintained though the analytic procedures tend to become more involved. In this
paper, we illustrate the set of analytic procedures of deriving the pricing formulas of
discretely sampled exotic variance products under the popular SVSJ model and relegate
the research on analytic pricing methods under other types of stochastic volatility models
to future works.

2.1. Joint Moment Generating Function

For convenience, we let Xt = ln St. The joint moment generating function of the joint
process Xt and Vt is defined to be

E[exp(φXT + bVT + γ )],

where φ, b, and γ are constant parameters. Let U(Xt, Vt, t) denote the nondiscounted
time-t value of a contingent claim with the terminal payoff function: U(XT , VT , T),
where T is the maturity date. By adopting the temporal variable, τ = T − t, it can be
deduced from the Feynman–Kac theorem that U(X , V , τ ) is governed by the following
partial integral-differential equation (PIDE):

∂U
∂τ

=
(

r − d − mλ − V
2

)
∂U
∂ X

+ κ(θ − V)
∂U
∂V

+ V
2

∂2U
∂ X2

+ ε2V
2

∂2U
∂V2

+ ρεV
∂2U

∂ X∂V
+ λE[U(X + JS, V + JV, τ ) − U(X, V, τ )].

(2.2)



860 W. ZHENG AND Y. K. KWOK

The terminal payoff function of the contingent claim becomes the initial condition of the
PIDE. Note that the joint moment generating function (MGF) can be regarded as the
time-t forward value of the contingent claim with the terminal payoff: exp (φXT + bVT

+ γ ), so the MGF also satisfies PIDE (2.2).
Using the analytic procedures similar to those in interest rate derivatives pricing under

the stochastic volatility with simultaneous jumps model (Chacko and Das 2002), analytic
solution to the joint MGF can be obtained by solving a Riccati system of ordinary
differential equations. Due to the exotic payoff structure of the generalized variance
swaps, analytic form of the joint MGF is required in deriving analytic pricing formulas
for these discretely sampled variance products. As a remark, it suffices to use the marginal
MGFs to price discretely sampled vanilla variance swaps (Zhu and Lian 2011) due to
their simpler payoff structure. Once the joint MGF is known, the respective marginal
MGF can be obtained easily by setting the irrelevant parameters in the joint MGF to
be zero. For example, the marginal MGF with respect to the state variable V can be
obtained by setting φ = γ = 0.

Thanks to the affine structure in the SVSJ model, U(X , V , τ ) admits an analytic
solution of the following form (Duffie et al. 2000):

U(X, V, τ ) = exp(φX + B(�; τ, q)V + �(�; τ, q) + (�; τ, q)),(2.3)

where the parameter functions B(�; τ, q), �(�; τ, q), and (�; τ, q) satisfy the following
Riccati system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ B
∂τ

= −1
2

(φ − φ2) − (κ − ρεφ)B + ε2

2
B2,

∂�

∂τ
= (r − d)φ + κθB,

∂

∂τ
= λ

(
E[exp(φJS + BJV) − 1] − mφ

)
,

(2.4)

with the initial conditions: B(0) = b, �(0) = γ , and (0) = 0. Here, q = (φ b γ )T and we
use � to indicate the dependence of these parameter functions on the model parameters
in the SVSJ model. One has to specify the distributions for JS and JV in order to obtain
a complete solution to these parameter functions. For example, suppose we assume that
JV ∼ exp (1/η) (exponential distribution with parameter rate 1/η) and JS follows:

JS | JV ∼ Normal(ν + ρJ JV, δ2),

that is the Gaussian distribution with mean ν + ρJJV and variance δ2, we obtain

m = E[eJS − 1] = eν+δ2/2

1 − ηρJ
− 1,(2.5)

provided that ηρJ < 1. Under the above assumption on JS and JV , the parameter
functions can be found to be
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(�; τ, q) = b(ξ−e−ζ τ + ξ+) − (φ − φ2)(1 − e−ζ τ )
(ξ+ + ε2b)e−ζ τ + ξ− − ε2b

,

�(�; τ, q) = (r − d)φτ + γ − κθ

ε2

[
ξ+τ + 2 ln

(ξ+ + ε2b)e−ζ τ + ξ− − ε2b
2ζ

]
,

(�; τ, q) = −λ(mφ + 1)τ + λeφν+δ2φ2/2
[

k2

k4
τ − 1

ζ

(
k1

k3
− k2

k4

)
ln

k3e−ζ τ + k4

k3 + k4

]
,

(2.6)

with q = (φ b γ )T and

ζ =
√

(κ − ρεφ)2 + ε2(φ − φ2),

ξ± = ζ ∓ (κ − ρεφ),

k1 = ξ+ + ε2b,

k2 = ξ− − ε2b,

k3 = (1 − φρJη)k1 − η(φ − φ2 + ξ−b),

k4 = (1 − φρJη)k2 + η(φ − φ2 − ξ+b).

The derivation of the parameter functions in equation (2.6) is provided in Appendix A.
Once the joint MGF is available, an effective analytic pricing approach can be constructed
to derive the pricing formulas of the various types of discretely sampled generalized
variance swaps. As an illustration, we demonstrate how the pricing formula of the vanilla
variance swap can be readily derived. Let the sampling dates be denoted by 0 = t0 < t1 <

· · · < tN = T . On the maturity date T , the payoff of the vanilla variance swap is defined
to be

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

− K,

where K is the strike price of the variance swap and A is the annualized factor (say, we
take A = 252 for daily sampling). We write �tk = tk − tk−1 and express the time interval
tk−1 − t0 simply as tk−1 since t0 is taken to be zero. The pricing problem amounts to
finding the fair strike price K such that the value of the vanilla variance swap at initiation
is zero. The fair strike price K is then given by

K = E

[
A
N

N∑
k=1

(
ln

Stk

Stk−1

)2
]

.

We now show how to evaluate each term in the above summation. Using the known ana-
lytic expression of the marginal MGFs, we apply the tower rule in conditional expectation
to obtain the expectation of a typical term as follows:
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E

[(
ln

Stk

Stk−1

)2
]

= E
[

∂2

∂φ2
eφ(Xtk−Xtk−1 )

]∣∣∣∣
φ=0

= ∂2

∂φ2
E
[
E
[
eφXtk

∣∣Xtk−1 , Vtk−1

]
e−φXtk−1

]∣∣
φ=0

= ∂2

∂φ2
E
[
eB(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)]∣∣

φ=0

= ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣
φ=0,

where q1 = (φ 0 0)T, and

q2 =

⎛
⎜⎝

0

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

The fair strike price of the variance swap is then given by

KV(T, N) = A
N

N∑
k=1

∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=0

.(2.7)

Note that the derivation procedure is less involved compared to the pricing approach
used by Zhu and Lian (2011).

