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Abstract
We propose robust numerical algorithms for pricing variance options and volatility swaps on
discrete realized variance under general time-changed Lévy processes. Since analytic pricing
formulas of these derivatives are not available, some of the earlier pricing methods use the
quadratic variation approximation for the discrete realized variance. While this approxi-
mation works quite well for long-maturity options on discrete realized variance, numerical
accuracy deteriorates for options with low frequency of monitoring or short maturity. To
circumvent these shortcomings, we construct numerical algorithms that rely on the compu-
tation of the Laplace transform of the discrete realized variance under time-changed Lévy
processes. We adopt the randomization of the Laplace transform of the discrete log return
with a standard normal random variable and develop a recursive quadrature algorithm to
compute the Laplace transform of the discrete realized variance. Our pricing approach is
rather computationally efficient when compared with the Monte Carlo simulation and works
particularly well for discrete realized variance and volatility derivatives with low frequency
of monitoring or short maturity. The pricing behaviors of variance options and volatility
swaps under various time-changed Lévy processes are also investigated.

Keywords: time-changed Lévy processes, variance options, volatility swaps, discrete sampling

1 Introduction

The discrete realized variance of the log return of a risky stock is defined as the sum of
the squared log returns of the stock price observed on a set of discrete monitoring dates.
Variance swaps are forward contracts on the discrete realized variance of the price process
of an underlying stock. These variance derivatives exhibit pure exposure to volatility when
used in trading and risk management of volatility when compared to the use of conventional
stock options. The pricing of variance and volatility derivatives under various models of
the stock price dynamics has been well explored in the literature. The pricing approaches
can be divided into two categories. The first category is the non-parametric approach that
does not rely on a particular choice of the asset price model. The fair strike of a variance
swap with continuous sampling can be obtained by the notion of replication of a continuum
of stock options with varying strikes. This approach has been explained in the works by
Neuberger (1994), Demeterfi et al. (1999) and Carr and Lee (2009). The shortcoming of this
approach is that traded option prices are only available for a limited number of strikes while
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replication of the variance swap requires the market prices of options for a full spectrum of
strikes.

In the model-dependent pricing approach, the quadratic variation of the continuous real-
ized variance is commonly adopted as an approximation to its discrete counterpart since it
provides good analytical tractability by virtue of an explicit representation of the associated
characteristic function. Earlier research works that employ the quadratic variation approxi-
mation for pricing variance swaps have been performed under the Heston stochastic volatility
model (Swishchuk, 2004), the 3/2-model (Carr and Sun, 2007) and the time-changed Lévy
processes (Carr et al., 2012). For pricing of options on realized variance under various s-
tochastic volatility models, one may refer to the papers by Carr et al. (2005) for pure jump
processes, Sepp (2008) for an extended Heston model with simultaneous jumps in the un-
derlying and variance processes (SVJJ model), and Kallsen et al. (2011) for general affine
models with jumps. The quadratic variation approximation is seen not to perform well for
short-maturity variance derivatives with non-linear payoffs, like the volatility swaps and op-
tions on discrete realized variance. Keller-Ressel and Muhle-Karbe (2013) propose an exact
pricing formula for variance options under the Lévy models by randomizing the Laplace
transform of the discrete log return with a standard normal variate.

Instead of adopting the quadratic variation approximation under the continuous realized
variance, the recent papers deal directly with the contractual specification of discrete mon-
itoring of the realized variance. Broadie and Jain (2008) and Zhu and Lian (2011) derive
closed form formulas for pricing discrete variance swaps under the Heston model. Zheng and
Kwok (2014a) consider pricing exotic variance swaps (including the gamma swaps and cor-
ridor swaps) under the stochastic volatility model with simultaneous jumps (SVJJ model).
Itkin and Carr (2010) employ the forward characteristic function method to price variance
swaps under the time-changed Lévy processes with the Cox-Ingersoll-Ross (CIR) process as
the clock rate.

Beyond pricing of the variance swap products, other researchers have proposed various
analytic approximation methods or numerical algorithms to price discrete variance deriva-
tives with non-linear terminal payoff structures. Sepp (2012) approximates the discrete re-
alized variance by the continuous realized variance with an additional correction term from
a lognormal model in the SVJJ model. This method works well for options that are near-
the-money (see Drimus et al., 2014). Drimus et al. (2014) study the discretization errors
on discrete variance options arising from continuous sampling approximation via the central
limit theorem. They propose a simplified one-dimensional Monte Carlo simulation method
and derive a set of analytic pricing formulas based on the asymptotic distribution. For low
frequency of sampling of the discrete realized variance, their approximation method does
not perform quite well due to poor approximation by the normal distribution using a few
sampling points. Lian et al. (2014) approximate the characteristic function of the discrete
realized variance in the stochastic volatility models and derive semi-analytic formulas for dis-
crete variance derivatives. Zheng and Kwok (2014b) apply the saddlepoint approximation
for pricing options on discrete realized variance. They also propose an enhanced simulation
method for pricing the same class of products under a class of stochastic volatility models
with jumps. Though their saddlepoint method approximation works well in general, the sim-
ulation method does not perform well for short-maturity put options and volatility swaps.
In addition, Zheng and Kwok (2015) derive efficient and accurate analytic approximation
formulas for pricing options on discrete realized variance under stochastic volatility models
using the conditioning variable approach equipped with partially exact and bounded approx-
imations. By adopting the conditional gamma distribution approximation based on some
asymptotic behavior of the discrete realized variance of the underlying asset price process,
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they obtain approximate pricing formulas that achieve high level of numerical accuracy in
option values, even for short-maturity options on discrete realized variance.