2.2. Asymptotic Limit of Vanishing Sampling Interval

It would be instructive to examine whether we can deduce the formula for the fair
strike price of the continuously sampled variance swap by taking the asymptotic limit as
�t → 0, where �t = max k�tk, in formula (2.7). By expanding the parameter functions
B, �, and  in powers of �tk and taking �t → 0 subsequently, we manage to obtain the
following closed form formula for the fair strike of the continuously sampled variance
swap:

KV(T, ∞) = 1
T

{
1 − e−κT

κ
V0 − λη

κ2
(1 − e−κT − κT)

+ λ
[
δ2 + ρ2

Jη
2 + (ν + ρJη)2]T + θ

κ
(κT − 1 + e−κT)

}
,

(2.8)

where we have used the convention A
N = 1

T . The above formula is in agreement with
a similar pricing formula in Sepp (2008). The proof of formula (2.8) is presented in
Appendix B.

In the next section, we illustrate how to generalize the above pricing approach to find
the pricing formulas for the various types of generalized variance swaps.

3. GENERALIZED VARIANCE SWAPS

Vanilla variance swaps are known to be the appropriate instruments to provide investors
with pure volatility exposure. In recent years, various types of generalized variance swaps
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have been introduced in the financial markets to enhance volatility trading by providing
asymmetric bets or hedges on volatility. Given a tenor structure {t0, t1, . . ., tN} as before,
the generalized realized variance over the period [t0, tN ] is defined to be

A
N

N∑
k=1

wk

(
ln

Stk

Stk−1

)2

,

where wk is some discrete weight process chosen so as to target a specific form of volatility
exposure. In this section, analytic pricing of discretely sampled gamma swaps, corridor
variance swaps, and conditional variance swaps would be considered. For each type of
these exotic variance products, we start with the description of their product nature and
potential uses in volatility trading and hedging.

3.1. Gamma Swaps

In a gamma swap, the weight wk is chosen to be
Stk
St0

, k = 1, 2, . . . , N. Accordingly, the
terminal payoff of the gamma swap is defined by

A
N

N∑
k=1

Stk

St0

(
ln

Stk

Stk−1

)2

− K .

The motivation of choosing the weight to be the underlying level is to provide the
embedded damping of the large downside variance when the stock price falls close to zero.
This feature serves to protect the swap seller from crash risk, thus provides an advantage
over the noncapped variance swaps. Another motivation is related to variance dispersion
trade, which refers to trading the difference between the realized index volatility and
the market-cap weighted sum of the realized volatilities of its constituents. Gamma
swaps provide better means to trade dispersion than vanilla variance swaps since the risk
associated with changes in weights of the constituent stocks over the life of the variance
swap is reduced (Jacquier and Slaoui 2010).

To find the analytic fair strike price of a discretely sampled gamma swap, we compute
the expectation of a typical term in the floating leg of the gamma swap as follows:

E

[
Stk

St0

(
ln

Stk

Stk−1

)2
]

= e−X0 E
[
eXtk−Xtk−1 (Xtk − Xtk−1 )2eXtk−1

]

= e−X0 E
[

∂2

∂φ2
eφ(Xtk−Xtk−1 )+Xtk−1

]∣∣∣∣
φ=1

= e−X0
∂2

∂φ2
E
[
E
[
eφXtk

∣∣Xtk−1 , Vtk−1

]
e(1−φ)Xtk−1

]∣∣
φ=1

= e−X0
∂2

∂φ2
E
[
eXtk−1 +B(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)]∣∣

φ=1

= ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=1

,

where q1 = (φ 0 0)T, and
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q2 =

⎛
⎜⎝

1

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

In the above derivation procedure, we have made use of the analytic form of the joint
moment generating function of Xt and Vt. The fair strike price of the gamma swap is then
given by

K�(T, N) = A
N

N∑
k=1

∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣∣
φ=1

,(3.1)

which is seen to have no dependence on the initial price level St0 .
It is well known that the gamma exposure of vanilla variance swaps is insensitive to

the underlying level of share price (Demeterifi et al. 1999), a property known as constant
cash gamma exposure. Suppose an investor is interested in the gamma exposure in the
number of portfolio units rather than the initial cash value of the portfolio, the gamma
swaps provide constant share gamma exposure by choosing weights that are set equal to
the underlying level at the sampling dates. The proof of this property of constant (almost
constant) share gamma exposure for the continuously (discretely) sampled gamma swaps
is shown below.

3.1.1. Constant Share Gamma Exposure. We would like to compute the share gamma
exposure of an in-progress gamma swap at time t, where ti−1 < t ≤ ti, i ≥ 1. The share
gamma is defined to be

�S = �St := ∂2Vt

∂S 2
t

St,(3.2)

where � is the usual greek gamma of a derivative product with value function Vt. Consider
a hedging portfolio � whose differential change of value is given by

d� = �dSt + 1
2
�(dSt)2.

Since dSt is in proportion to the share price St, the “cash gamma” of the derivative �S2
t

is in units of dollars. After normalizing the cash gamma by the share price, the resulting
quantity �St is in units of shares and hence it is called the “share gamma.” To compute
the share gamma of a discretely sampled gamma swap, it is necessary to find the time-t
value of the gamma swap as follows:

Vt = e−r (tN−t)

{
A
N

i−1∑
k=1

Stk

St0

(
ln

Stk

Stk−1

)2

+ A
N

Et

[
Sti

St0

(
ln

Sti

Sti−1

)2
]

+ A
N

Et

[
N∑

k=i+1

Stk

St0

(
ln

Stk

Stk−1

)2
]

− K�(T, N)

}
(3.3)
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= e−r (tN−t)

{
A
N

i−1∑
k=1

Stk

St0

(
ln

Stk

Stk−1

)2

+ A
N

Sti−1

St0

× ∂2

∂φ2

[(
St

Sti−1

)φ

eB(�;ti −t,q1)Vt+�(�;ti −t,q1)+(�;ti −t,q1)

]∣∣∣∣∣
φ=1

+ A
N

St

St0

×
N∑

k=i+1

∂2

∂φ2
eB(�;tk−1−t,q2)Vt+�(�;tk−1−t,q2)+(�;tk−1−t,q2)

∣∣∣∣∣
φ=1

− K�(T, N)

⎫⎬
⎭ ,

where q1 = (φ 0 0)T, and

q2 =

⎛
⎜⎝

1

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

By differentiating equation (3.3) with respect to St twice and multiplying by St, we obtain
the share gamma as follows:

�S = e−r (tN−t) A
N

2
St0

[(
ln

St

Sti−1

+ 1
)

F(1) + F ′(1)
]

,(3.4a)

where

F(φ) = eB(�;ti −t,q1)Vt+�(�;ti −t,q1)+(�;ti −t,q1).

The dependence of �S on St appears in the term ln St
Sti−1

. Suppose we take the limit of
continuous sampling, St → Sti−1 , we then obtain

�S → e−r (tN−t) A
N

2
St0

.(3.4b)

The above limit has no dependence on St, so it verifies the property of constant gamma
exposure under continuous sampling. A similar result has been obtained by Jacquier and
Slaoui (2010) using a replication argument.

3.1.2. Fair Strike Prices of Continuously Monitored Gamma Swaps. By following a
similar procedure of taking the limit of vanishing sampling time interval (see Appendix B),
we can obtain the following closed form formula for the fair strike price of a continuously
monitored gamma swap

K�(T, ∞) = 1
T

[(
V0 − κθ

κ − ρε
− C2

)
e(r−d−κ+ρε)T − 1
r − d − κ + ρε

+
(

κθ

κ − ρε
+ C1 + C2

)
e(r−d)T − 1

r − d

]
,

(3.5)
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where

C1 = λeν+δ2/2

1 − ρJη

[(
ν + δ2 + ρJη

1 − ρJη

)2

+ δ2 +
(

ρJη

1 − ρJη

)2
]

,

C2 = ληeν+δ2/2

(1 − ρJη)2(κ − ρε)
.

3.2. Corridor Variance Swaps

A corridor variance swap differs from the vanilla variance swap in that the underlying
price must fall inside a specified corridor (L, U ] (L ≥ 0, U < ∞), in order for its squared
return to be included in the floating leg of the corridor variance swap. For a discretely
sampled corridor variance swap with the tenor 0 = t0 < t1 < t2 < · · · < tN = T , suppose
the corridor is monitored on the underlying price at the old time level tk−1 for the kth
squared log return, the floating leg with the corridor (L, U ] is given by

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{L<Stk−1 ≤U}.

Here, 1{ · } denotes the indicator function. Corridor variance swaps with a one-sided
barrier are also widely traded in the financial markets, where the downside-variance swap
and upside-variance swap can be obtained by taking L = 0 and U → ∞, respectively. As
further generalizations, one can choose to have the corridor monitored on the underlying
price at the new time level tk (Sepp 2007) or even at both time levels (Carr and Lewis
2004).

Corridor variance swaps allow the investors to take their views on the implied volatility
skew. Suppose the implied volatility skew is expected to steepen, the investor may benefit
from buying a downside-variance swap and selling an upside-variance swap if this view
is realized. Also, investors seeking crash protection may buy the downside-variance swap
since it can provide almost the same level of crash protection as the vanilla variance swap
but at a lower premium.

It suffices to consider pricing downside-variance swaps alone since the payoffs of
downside-variance swaps of varying values of the upper barrier are sufficient to span all
different payoffs of various corridor variance swaps. We would like to find the fair strike
price of a downside-variance swap with an upper barrier U whose payoff at maturity T
is given by

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U} − K .

Let us consider the expectation calculation of a typical term:

E

[(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U}

]
= E

[
E
[

∂2

∂φ2
eφ(Xtk−Xtk−1 )

∣∣∣∣ Xtk−1 , Vtk−1

]
1{Xtk−1 ≤ln U}

]∣∣∣∣
φ=0

= E
[

∂2

∂φ2
eB(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)1{Xtk−1 ≤ln U}

]∣∣∣∣
φ=0

= ∂2

∂φ2
E
[
eB(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)1{Xtk−1 ≤ln U}

]∣∣∣∣
φ=0

,

(3.6)
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where q1 = (φ 0 0)T. For k = 1, the above expectation is readily seen to be

E

[(
ln

St1

St0

)2

1{St0 ≤U}

]
= ∂2

∂φ2
eB(�;�t1,q1)V0+�(�;�t1,q1)+(�;�t1,q1)1{X0≤ln U}

∣∣∣∣∣
φ=0

.(3.7a)

For k ≥ 2, the evaluation of expectation in formula (3.6) requires the representation of
the indicator function 1{Xtk−1 ≤ln U} in terms of an inverse Fourier transform integral. As a
result, formula (3.6) can be expressed in terms of a Fourier integral as follows:

E

[(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U}

]
= ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Fk(wr + iwi )
iwr − wi

)
dwr , k ≥ 2,

(3.7b)

where w = wr + iwi, u = ln U , and

Fk(w) = ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=0

, k ≥ 2,

with

q2 =

⎛
⎜⎝

−iw

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

The above Fourier integral is regular provided that wi is appropriately chosen to lie
within (−∞, 0). The proof of equation (3.7b) is presented in Appendix C. The fair strike
price of the downside-variance swap is then given by

KD(T, N) = A
N

⎡
⎢⎢⎢⎢⎢⎣

∂2

∂φ2
eB(�;�t1,q1)V0+�(�;�t1,q1)+(�;�t1,q1)1{X0≤ln U}

∣∣∣∣
φ=0

+ ewi (X0−u)

π

∫ ∞

0
Re

⎛
⎜⎜⎜⎜⎜⎝e−iwr (X0−u)

N∑
k=2

Fk(wr + iwi )

iwr − wi

⎞
⎟⎟⎟⎟⎟⎠ dwr

⎤
⎥⎥⎥⎥⎥⎦ .

(3.8)

The evaluation of the Fourier integral in equation (3.8) can be effected by adopting the
fast Fourier transform (FFT) algorithm. Actually, by following a similar FFT calculation
approach as in Carr and Madan (1999), one can produce the fair strike prices for all
downside-variance swaps with varying values of the upper barrier using one single FFT
calculation.