For the literature on the numerical algorithms for pricing discrete variance derivatives,
Little and Pant (2001) compute the fair strike of discrete variance swaps under a local
volatility model by the finite difference scheme. Windcliff et al. (2006) extend the Little-Pant
algorithm by incorporating jumps in the stock price dynamics. Baldeaux (2012) proposes
an exact simulation for the 3/2-model with some variance reduction technique by applying
the Lie symmetry analysis. Zheng and Kwok (2014c) employ the Fourier time-stepping
algorithm to price variance derivatives under the additive processes. They adopt the CONV
method (Lord et al., 2008) in their fast Fourier transform algorithm. Though it is desirable to
incorporate stochastic volatility in the underlying stock price dynamics, the direct extension
of their numerical scheme to the time-changed Lévy processes or stochastic volatility models
is computationally infeasible due to curse of dimensionality.

The recursive algorithms have been widely used to price various kind of options under the
Lévy processes, like pricing discretely monitored Asian options by Fusai and Meucci (2008).
Similar approach has been used by Sullivan (2000) and Fusai and Recchioni (2007) to price
discrete barrier options. Yamazaki (2014) and Umezawa and Yamazaki (2015) employ a
similar recursive algorithm to price path-dependent stock options under the time-changed
Lévy processes.

In this paper, we extend the recursive algorithms to price discrete variance and volatility
derivatives under the time-changed Lévy processes. We employ the randomization formula
in a recursive quadrature algorithm to compute the moment generating function of the
discrete realized variance. The explicit Laplace transform formula of the activity rate process
essentially reduces the additional computational cost that arises from the extra state variable
in the time-changed Lévy processes. This key step makes numerical pricing of discrete
variance derivatives under the time-changed Lévy processes computationally feasible. We
propose effective recursive algorithms to compute the moment generating function of the
discrete variance under the time-changed Lévy processes. Our method works particularly
well for variance and volatility derivatives with short-maturity and low sampling frequency.
The pricing errors are small even with reasonably large number of recursive iterations in the
numerical computation. In the first stage of the construction of our proposed algorithms,
we assume independence between the underlying Lévy process and activity rate process. By
randomizing the squared terms in the discrete realized variance formula with an independent
standard normal variable, the sum of the squared returns can be expressed as linear terms
under an expectation of the normal variable. This expectation is iterating on each monitoring
dates and can be effectively computed in term of a transition matrix. Option prices and the
fair strikes of discrete volatility swaps can be obtained through an inverse Laplace transform.
To accommodate the leverage effect, we introduce a specific correlated diffusion term into
the underlying Lévy process.

This paper is organized as follows. In the next section, we provide a brief description of
the time-changed Lévy processes and their associated activity rate processes. The analytic
formulas for the Laplace transform of the joint density of variance and integrated variance
are derived. In Section 3, the general framework of our pricing approach is presented. The
implementation of our numerical method is outlined in matrix forms. Numerical tests on
numerical accuracy of our algorithms are presented in Section 4. Comparative analysis on
different parameters are also studied in this section. Finally, we conclude our results in
Section 5.
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2 Time-changed Lévy processes

Due to the stationary increment property, Lévy process is incapable of generating stochastic
volatility effect. The time-changed Lévy processes provides a solution to the problem by
introducing stochastic volatility through a random time change mechanism (Carr and Wu,
2004). Moreover, by manipulating the correlation between the base L’evy process and the
stochastic activity rate process that models the time change, time-changed Lévy processes
are able to generate the desired leverage effect.

2.1 Lévy processes

We start with a probability space (Ω,F ,Q) with a complete filtration F = {Ft| t ≥ 0},
where Q is a risk neutral measure. Let the real-valued stochastic process (Xt)t≥0 with
X0 = 0 be a Lévy process that is adapted to F , with right continuous sample paths and
left limits. Then, the characteristic function of Xt admits the following Lévy-Khintchine
representation (Bertoin, 1996):

ϕXt(u) = E[eiuXt ] = e−tψX(u), t ≥ 0, (2.1)

for u ∈ R, where the characteristic exponent ψX(u) is given by

ψX(u) = −iµu+ 1

2
σ2u2 +

∫
R\{0}

(1− eiux + iux1|x|<1)Π(dx).

Here, the triplet (µ, σ2,Π) is called the Lévy characteristics of X. The Lévy measure Π is
assumed to satisfy the finite quadratic variation condition:

∫
R\{0}(1 ∧ x

2)Π(dx) <∞.

Jumps in the asset price processes have been frequently observed in the financial markets
(Geman et al., 2001). Within a small time interval, there may be a lot of small jumps in the
stock price movement. It may be difficult to distinguish if the contribution comes from the
diffusion or jump component [see Aı̈t-Sahalia (2004) for the methods of detecting jumps]. The
financial models with compound Poisson jumps exhibit finite activity of the jump component,
as in the Merton model (1976) and Kou model (2002). However, the Poisson process is
incapable of capturing the high frequency of small jumps. Alternative Lévy type pure jump
models with infinite activity have been proposed. These include the Variance Gamma (VG)
model of Madan and Seneta (1990), the Normal Inverse Gaussian (NIG) model (Barndorff-
Nislsen, 1998), the generalized hyperbolic model (Eberlein et al., 1998) and CGMY model
(Carr et al., 2002). These models show better fit to market data. Besides, they admit explicit
formulas of Lévy measures and characteristic exponents, which provides good tractability for
financial modeling. In this paper, we will use these two processes as the base Lévy process.

1. The NIG process can be generated by subordinating a Brownian motion with drift by
an independent inverse Gaussian process. The Lévy density of the NIG process is

νNIG(x) =
δα

π

eβxK1(α|x|)
|x|

,

where α > 0, −α < β < α , δ > 0 and Kλ(x) denotes the modified Bessel function of
the third kind with index λ. The characteristic exponent is given by

ψNIG(u) = δ(
√
α2 − (β + iu)2 −

√
α2 − β2).
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2. The VG process can be obtained by subordinating a Brownian motion by an indepen-
dent gamma process. It has the following Lévy measure:

νVG(x) =


C exp(Gx)

|x|
x < 0

C exp(−Mx)

x
x > 0

,

where C,G and M are positive real parameters. The characteristic exponent is given
by

ψVG(u) = −C ln

(
GM

GM + (M −G)iu+ u2

)
.

2.2 Activity rate processes

Let T = (Tt)t≥0 be a right-continuous process with left limits. For each t, Tt is a stopping
time with respect to (Ft)t≥0. We further assume that Tt is finite Q-a.s. for all t ≥ 0 and
goes to infinity as t → ∞. Then, a time-changed Lévy process Y = (Yt)t≥0 is defined by
subordinating Xt with Tt as follows:

Yt = XTt ,

The typical approach of specifying the random time process T is through a non-negative
instantaneous activity rate process (vt)t≥0, where

Tt =

∫ t

0

vs ds.

The stochastic time changes can be applied separately to the jump component and diffu-
sion component to generate stochastic volatility arising from different sources (Huang and
Wu, 2004; Carr and Wu, 2004). The correlation between the time change process and the
underlying Lévy process can be embedded into the model to represent the leverage effect in
various ways (Carr and Wu, 2004).

There is a large set of processes that can be used as the activity rate process. In practice,
we restrict the candidate processes to be some well behaved processes in the sense that they
admit good tractability and financial interpretation. To facilitate the numerical recursive
algorithm proposed in the paper, we require that the joint distribution of vt and

∫ t
0
vs ds can

be analytically characterized by either an explicit joint characteristic function or an explicit
Laplace transform of the joint density with respect to

∫ t
0
vs ds. A few examples of the activity

rate process are provided as follows.

CIR process

The Cox-Ingersoll-Rox (CIR) process vt is a Markovian process satisfying the following s-
tochastic differential equation (SDE)

dvt = k(θ − vt) dt+ ϵ
√
vt dW

v
t , (2.2)

where W v
t is a Brownian motion and k, θ, ϵ are positive constants which are assumed to

satisfy the Feller condition 2kθ ≥ ϵ2. Let fCIR(τ, v, y; v0) be the joint transition density of vτ
and

∫ τ
0
vs ds from (v0, 0) at time 0 to (v, y) at time τ . The following lemma gives the Laplace

transform of the joint density fCIR(τ, v, y; v0) with respect to y.
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Lemma 1 For the CIR process defined in eq. (2.2), the Laplace transform GCIR(τ, v, η; v0)
of the joint density fCIR(τ, v, y; v0) with respect to y is given by

GCIR(τ, v, η; v0) =

∫ ∞

0

e−ηyfCIR(τ, v, y; v0) dy

= 2 exp

(
ϵ2k(v0 − v)− (1 + eδτ)(v + v0)δϵ

2

eδτ − 1

)[
e−δτ (eδτ − 1)2vϵ4

v0δ2

]β−1
2

[
e

1
2
(k+δ)τδ

(eδτ − 1)ϵ2

]β
Iβ−1

(
4

√
eδτv0vδ2

(eδτ − 1)2ϵ4

)
, (2.3)

where

δ =
√
k2 + 2ϵ2η and β =

2kθ

ϵ2
.

Note that Iν is the modified Bessel function of the first kind of order ν

Iν(z) =
(z
2

)ν ∞∑
k=0

(
z2

2

)k
k!Γ(ν + k + 1)

.

The proof of Lemma 1 is presented in the Appendix A.

3/2-process

Another appropriate choice of the activity rate process is the 3/2-process vt that is defined
by

dvt = vt(p− qvt) dt+ σv
3/2
t dW v

t , (2.4)

where W v
t is a Brownian motion and p, q, σ are positive constants. Its sample paths exhibit

a more volatile structure than that of the CIR process. We let f 3/2(τ, v, y; v0) be the cor-
responding joint transition density of vτ and

∫ τ
0
vs ds at time τ given v0 at time 0 for the

3/2-process. The Laplace transform of the joint density is presented in Lemma 2.

Lemma 2 For the 3/2-process defined in eq. (2.4), the Laplace transform G3/2(τ, v, η; v0) of
the joint density f 3/2(τ, v, y; v0) with respect to y is given by (Zheng and Zeng, 2014)

G3/2(τ, v, η; v0) =

∫ ∞

0

e−ηyf 3/2(τ, v, y; v0) dy

=
Aτ
Cτv2

exp

(
− Aτv0 + v

Cτv0v

)(
Aτv0
v

) 1
2
+ q

σ2

I2c

(
2C−1

τ

√
Aτ
vv0

)
, (2.5)

where

c =

√(1
2
+

q

σ2

)2

+
2η

σ2
, Aτ = epτ , Cτ =

σ2(epτ − 1)

2p
.