3.2.1. An Alternative Definition for the Corridor Variance. We have considered the
discretely sampled downside-variance swaps with the breaching of the downside corridor
(0, U ] being monitored on the stock price at the old time level. However, there is an
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alternative definition in the literature, where the floating leg payoff is defined to be

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk≤U}.

In this new definition, the breaching of the downside corridor for the kth squared log
return is monitored on the stock price at the new time level. For k = 1, 2, . . ., N, by
following a similar procedure as shown in equation (3.6), we manage to obtain

E

[(
ln

Stk

Stk−1

)2

1{Stk≤U}

]
= ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Fk(wr + iwi )
iwr − wi

)
dwr ,(3.9)

where w = wr + iwi, wi is chosen to lie in (−∞, 0) as before, u = ln U , and

Fk(w) = ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=0

,

with q1 = (φ − iw 0 0)T and

q2 =

⎛
⎜⎜⎝

−iw

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎟⎠ .

In Section 4, we will investigate the impact of the alternative definition on the fair strike
price of a downside-variance swap.

3.2.2. Fair Strike Prices for Continuously Monitored Downside-Variance Swaps. By
taking the asymptotic limit of vanishing sampling time interval, the fair strike price of
the continuously sampled downside-variance swaps is given by (see Appendix B)

KD(T, ∞) = ewi (X0−u)

Tπ

∫ ∞

0

∫ T

0
Re
(

e−iwr (X0−u) F(wr + iwi , t)
iwr − wi

)
dt dwr ,(3.10)

where

F(w, t) = eB0(−iw,t)V0+�0(−iw,t)+0(−iw,t){B1(−iw, t)V0 + �1(−iw, t) + 1(−iw, t)

+ λ
[
(ν + ρJη)2 + δ2 + ρ2

Jη
2]},

and the coefficient functions B0(−iw , t), B1(−iw , t), �0(−iw , t), �1(−iw , t), 0(−iw , t),
and 1(−iw , t) are defined in Appendix B [see equation (B.3)].

3.3. Conditional Variance Swaps

A conditional variance swap is similar to a corridor variance swap, though they differ
in the following two aspects:

(i) The accumulated sum of squared returns is divided by the number of observations
D that the underlying asset price stays within the corridor instead of the total
number of sampling observations N.

(ii) The final payoff to the holder is scaled by the ratio D/N.
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Let K be the strike price of a conditional downside-variance swap and K ′ be the strike
price of its corridor variance swap counterpart. The holder’s payoff of the conditional
downside-variance swap with corridor’s upper barrier U is given by

D
N

[
A
D

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U} − K

]
=
[

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U} − K ′
]

+
(

K ′ − K
D
N

)
,

(3.11)

where D =∑N
k=1 1{Stk−1 ≤U}.

The above formula reveals that the conditional variance swap can be decomposed into
a corridor variance swap with the same upper barrier plus a range accrual note. Since we
have shown how to find the fair strike price of a downside-variance swap, it suffices to
compute the expected number of the sampling dates at which the underlying stock price
stays below the upper barrier U . For a typical term in E[

∑N
k=1 1{Stk−1 ≤U}], the expectation

calculation involves

E[1{Sk−1≤U}] = E[1{Xk−1≤u}], where u = ln U.

Following similar calculations as in Section 3.1.1, we obtain

E[1{Xk−1≤u}] = ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Gk(wr + iwi )
iwr − wi

)
dwr , k ≥ 2,(3.12)

where wi ∈ (−∞, 0) and

Gk(w) = eB(�;tk−1,q1)V0+�(�;tk−1,q1)+(�;tk−1,q1),

with q1 = (−iw 0 0)T. Similarly, the numerical evaluation of the above Fourier integral
can be done via the FFT algorithm. Finally, the fair strike price of the conditional
downside-variance swap is given by

KC(T, N) = KD(T, N)

⎡
⎢⎢⎢⎢⎢⎣

1{X0≤u}
N

+ ewi (X0−u)

π N

∫ ∞

0
Re

⎛
⎜⎜⎜⎜⎜⎝e−iwr (X0−u)

N∑
k=2

Gk(wr + iwi )

iwr − wi

⎞
⎟⎟⎟⎟⎟⎠dwr

⎤
⎥⎥⎥⎥⎥⎦

−1

.

(3.13)

The payoff of a conditional variance swap counts only the sampling dates at which
the realized variance does accumulate (conditional on the underlying price lying within
the corridor). Compared to the corridor variance swaps, the conditional variance swaps
are structured specifically for investors who would like to be exposed only to volatility
risk within a prespecified corridor. In a corridor variance swap, the actual amount of
the occupation time that the underlying price falls within the corridor over the whole
life of the swap has a significant effect on the profit and loss to its holder. However, the
conditional variance swap is immunized from this risk since only the realized variance
within the corridor matters. Indeed, the decomposition formula (3.11) shows that the
holder of a conditional variance swap receives compensation from the range accrual note
when the occupation time attains a lower value leading to a lower payoff in the corridor
variance swap counterpart.
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3.3.1. Fair Strike Prices for Continuously Monitored Conditional Variance Swaps. The
fair strike price of the continuously sampled conditional downside-variance swap is
related to that of the downside-variance swap presented in the previous section. The
analytical representation formula is given by

KC(T, ∞) = KD(T, ∞)
[

ewi (X0−u)

πT

∫ ∞

0

∫ T

0
Re
(

e−iwr (X0−u) G(wr + iwi , t)
iwr − wi

)
dt dwr

]−1

,

(3.14)

where

G(w, t) = eB(�;t,q1)V0+�(�;t,q1)+(�;t,q1),

with q1 = (−iw 0 0)T.

4. NUMERICAL TESTS

In this section, we report the numerical calculations that were performed for testing accu-
racy of the analytic pricing formulas obtained for the various types of discretely sampled
generalized variance swaps. We examine the impact of the sampling frequency of the re-
alized variance on the fair strike prices of the discretely sampled variance swaps, gamma
swaps, corridor variance swaps, and conditional variance swaps, and the convergence of
the fair strike prices to those of their continuously monitored counterparts. In particular,
we used different sets of model parameters in the numerical calculations in order to have
a more comprehensive view of the behavior of convergence to the continuous limits.
To show the sensitivity of the fair strike prices of these discretely sampled generalized
variance swaps to different model parameters, we provide various plots of the fair strike
prices against three key model parameters, namely, correlation coefficient, volatility of
variance, and jump intensity. Finally, we investigate the impact of the corridor conven-
tion (whether breaching of the corridor is monitored on the stock price at the old time
level or new time level) on the pricing of the weekly sampled downside-variance swaps
with varying values of the maturity date. In our numerical examples, we adopted the set
of parameter values shown in Table 4.1 that are calibrated to S&P 500 option prices on
November 2, 1993 (Duffie et al. 2000) as our basic set of parameter values. In addition,
we take r = 3.19%, d = 0, S0 = 1, and assume the number of trading days in 1 year
to be 252. Unless otherwise stated, we consider 1-year swap contracts so that A = N
(T = 1) and take U = 1 as the upper barrier of the downside corridor in the corridor and
conditional variance swaps.

TABLE 4.1
The Basic Set of Parameter Values of the SVSJ Model

κ 3.46 ν −0.086
θ (0.0894)2 η 0.05
ε 0.14 λ 0.47
ρ −0.82 ρJ −0.38√

V0 0.087 δ 0.0001
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4.1. Impact of Sampling Frequency

First, we present numerical results that explore the convergence behavior of the fair
strike prices of different types of discretely monitored generalized variance swaps under
varying sampling frequencies. In Table 4.2, we report the fair strike prices of the vanilla
variance swaps, gamma swaps, downside-variance swaps, and conditional downside-
variance swaps with varying sampling frequencies and different values of the correlation
coefficient ρ. The choice of ρ = −1 infers the scenario where the market is highly lever-
aged as the asset return has perfect negative correlation with its variance while the less
negative correlation coefficient ρ = −0.3 represents the market condition with mild
leverage effect. The choice of ρ = −0.82 is taken from Table 4.1 (based on calibration
from actual data of option prices). The values of the fair strike prices are all presented
in variance points, which is the expected realized variance multiplied by 1002. The fair
strike prices for these discretely sampled generalized variance swaps are numerically cal-
culated using the closed form pricing formulas derived in previous sections [see equations
(2.7), (3.1), (3.8), and (3.13)]. The fair strike prices of the continuously sampled general-
ized variance swaps, corresponding to N = ∞, are computed using the formulas (2.8),
(3.5), (3.10), and (3.14) that are deduced by our asymptotic analysis. It is seen from Ta-
ble 4.2 that the fair strike prices of all variance swap products (with the exception of the
continuously sampled variance swaps) have dependence on ρ. The variance swaps and
gamma swaps are seen to be less sensitive to ρ for any sampling frequency specification
when compared to the downside-variance and conditional downside-variance swaps. As
N → ∞ (vanishing sampling interval), all the fair strike prices of the discretely sampled
generalized variance swaps converge to those of their continuously sampled counterparts.
The good agreement between these numerical values of fair strike prices provide a check
for accuracy of all these analytic pricing formulas. As an interesting observation of the

TABLE 4.2
Comparison of the Numerical Values of the Fair Strike Prices of Variance Swaps,
Gamma Swaps, Downside-Variance Swaps, and Conditional Downside-Variance

Swaps with Varying Sampling Frequencies and Different Values of the Correlation
Coefficient ρ. Here, N is the Number of Return Samples within 1 year

Sampling N = 4 N = 12 N = 26 N = 52 N = 252 N = ∞
frequency quarterly monthly biweekly weekly daily continuous

Variance ρ = −1 187.0839 183.4365 182.2551 181.7172 181.2759 181.1590
swaps ρ = −0.82 186.7823 183.3154 182.1961 181.6870 181.2695 181.1590

ρ = −0.3 185.9113 182.9654 182.0257 181.5998 181.2512 181.1590
Gamma ρ = −1 170.1311 169.2752 169.2176 169.2203 169.2350 169.2407
swaps ρ = −0.82 171.0131 169.9908 169.8749 169.8504 169.8426 169.8423

ρ = −0.3 173.6134 172.0962 171.8081 171.7036 171.6293 171.6113
Downside ρ = −1 111.5139 102.5147 101.3211 101.0009 100.8345 100.8043
variance ρ = −0.82 110.5369 101.0294 99.6504 99.2447 99.0083 98.9599
swaps ρ = −0.3 107.8140 96.8144 94.8855 94.2254 93.7809 93.6779
Conditional ρ = −1 216.8810 250.5501 265.4668 272.9108 279.2977 281.0162
variance ρ = −0.82 213.6660 244.5615 258.3023 265.1702 271.0668 272.6579
swaps ρ = −0.3 204.5881 227.7824 238.2826 243.5650 248.1260 249.3580



872 W. ZHENG AND Y. K. KWOK

pattern of convergence of the fair strike prices with respect to sampling frequency, the
convergence can be from above or below. To present a better visual view on the conver-
gence behavior of the four types of generalized variance swaps, we show various plots
of the percentage difference in the fair strike price against varying values of sampling
interval �t (in units of year) for different sets of model parameters (see Figure 4.1).
The percentage difference, as a measurement of the discretization effect, is defined to be
100( K(�t)

K(0) − 1). Here, K(�t) is the fair strike price with sampling interval �t and K(0) is
the corresponding continuous limit of �t → 0+. Among the four curves of percentage
difference in fair strike plotted for each product, the curve labeled “basic” is obtained
based on the basic set of model parameters in Table 4.1. The curve labeled “ρ = −1”
is computed by changing the parameter value of ρ to −1 while keeping other model
parameters unchanged, and similar interpretation for the other two curves labeled “ε =
0.25” and “λ = 0.6.” It is observed that the impact of sampling frequency on the fair
strike prices for most generalized variance swaps is small for the chosen range of �t
(the lowest sampling frequency being weekly in the plots). In particular, the fair strike
prices of the gamma swaps show the least sensitivity to sampling frequency which may

FIGURE 4.1. Plot of the percentage difference in the fair strike prices of various dis-
cretely sampled generalized variance swaps against sampling time interval �t (in units
of year): (a) variance swaps, (b) gamma swaps, (c) downside-variance swaps, and (d)
conditional downside-variance swaps. The convergence of the fair strike prices to the
continuous limit can be from above or below with vanishing sampling interval. For
most cases, the convergence trend is “almost linear” [with a few exceptions, like the
curves in (b) and (c)].
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be possibly related to the constant share gamma property. An exception to insensitivity
to sampling frequency is shown by the conditional downside-variance swap. This is not
surprising since its fair strike price is equal to that of a downside-variance swap rescaled
by N/E[D], where E[D] is the expected number of observations that the asset price falls
within the corridor. The sensitivity to sampling frequency is then somehow enlarged by
the rescaling factor.