Quadratic Ornstein-Uhlenbeck process

The third choice of the activity rate process is the quadratic Ornstein-Uhlenbeck (OU)
process which is given by

vt = (zt + p+ qt)2, (2.6a)

where p, q are two constants, and zt is an OU process defined by

dzt = κ(θ − zt)dt+ σdLt. (2.6b)

6



Here, Lt is a Lévy process. When Lt is a Brownian motion, vt is called a quadratic Gaussian
OU process. For a quadratic Gaussian OU process, the joint characteristic function has an
exponential quadratic form, where

ϕ(λ, η) = E
[
exp(λvs + η

∫ s

t

vudu)
∣∣Gt]

= exp(H0(t, s;λ, η) +H1(t, s;λ, η)zt +H2(t, s;λ, η)z
2
t ).

(2.7)

Here, G = {Gt| t ≥ 0} is the natural filtration generated by (vt)t≥0. The parameter functions
H0, H1 and H2 are determined by solving a Riccati system of ordinary differential equations.
As shown in Appendix B, while we manage to find the parameter functions explicitly, the
complexity of the mathematical expressions retrains us from performing the inverse Laplace
transform with respect to λ to obtain a closed form formula for Gqou, like the results shown in
Lemma 1 or Lemma 2. One has to resort to numerical procedure to find the inverse Laplace
transform.

2.3 Stock price process

We assume that the stock price process follows an exponential time-changed Lévy process
defined as

ln
St
S0

= (r − d)t+XTt − φ(1)Tt,

where φ(u) = −ψ(−iu) is the cumulant exponent of Xt, and φ(1)Tt is the mean adjustment
term so that the discounted stock price satisfies the martingale condition. By changing the
drift coefficient µ of the base Lévy process to be µ−φ(1), we can absorb the mean adjustment
term into the process and rewrite the stock price process as (Carr and Wu, 2004)

ln
St
S0

= (r − d)t+ X̃Tt , (2.8)

where X̃ is the mean adjusted base Lévy process. For notational convenience, we always
assume X to be mean adjusted hereafter. In the following section, we first derive our
numerical algorithm by assuming zero correlation between X and T , and then extend our
approach to accommodate the leverage effect.

3 Formulation of the recursive algorithm

First, we present the product nature of various discrete variance derivatives, including the
volatility swaps and options on variance. We then show how to perform numerical compu-
tation of the Laplace transform of the discrete realized variance of the stock price process
under the time-changed Lévy processes.

3.1 Discrete variance and volatility derivatives

We consider the tenor of the discrete realized variance to be [0, T ] with monitoring dates
0 = t0 < t1 < · · · < tN = T , where T is the maturity date and N is the total number of
monitoring dates. We use Vd to denote the discrete realized variance over [t0, tN ] defined by

Vd =
FA
N

N∑
k=1

(
ln

Stk
Stk−1

)2

, (3.1)
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where FA is the annualized factor. We take FA = 12 for monthly monitoring and FA = 52 for
weekly monitoring. Let △tk denote the time interval between tk−1 and tk, k = 1, 2, · · · , N .

1. A discrete variance swap is a forward contract that exchanges the discrete realized
variance with a fixed strike. The fair strike Kvar of the variance swap gives zero value
of the contract to both counterparties at initiation. It is given by the risk neutral
expectation of Vd, where

Kvar = E[Vd ]. (3.2a)

2. A discrete volatility swap is a contract similar to the discrete variance swap. The
holder can swap the square root of the discrete realized variance for a fixed strike. Its
fair strike is given by

Kvol = E[
√
Vd ]. (3.2b)

3. The option on discrete realized variance gives the holder the right but not the obligation
to exchange the discrete realized variance for a fixed strike. The undiscounted price Vp
of a put option with strike K is given by

Vp = E[(K − Vd)
+]. (3.2c)

Once we have computed the value of a put option, the value of the call option coun-
terpart can be easily obtained by the call-put parity formula. The fair strike formula for
the discrete variance swap under time-changed Lévy processes has been derived in Itkin and
Carr (2010). However, they resort to analytic approximation when they compute the fair
values of the options on variance and volatility swaps. As stated in Bühler (2006), such
an approximation is not quite accurate for short-maturity variance derivatives with a small
number of monitoring dates. In this paper, we consider numerical pricing of various types
of discrete variance derivatives without any analytic approximation.

3.2 Laplace transform of discrete realized variance

To price discrete variance derivatives, we first compute the Laplace transform of the discrete
realized variance of the stock price. For simplicity of notation, we write Sk as Stk , vk as vtk ,
and XTk as XTtk

, and let

Rk = ln
Sk
Sk−1

= (r − d)∆tk +XTk −XTk−1
and IN =

N∑
k=1

R2
k.

We write the Laplace transform of IN and R2
k as

ΨIN (λ) = E[e−λIN ] and Φk(λ) = E[e−λR2
k ], λ ≥ 0.

We first consider the trivial case where Tt = t. By virtue of the independent increment
property of the base Lévy process, we have

ΨIN (λ) =
N∏
k=1

Φk(λ). (3.3)

To deal with the Laplace transform of the squared process, Keller-Ressel and Muhle-Karbe
(2013) propose the following randomization for an arbitrary Lévy process Xt:

E[e−λX2
t ] = E[e−t(ψX(Z

√
2λ))], (3.4)
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where Z is an independent standard normal random variable and the domain of λ is extended
to the entire positive half plane {λ ∈ C : Reλ ≥ 0}. As a result, the Laplace transform of
the squared process is reduced to an integral involving the normal density function:

E[e−λX2
t ] =

1√
2π

∫ ∞

−∞
e−tψX(z

√
2λ)e−z

2/2 dz.

It follows that

Φk(λ) =
1√
2π

∫ ∞

−∞
e∆tk(r−d)ix

√
2λ−∆tk(ψX(x

√
2λ))−x2/2 dx.

Independent time change

To extend the above analytic representation to time-changed Lévy processes, we assume the
activity rate process (vt)0≤t≤T to be independent of the base Lévy process and let (Gt)t≥0 be
the natural filtration generated by the activity rate process (vt)0≤t≤T . It is then straightfor-
ward to observe that the conditional Laplace transform Φk|GT (λ) = E[e−λR2

k |GT ] admits

Φk|GT (λ) =
1√
2π

∫ ∞

−∞
e
∆tk(r−d)ix

√
2λ−ψX(x

√
2λ)(

∫ tk
tk−1

vs ds)−x2/2 dx. (3.5)

To recover the unconditional Laplace transform, ΨIN (λ), we take the expectation with respect

to the joint distribution of
∫ tk
tk−1

vs ds, k = 1, 2, . . . , N [see eq. (3.3)]:

ΨIN (λ) = E
[ N∏
k=1

Φk|GT (λ)
]
. (3.6)

Define the sequence of functions

fk(λ, y) =
1√
2π

∫ ∞

−∞
e(r−d)∆tkix

√
2λ−ψX(x

√
2λ)y−x2/2 dx, y ≥ 0, k = 1, 2, · · · , N.

In view of the Markovian property of the activity rate process, eq. (3.6) can be expressed as

ΨIN (λ) = E
[
f1

(
λ,

∫ t1

t0

vs ds
)
E
[
f2

(
λ,

∫ t2

t1

vs ds
)
. . .E

[
fN

(
λ,

∫ tN

tN−1

vs ds
)∣∣∣vN−1

]
. . .

∣∣∣v1]∣∣∣v0].
Starting from the innermost expectation, it is easy to see that the computation of the above
expression can be formulated by the following recursive procedure.

Proposition 3 Let gk(λ, v) be the conditional expectation by time tk which is defined by

gk(λ, v) = E
[
gk+1(λ, vk+1)fk+1

(
λ,

∫ tk+1

tk

vs ds
)
|vk = v

]
, k = 0, 1, . . . , N − 1 (3.7)

gN(λ, v) = 1, for all v.

The unconditional Laplace transform of IN is then given by

ΨIN (λ) = g0(λ, v0).
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Let p(τ, vk, y; v) be the joint transition density of (vk,
∫ tk
tk−1

vs ds) from (v, 0) at time tk−1

to (vk, y) at time tk and G(τ, vk, η; v) =
∫∞
0
e−ηyp(τ, vk, y; v)dy. Then, eq. (3.7) can be further

written as

gk(λ, v) =

∫ ∞

0

∫ ∞

0

gk+1(λ, vk)√
2π

[ ∫ ∞

−∞
e(r−d)∆tkix

√
2λ−ψX(x

√
2λ)y−x2/2 dx

]
p(∆tk, vk, y; v) dy dvk

=

∫ ∞

0

gk+1(λ, vk)√
2π

∫ ∞

−∞
e(r−d)∆tkix

√
2λ−x2/2G(∆tk, vk, ψX(x

√
2λ); v) dx dvk. (3.8)

The inner integral in eq. (3.8) can be efficiently calculated if G is known explicitly. This is
true when vt is modeled as a CIR or 3/2 process. For other processes, such as the quadratic
Gaussian OU process, which admit an explicit joint characteristic function, an additional
numerical inverse Laplace transform is needed to obtain the values of G. Also, by virtue
of the Gaussian kernel which exhibits a fast decaying rate, the computation of the inner
integral with respect to x does not involve any numerical difficulties.

Leverage effect

The numerical procedure discussed in the previous subsection relies on the assumption of
zero correlation, which enables us to disentangle the time change process from the base Lévy
process. The algorithm no longer works once we introduce correlation in the usual way, such
as a correlated diffusion part. Fortunately, our recursive algorithm can be easily extended to
the following alternative approach of generating correlation. Based on the model in Kallsen
et al. (2011), we consider

ln
St
S0

= (r − d)t+XTt + ϱ

∫ t

0

√
vs dW

v
s − ϱ2

2

∫ t

0

vs ds, (3.9)

whereW v
s is the same Brownian motion that drives the activity process vt. In eq. (3.9), while

we maintain the independency between Xt and Tt, we introduce leverage effect by directly
appending a correlated diffusion part (with a mean corrector) to the underlying stock price
process. The modified process can still be viewed as a time-changed Lévy process, as the
canonical time changing theory guarantees that there exists a Brownian motion Bt such that
the time changed process B∫ t

0 vsds
has the same distribution of

∫ t
0

√
vs dW

v
s (Barndorff-Nielsen

and Shiriaev, 2010).
It is worth noting that most prevailing stochastic volatility models are special cases of the

process specified by eq. (3.9). For instance, consider the following Heston model dynamics
with stochastic variance Vt:

ln
St
S0

= (r − d)t− 1

2

∫ t

0

Vs ds+
√
1− ρ2

∫ t

0

√
Vs dWs + ρ

∫ t

0

√
Vs dW

V
s ,

where W V
t is the Brownian motion that drives the variance process and Wt is another Brow-

nian motion that is independent of W V
t . Apparently, it is seen as a specialization of eq. (3.9)

with X being a Lévy process with characteristics (−1
2
(1− ρ2), 1− ρ2, 0), Tt =

∫ t
0
Vs ds, and

ϱ = ρ.
In order that our recursive algorithm works in the presence of correlation in the form of

eq. (3.9), the activity rate process vt has to satisfy several technical constraints. Consider a
diffusion process of the following general form:

dvt = α(t, vt) dt+ β(t, vt) dW
v
t , (3.10)
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where α(t, vt) and β(t, vt) are deterministic functions of vt, such that β(·, ·) is nonzero and
differentiable over [0, T ]× (0,∞). Define

P (t, y) =

∫ y

0

√
z

β(t, z)
dz, and Q(t, y) =

∂P

∂t
+ α(t, y)

∂P

∂y
+

1

2
β2(t, y)

∂2P

∂y2
.