The plots in Figure 4.2(a) and (d) show that the fair strike prices of the vanilla
variance swaps and conditional downside-variance swaps exhibit an almost linear rate
of convergence. However, careful observation of the plots in Figure 4.2(b) and (c) of the
fair strike prices of the gamma swaps and downside-variance swaps reveal some convex
curvature in the curves. This convexity behavior is not in good agreement with the results
reported in the literature. The numerical tests performed by Broadie and Jain (2008) reveal
a linear rate of convergence of vanilla variance swaps under various stochastic volatility
models of the asset price process. Under the time-changed Lévy processes, Crosby and
Davis (2011) manage to establish mathematically (under certain assumptions) the linear

FIGURE 4.2. Plot of the fair strike of various discretely sampled generalized variance
swaps against (a) correlation coefficient, ρ; (b) volatility of variance, ε; (c) jump in-
tensity, λ. The variance swap products are variance swap (labeled as “vs”), gamma
swap (labeled as “gs”), downside-variance swap (labeled as “dvs”), and conditional
downside-variance swap (labeled as “cvs”). The fair strike prices of the conditional
downside-variance swaps exhibit the highest sensitivity to model parameter values.
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rate of convergence of various generalized variance swaps. However, due to the limitation
of their approach, they have neither been able to perform a similar analysis for the
generalized variance swaps with corridor restriction on the realized variance, nor make
the same conclusion under the general asset price dynamics, say the SVSJ model. Our
numerical results provide exceptions that the property of the linear convergence may not
be always valid for discretely sampled generalized variance swaps.

4.2. Sensitivity of Fair Strike Prices to Key Model Parameters

Next, we examine the sensitivity of the fair strike price of various weekly sampled gen-
eralized variance swaps on the following key model parameters: (i) correlation coefficient
ρ, (ii) volatility of variance ε, and (iii) jump intensity λ. The comparison of the fair strike
prices of various generalized variance swaps with varying values of the above model
parameters are shown in Figure 4.2. These plots reveal the different degrees of impact
on the fair strike prices of different types of generalized variance swaps with respect to
these three model parameters.

Figure 4.2(a) shows that the fair strike price of the conditional downside-variance
swap has the highest sensitivity to ρ, followed by that of the downside-variance swap.
Moreover, the fair strike prices of the downside-variance swap and conditional downside-
variance swap tend to increase as ρ becomes more negative. To explain this phenomenon
by an intuitive argument, we observe that when the leverage effect becomes stronger it
is more likely that the spike of volatility is accompanied by a plunge in the asset price.
The fair strike prices of the variance swap and gamma swap exhibit less sensitivity to ρ.
For the variance swap, insensitivity to ρ is not surprising since its continuously sampled
counterpart has no dependence on ρ. In the event of volatility running high, the gamma
swap assigns lower weights to the sampled values of higher realized variance due to the
decline in the underlying asset price in view of the negative correlation. This explains the
slight drop in the fair strike price of the gamma swap when ρ becomes more negative.

Figure 4.2(b) shows that the fair strike price of the conditional downside-variance
swap is most sensitive to ε, followed by that of the downside-variance swap. Normally,
we expect that a higher ε would lead to a higher level of accumulation of the realized
variance as in the case of the downside-variance swap or conditional downside-variance
swap. Again, the vanilla variance swap exhibits insensitivity to ε as the fair strike price of
its continuously sampled counterpart does not depend on ε. The dependence of the fair
strike price on ε for the gamma swap is reversed, which may be attributed to the use of a
negative value of correlation in the numerical calculations. Given a negative correlation,
it is more likely for the asset price to sink when the variance process is more volatile.

Various earlier papers (e.g., Broadie and Jain 2008) report the strong dependence of
the fair strike prices of variance swaps on jumps. The jumps in the underlying price and
variance under the SVSJ model can be characterized by a set of jump parameters, namely,
λ, ν, η, ρJ , and δ. The jump intensity λ is considered to be the most crucial parameter.
In our calculations, we take ν and ρJ to be negative. As a result, each jump would most
likely lead to a decline in the underlying asset price. Actually, a larger value of λ leads to
a higher chance of crash in the underlying asset price. Figure 4.2(c) shows how the fair
strike prices of various swap products change with varying values of λ. All these four
types of swap products are seen to show high sensitivity to λ. The conditional downside-
variance swap is most sensitive to λ, followed by the variance swap, gamma swap, and
then downside-variance swap. The least sensitivity to λ of the downside-variance swap
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may be attributed to an offsetting effect since a spike of the underlying asset price may
result from a potential positive jump.

4.3. Impact of Upper Barrier of Corridor and Breaching Convention
on Downside-Variance Swaps

Finally, we investigate the impact on the fair strike prices of the discretely sampled
downside-variance swaps with varying values of the corridor’s upper barrier and different
maturities.

In Figure 4.3(a) and (b), we show the plot of the fair strike price of the weekly
sampled downside-variance swap with varying values of the corridor’s upper barrier U
and different maturities. The plots shown in Figure 4.3(a) and (b) reveal the significant
impact of the choice of upper barrier U and corridor breaching convention on the fair
strike prices of the downside-variance swaps, in particular when U is chosen close to
the current stock price S0 (inferred from the steep slopes there). The difference in the
fair strike prices of the two different types of downside-variance swaps, corresponding to
the corridor’s upper barrier U being monitored on the stock price at the old time level
(“convention 1”) or new time level (“convention 2”), can be quite substantial when the
upper barrier is close to the current stock price S0 (set equal to 1). Moreover, the fair
strike prices of the swap contracts with the corridor monitored at the new time level are
consistently larger than those of the swap contracts having the corridor monitored at the
old time level. The difference in the fair strike prices vanishes when U is set extremely low
or high. For downside-variance swaps with shorter maturity of half a year, the difference
in the fair strike prices based on the two different breaching conventions can be more
profound.