Suppose that there exist a constant a and a deterministic and integrable function b(t) such
that

Q(t, y) = ay + b(t), for all y > 0, 0 ≤ t ≤ T . (3.11)

The recursive algorithm can still be used to compute the Laplace transform of the discrete
realized variance under the model specification given by eq. (3.9).

To see this, it can be easily verified by Itô’s Lemma that

dP (t, vt) = Q(t, vt)dt+
√
vt dW

v
t = [avt + b(t)]dt+

√
vt dW

v
t .

It then follows that∫ tk

tk−1

√
vs dW

v
s = P (vtk)− P (vtk−1

)− a

∫ tk

tk−1

vs ds−
∫ tk

tk−1

bs ds.

As a result, the conditional Laplace transform of Rk can now be written as

E[euRk |GT ] = E
[
exp

(
u((r − d)∆tk +XTk −XTk−1

+ ϱ

∫ tk

tk−1

√
vs dW

v
s − ϱ2

2

∫ tk+1

tk

vs ds)
)]

= exp

(
u

∫ tk

tk−1

cs ds+ ϱu[P (vtk)− P (vtk−1
)] + ξ(u)

∫ tk

tk−1

vs ds

)
,

where ct = r − d − ϱbt and ξ(u) = −ψX(−iu) − aϱu − ϱ2u/2. Using the randomization
method in eq. (3.4), we can derive the conditional Laplace transform of R2

k as

Φk|GT (λ) =
1√
2π

∫ ∞

−∞
exp

(
ix
√
2λ

∫ tk

tk−1

cs ds+ ξ(ix
√
2λ)

∫ tk

tk−1

vs ds

+ iϱx
√
2λ[P (vtk)− P (vtk−1

)]− x2/2

)
dx.

Finally, the new recursive formula for gk(λ, v) is obtained as follows:

gk(λ, v) =

∫ ∞

0

gk+1(λ, vk)√
2π

∫ ∞

−∞
G(∆tk, vk,−ξ(ix

√
2λ); v)

exp

(
ix
√
2λ

∫ tk

tk−1

cs ds+ iϱx
√
2λ[P (vtk)− P (vtk−1

)]− x2/2

)
dx dvk. (3.12)

As a remark, it can be easily shown that the assumption (3.11) holds for the most popular
stock price models. For instance, for the CIR process defined in eq. (2.2), we find that

P (vt) =
vt
ϵ

and Q(vt) =
k(θ − vt)

ϵ
.

For the 3/2-process defined in eq. (2.4), the corresponding P (vt) and Q(vt) are found to be

P (vt) =
ln vt
σ

and Q(vt) = −
( q
σ
+
σ

2

)
vt +

p

σ
.

As for the quadratic Gaussian OU process defined by eq. (2.6a), the recursive algorithm in
general does not work for the extended stock price dynamics specified in eq. (3.9). However,
if we let q = 0 and p = −θ, it can easily verified that vt satisfies the following SDE:

dvt = (σ2 − 2κvt)dt+ 2σ
√
vt dWt,

which satisfies the assumption (3.11).
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Vectorized implementation

It is convenient to rewrite our computational formula in a vectorized form so that the recur-
sive iteration can take full advantage of the efficiency of matrix multiplication. We choose
the v-grid as a M -point vector v = {vm}Mm=1 ∈ RM . We now discretize eq. (3.8) as follows

gk(λ, vl) =
M∑
m=1

wm
gk+1(λ, vm)√

2π

[ ∫ ∞

−∞
e(r−d)∆tkix

√
2λ−x2/2G(∆tk, vm, ψX(x

√
2λ); vl) dx

]
,

(3.13)
where w = {wm}Mm=1 ∈ RM is a weight vector associated with the numerical quadrature rule.
Various numerical integration methods, like the trapezoidal rule or Gaussian quadrature rule,
can be implemented in our recursive algorithm by choosing a combination of grid points of v
and w. Suppose the time interval is uniformly given by ∆t. For each λ, we define a matrix
H(λ) whose entry at the lth row and mth column is given by

hl,m(λ) =
1√
2π

∫ ∞

−∞
e(r−d)∆tix

√
2λ−x2/2G(∆t, vm, ψX(x

√
2λ); vl) dx. (3.14)

Obviously, H can be considered as a stationary transition matrix H for v. As a remark,
provided that G admits a closed-form representation, the computation of hl,m(λ) amounts
to numerical evaluation of an one-dimensional integral. However, suppose only the joint
density or the joint characteristic function is expressible in an analytic form, then an extra
procedure of numerical evaluation of the Laplace transform or inverse Laplace transform is
required for computing hl,m(λ).