FIGURE 4.3. Comparison of the fair strike prices of the weekly sampled downside-
variance swaps with varying values of the corridor’s upper barrier when breaching of
the corridor is monitored on the stock price at the old time level (“convention 1”) or
new time level (“convention 2”). The difference in the fair strike prices is shown to
be more profound for downside-variance swaps with shorter maturities (comparing
downside-variance swap contracts with maturities of one year and half a year).
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5. CONCLUSION

In this paper, we demonstrate an analytic approach of deriving closed form pricing
formulas of various types of discretely sampled generalized variance swaps under the
dynamics of stochastic volatility with simultaneous jumps in the underlying asset price
and its variance. The success of the analytic approach relies on the availability of the ana-
lytic expression of the joint moment generating function of the SVSJ model. We manage
to derive analytic pricing formulas for the gamma swaps, corridor variance swaps, and
conditional variance swaps. The last two types of generalized variance swaps with corri-
dor constraints have their terminal payoffs dependent on the stochastic occupation time
during which the underlying asset price lies within a specified corridor. The semianalytic
pricing formulas for the corridor and conditional variance swaps are expressed in terms
of Fourier integrals. The numerical evaluation of these Fourier integrals can be performed
effectively, thanks to the fast Fourier transform algorithm. We also demonstrate through
analytic asymptotic analysis that the pricing formulas of the discretely monitored gen-
eralized variance swaps converge to those of their continuously monitored counterparts.
Though this paper is focused on pricing discretely monitored generalized variance swaps
under the SVSJ framework, the analytic procedure can be applied to any affine model of
the underlying asset price and payoff structures of higher moments swaps.

We performed numerical evaluation of these pricing formulas to examine the impact
of sampling frequency on the fair strike prices of the gamma swaps, corridor variance
swaps, and conditional variance swaps. We present various plots that demonstrate the
convergence of the fair strike prices of the discretely monitored generalized variance swaps
to those of their continuously monitored counterparts, and illustrate the sensitivity of the
fair strike price to different choices of model parameter values in the SVSJ model. The
fair strike prices of these generalized variance swaps are seen to be more sensitive to the
contractual terms in the swap contracts and the choices of model parameter values. For
example, there may exist significant difference in the fair strike prices of the downside-
variance swaps with respect to whether the stock price of the old time level or new time
level is used when the corridor feature is monitored. Our studies show that the impact of
sampling frequency on the fair strike price can be quite insignificant for some types of
generalized variance swaps, like the gamma swaps. Interestingly, the convergence of the
fair strike prices with vanishing sampling interval to those of the continuously monitored
counterparts can be from above or below and the linear convergence property may not
be always valid for discretely sampled generalized variance swaps.

APPENDIX A: DERIVATION OF EQUATION (2.6)

A.1. Solution for B(τ ) := B(�; τ, q)

Note that B(τ ) is governed by a nonlinear differential equation. To find the solution,
we introduce the following transformation, where

B(τ ) = − 2
ε2

E′(τ )
E(τ )

,

which leads to the following linear differential equation:

E′′(τ ) + (κ − ρεφ)E′(τ ) − 1
4
ε2(φ − φ2)E(τ ) = 0.
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The initial condition B(0) = b gives the derived initial condition for E(τ ), where E′(0) =
− ε2b

2 E(0). Solving the equation for E(τ ), we obtain

E(τ ) = E(0)
[

(ξ+ + ε2b)
2ζ

e− 1
2 ξ−τ + (ξ− − ε2b)

2ζ
e

1
2 ξ+τ

]
,

which then gives

B(τ ) = b(ξ−e−ζ τ + ξ+) − (φ − φ2)(1 − e−ζ τ )
(ξ+ + ε2b)e−ζ τ + ξ− − ε2b

.

A.2. Solutions for �(τ ) and (τ )

Given the solution B(τ ), it is relatively easy to obtain �(τ ) by direct integration as
shown below:

�(τ ) = γ + (r − d)φτ + κθ

∫ τ

0
B(u) du

= γ + (r − d)φτ − 2κθ

ε2
ln

E(τ )
E(0)

= (r − d)φτ + γ − κθ

ε2

[
ξ+τ + 2ln

(ξ+ + ε2b)e−ζ τ + ξ− − ε2b
2ζ

]
.

The evaluation of (τ ) requires an expectation calculation followed by integration, where

(τ ) = −λ(mφ + 1)τ + λ

∫ τ

0
E[exp(φJS + B(u)JV)] du.

We employ the iterated expectation as follows:

E[exp(φJS + B(u)JV)] = E[E[exp(φJS + B(u)JV)]|JV ]

= E

[
eB(u)JV

√
2πδ

∫ ∞

−∞
exp

(
φx − (x − ν − ρJ JV)2

2δ2

)
dx

]

= exp
(

φν + δ2φ2

2

)
E[exp([ρJφ + B(u)]JV)]

= exp
(

φν + δ2φ2

2

)∫ ∞

0

1
η

exp
(

[ρJφ + B(u)]y − y
η

)
dy

= exp
(

φν + δ2φ2

2

)
1

1 − [ρJφ + B(u)]η
,

where the final integration step requires the technical condition: Re(ρJφ + B(u))η < 1.
Since η is generally small, this requirement is usually fulfilled. Finally, we perform the
integration as follows:

∫ τ

0

1
1 − [ρJφ + B(u)]η

du =
∫ τ

0

k1e−ζu + k2

k3e−ζu + k4
du = k2

k4
τ − 1

ζ

(
k1

k3
− k2

k4

)
ln

k3e−ζ τ + k4

k3 + k4
,
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where

k1 = ξ+ + ε2b, k2 = ξ− − ε2b,

k3 = (1 − φρJη)k1 − η(φ − φ2 + ξ−b),

k4 = (1 − φρJη)k2 + η(φ − φ2 − ξ+b).

In actual implementation, it may be necessary to consider the following two degenerate
cases. Suppose k3 = 0, then the integral becomes∫ τ

0

1
1 − [ρJφ + B(u)]η

du = k2

k4
τ − k1

k4

e−ζ τ − 1
ζ

,

and when k4 = 0, the integral takes the form:∫ τ

0

1
1 − [ρJφ + B(u)]η

du = k1

k3
τ + k2

k3

eζ τ − 1
ζ

.

APPENDIX B: PROOF OF FORMULAS (2.8), (3.5), AND (3.10)

For notational convenience, we write B�tk as B(�; �tk, q1), and similar interpretation
for other parameter functions �(�; �tk, q1) and (�; �tk, q1). When q1 = (α 0 0)T, we
expand B�tk , ��tk , and �tk in powers of �tk, where

B�tk = 1
2

(α2 − α)�tk + O
(
�t2

k

)
,

��tk = (r − d)α�tk + O
(
�t2

k

)
,

�tk = −λ(mα + 1)�tk + λeαν+δ2α2/2

1 − αρJη
�tk + O

(
�t2

k

)
.

Also, we write Btk−1 as B(�; tk−1, q2), and similar notational interpretation for �tk−1 and
tk−1 . Now, we expand Btk−1 , �tk−1 , and tk−1 in powers of B�tk , ��tk , and �tk , and keep
only the linear terms. This gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Btk−1 = (φ2 − φ)(1 − e−ζtk−1 )
ξ+e−ζtk−1 + ξ−

+
{

ξ−e−ζtk−1 + ξ+
ξ+e−ζtk−1 + ξ−

+ (φ2 − φ)
[

(1 − e−ζtk−1 )ε
ξ+e−ζtk−1 + ξ−

]2
}

B�tk

�tk−1 = (r − d)φtk−1 − κθ

ε2

(
ξ+tk−1 + 2 ln

ξ+e−ζtk−1 + ξ−
2ζ

)

+ 2κθ (1 − e−ζtk−1 )
ξ+e−ζtk−1 + ξ−

B�tk + ��tk + �tk

tk−1 = λε2 exp
(

φν + δ2φ2

2

)[
tk−1

J2
− 2η

J1 J2
ln

ξ+ J1e−ζtk−1 + ξ− J2

2ε2ζ (1 − φρJη)

]
− λ(mφ + 1)tk−1

−2ηλε2

J1 J2
exp

(
φν + δ2φ2

2

)[
ε2(J1e−ζtk−1 − J2)
ξ+ J1e−ζtk−1 + ξ− J2

+ η

1 − φρJη

]
B�tk,

(B.1)

where ζ , ξ+, and ξ− are defined in equation (2.6) and

J1 = (1 − φρJη)ε2 − ηξ−, J2 = (1 − φρJη)ε2 + ηξ+.
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In the above expansion procedure, we manage to maintain first-order accuracy with
respect to �tk. The second-order derivative of exp(Btk−1 V0 + �tk−1 + tk−1 ) [see equa-
tion (2.7)] with respect to α can be expressed as

∂2

∂α2
eBtk−1 V0+�tk−1 +tk−1 = eBtk−1 V0+�tk−1 +tk−1

(
V0

∂2 Btk−1

∂α2
+ ∂2�tk−1

∂α2
+ ∂2tk−1

∂α2

)
+ O

(
�t2

k

)
.

(B.2)

For the variance swap, we set φ = 0 in Btk−1 , �tk−1 , and tk−1 in equation (B.2). By
substituting all the relations between B�tk , ��tk , �tk , Btk−1 , �tk−1 , and tk−1 , and setting
α = 0, we obtain

∂2

∂α2
eBtk−1 V0+�tk−1 +tk−1

∣∣∣∣
α=0

=
{

e−κtk−1 V0 + λη

κ
(1 − e−κtk−1 ) + λ

[
δ2 + ρ2

Jη
2 + (ν + ρJη)2]

+ θ (1 − e−κtk−1 )
}

�tk + O
(
�t2

k

)
.

The fair strike price of the variance swap with N sampling dates is then given by

KV(T, N) = 1
T

N∑
k=1

{
e−κtk−1 V0 + λη

κ
(1 − e−κtk−1 ) + λ

[
δ2 + ρ2

Jη
2 + (ν + ρJη)2]

+ θ (1 − e−κtk−1 )
}

�tk + O(�t2),

where �t = max 1≤k≤N�tk. The principal term in the above expression is a Riemann left
sum which converges to formula (2.8) by taking the limit �t → 0.

For the gamma swap, we set φ = 1 in equation (B.2). By repeating similar calculations
as above, we can obtain the pricing formula (3.5).

For notational convenience, we express the relations in equation (B.1) in terms of the
coefficient functions B0(φ, tk−1), B1(φ, tk−1), �0(φ, tk−1), �1(φ, tk−1), 0(φ, tk−1), and
1(φ, tk−1) as follows:⎧⎪⎪⎨

⎪⎪⎩
Btk−1 = B0(φ, tk−1) + B1(φ, tk−1)B�tk,

�tk−1 = �0(φ, tk−1) + �1(φ, tk−1)B�tk + ��tk + �tk,

tk−1 = 0(φ, tk−1) + 1(φ, tk−1)B�tk .

(B.3)

To derive the fair strike price of the continuously sampled downside-variance swap, we set
φ = −iw in equation (B.2). Again, by repeating a similar asymptotic analysis as above, we
obtain the fair strike price of the continuously sampled conditional downside-variance
swap in formula (3.10).

APPENDIX C: PROOF OF EQUATION (3.7b)

We consider the generalized Fourier transform of the indicator function 1{Xtk−1 ≤u} visu-
alized as a function of u, where

∫ ∞

−∞
1{Xtk−1 ≤u}e−iuw du =

∫ ∞

Xtk−1

e−iuw du = e−iXtk−1 w

iw
.
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Here, the Fourier transform variable w is taken to be complex and we write w = wr +
iwi. Provided that wi is appropriately chosen to lie within (−∞, 0), the above general-
ized Fourier transform exists. By taking the corresponding generalized inverse Fourier
transform, we obtain

1{Xtk−1 ≤u} = 1
2π

∫ ∞

−∞
eiuw e−iXtk−1 w

iw
dwr .

This analytic representation of the indicator function expressed in terms of a generalized
Fourier integral is then substituted into equation (3.6). By interchanging the order of
performing integration with the two operations of differentiation and expectation, we
manage to obtain

E

[(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U}

]

= 1
2π

∫ ∞

−∞

∂2

∂φ2
E
[
e−iw Xtk−1 +B(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)]∣∣

φ=0

eiuw

iw
dwr

= ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Fk(wr + iwi )
iwr − wi

)
dwr , k ≥ 2,

as shown in equation (3.7b).
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