The recursive algorithm can be presented succinctly in matrix notation as follows

gk(λ,v) = H(λ) diag(w) gk+1(λ,v),

with gN(λ,v) = (1, . . . , 1)T ∈ RM , where diag(w) denotes the diagonal matrix whose di-
agonal elements are given by the vector w. This formula essentially reduces the recursive
iteration procedure to a N -folded matrix multiplication. As a result, the Laplace transform
ΨIN (λ) can be expressed as

g0(λ,v) = [H(λ) diag(w)]N(1, . . . , 1)T. (3.15)

When the initial value v0 of the activity rate process is not chosen as a nodal point, an
interpolation procedure can be applied to obtain g0(λ, v0).

An interesting feature of our recursive algorithm is that the computational complexity
of calculating g0(λ,v) is independent of the number of monitoring instants N . The clue
lies in the Cholesky decomposition of the product matrix H(λ) diag(w), which is of order
O(M3). After the decomposition, the power N goes to the resultant diagonal matrix. The
remaining matrix multiplication costs nothing more than O(M3). Suppose we use an L-point
quadrature rule to compute hl,m, then preparing matrix H requires O(LM2). Due to the fast
decay of the integrand of H, we typically have L < M . As a result, the overall computational
complexity of calculating g0(λ,v) is still O(M3). Though N has no direct impact on the
computational complexity, we would need a denser grid v to maintain the same level of
accuracy when N increases. In actual numerical implementation, the computational costs
do increase.
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3.3 Derivative pricing formulas

Given the Laplace transform of the discrete realized variance, the variance option prices and
fair strikes of volatility swaps can be derived by using the transform method. Various earlier
research papers have discussed different effective numerical schemes to evaluate the inverse
Laplace transform (Kessel-Ressel and Muhle-Karbe, 2013). The transform method in pricing
discrete variance derivatives based on our numerical method is demonstrated below.

The undiscounted value of a put option on discrete realized variance defined in eq. (3.2c)
with strike K is given by the following formula:

E[(K − Vd)
+] =

FA
N

E[(K ′ − IN)
+]

=
FA
N

1

π

∫ ∞

0

Re

[
eK

′(λr+iλ)

(λr + iλ)2
ΨIN (λr + iλ)

]
dλ

≈ FA
N

1

π

M∑
k=1

ωk Re

[
eK

′(λr+iλk)

(λr + iλk)2
g0(λr + iλk, v0)

]
, (3.16)

where K ′ = KN/FA, {ωk}Mk=1 is the weight vector of the numerical quadrature rule, {λk}Mk=1

are the grid points, and λr is a fixed parameter in the convergence region of ΨIN .
By using the following integral representation of the expectation of square root of a

random variable (Gatheral, 2006), where

E[
√
X] =

1

2
√
π

∫ ∞

0

1− E[e−λX ]
λ3/2

dλ, (3.17)

we derive the fair strike of the discrete volatility swap as follows

E[
√
Vd] =

√
FA
N

E[
√
IN ]

=
1

2

√
FA
Nπ

∫ ∞

0

1−ΨIN (λ)

λ3/2
dλ

≈ 1

2

√
FA
Nπ

M ′∑
k=1

ω′
k

[
1− g0(λk, v0)

λ
3/2
k

]
, (3.18)

where {ω′
k}M

′

k=1 is the weight vector of the numerical quadrature rule.

4 Numerical tests

In this section, we present the numerical tests for our recursive algorithms for pricing the
discrete variance options and volatility swaps. The recursive algorithms are implemented
under a variety of time-changed Lévy models, including the NIG and VG processes subordi-
nated by a CIR process (NIG-CIR, VG-CIR models). The Gaussian quadrature is used for
the evaluation of the “transition matrix”. We demonstrate the performance of our numer-
ical algorithm by comparing with the Monte Carlo simulation results as well as two other
approximation methods. We also examine the sensitivity of variance put option prices and
volatility swap fair strikes with respect to different model parameter values of the asset price
models, including the correlation coefficient ρ and volatility of the activity rate process ϵ
under the Heston model (viewed as the geometric Brownian motion subordinated by a CIR
process).
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In our numerical calculations, we adopted the set of parameter values of the NIG-CIR and
VG-CIR models from Schoutens and Symens (2003), and the Heston model from Zhu and
Lian (2011). The values of the model parameters are listed in Table 1. In addition, we assume
that d = 0, S0 = 1 and r = 0.04 and take △t = 1/252 for daily monitoring and △t = 1/52
for weekly monitoring. Our numerical experiments suggest that a Gaussian quadrature rule
with 36 grid points with a finite range of [−7, 7] for x is sufficient to approximate eq. (3.14)
accurately. For the NIG-CIR and VG-CIR models, we further use a Gaussian quadrature
rule with 100 points within the truncated range of [0, 5000] for λ and approximate the infinite
integrals with respect to v by a Gaussian quadrature with 60 points within [0, 5]. Finally,
we find that λr = 4 is an appropriate damping factor for evaluating the inverse Laplace
transform in eq. (3.16).

NIG-CIR α β δ k θ ϵ v0
parameter value 18.48 -4.84 0.469 0.539 1.575 1.877 1

VG-CIR C G M k θ ϵ v0
parameter value 11.99 25.85 35.53 0.602 1.556 1.999 1

Heston model k θ ϵ ρ v0
parameter value 11.35 0.022 0.618 -0.64 0.04

Table 1: Parameter values of the time-changed Lévy models calibrated from market data.

Unlike the Heston model, we cannot adopt the Euler scheme directly in the Monte Carlo
simulation of the sample paths under the general time-changed Lévy processes. For general
pure jump processes, the jumps in the sample paths can be approximated by a number of
Poisson processes, while for some special ones, we are able to simulate them by applying a
time change to a Brownian motion with drift (Schoutens, 2003). For the NIG process, the
large jumps are approximated by a number of independent Poisson processes representing
different mean sizes of jumps and the small jumps by a Brownian motion. Asmussen and
Rosinski (2001) establish a necessary condition for validity of the approximation of small
jumps by a continuous Brownian motion. However, such a condition is not satisfied by the
VG process, so a larger number of intervals are required for accurate approximation since
the realized variance is sensitive to the percentage changes of the stock price. Therefore, the
simulation time taken for the VG process is significantly longer than that of the NIG process.
We followed the approach by Schoutens and Symens (2003) in the Monte Carlo simulation,
where 100,000 sample paths for the NIG-CIR model and 10,000 paths for the VG-CIR model
were simulated in our calculations. The recursive algorithms were coded in Mathematica to
take advantage of its built-in Bessel functions. The computer programs were executed using
a parallel algorithm in a multi-core Intel i7 PC.

Assessment of numerical accuracy

Performance under pure jump models with a CIR time change

In Table 2, we show the comparison of numerical accuracy for pricing at-the-money (ATM)
undiscounted put options on daily monitored realized variance using four different methods:
(i) recursive algorithm [eq. (3.16)], (ii) quadratic variation (QV) approximation where the
discrete realized variance is approximated by quadratic variation, (iii) convexity correction
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method proposed by Keller-Ressel and Muhle-Karbe (KR-MK), (iv) Monte Carlo simulation
method. Using the Monte Carlo simulation method as benchmark, we observe that the re-
cursive algorithm provides highly accurate results compared to the other two approximation
methods. In terms of computational efficiency, our recursive algorithm is quite effective with
an average computational time of 120 seconds. The computational times for performing
Monte Carlo simulation vary with the number of monitoring dates and can go up to hours
for variance put options with longer maturity dates. Note that the computational (CPU)
times for different numbers of monitoring dates N in our algorithms are of the same order
since the time required for the computation of the N -power of a 36x36 matrix (hij) is very
small compared to that of calculating the entries in the matrix [see eq. (3.14)]. With N
less than 40, the numerical errors are less than 1% across different strikes and monitoring
dates under both the NIG-CIR and VG-CIR models. Similar comparison of numerical ac-
curacy for pricing out-of-the-money (OTM) and in-the-money (ITM) put options on daily
monitored realized variance using the same four methods is shown in Table 3. The CPU
time for computing each price is more or less the same as that of the ATM case in Table 2.
Again, better numerical accuracy is achieved by the recursive algorithm compared to the
two approximation methods.

For pricing put options on weekly sampled realized variance, a wider range of numerical
integration in v is required. From Table 4, we observe that the recursive algorithm produces
pricing errors mostly less than 1% for small N . It again dominates the other methods in
numerical accuracy. However, its performance for a relatively large N appears to be not as
good as the KR-MK correction method. While it is possible to further reduce the errors in
our recursive algorithm results by choosing a finer grid of v, the CPU time would also be
increased quite substantially.

Table 5 presents the numerical values of the fair strikes of the discrete volatility swaps
priced under the NIG-CIR model and VG-CIR model that were computed by the recursive
algorithm, QV approximation method and Monte Carlo simulation. Again, the recursive
algorithm is seen to produce more accurate results, especially when N is relatively small.
We would like to remark that the KR-MK correction method cannot be applied to pricing
volatility swaps since boundedness condition of the terminal payoff is not satisfied.

Though our recursive algorithms work well with high level of numerical accuracy and
computational efficiency for short-maturity derivatives, one should be cautious in applying
the recursive algorithms to pricing long-maturity (large N) options on discrete realized vari-
ance since the small numerical errors resulted from truncation and discretization may be
accumulated quite significantly after multiplying the transition matrix recursively to a high
order of N . Under such scenario, one has to take a denser set of grid points for the dis-
cretization and to enlarge the computational domain as well in order to achieve comparable
level of accuracy. It may be advisable to use the quadratic variation approximation method
for pricing long-maturity variance derivatives.

Pricing behavior and sensitivity analysis

We examine the pricing behavior of the discrete variance put option and volatility swap
under various time-changed Lévy models by plotting the prices of the variance put options
and fair strike prices of the volatility swaps against some chosen model parameters in these
asset price models.

In Figures 1 and 2, we plot the undiscounted variance put option price and volatility swap
fair strike against the model parameter α in the NIG-CIR model, respectively, where the
10-day daily monitored realized variance is used as the underlying. The 10-day at-the-money
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NIG-CIR model

N (days) 5 10 15 20 30 40

Strike (ATM) 0.027807 0.028018 0.027927 0.027713 0.02836 0.028070

Recursive algorithm 0.018819 0.016634 0.015212 0.01411 0.013307 0.012167
CPU time (s) 117.34 118.13 117.85 117.96 118.45 117.68

QV approximation 0.018491 0.016418 0.014980 0.013857 0.013040 0.011980
CPU time (s) 1.15 1.07 1.06 1.01 0.94 0.89

KR-MK correction 0.018922 0.016730 0.015420 0.014514 0.013322 0.012579
CPU time (s) 1.15 1.07 1.06 0.94 0.92 0.89

Monte Carlo 0.018711 0.016627 0.015192 0.014072 0.013194 0.012087
CPU time (s) 1048.11 1850.68 2778.77 3714.03 6506.79 7401.58

SE 0.000067 0.000062 0.000057 0.000054 0.000052 0.000049

VG-CIR model

Strike (ATM) 0.027429 0.027502 0.027618 0.027752 0.028109 0.028239

Recursive algorithm 0.019830 0.01708 0.015507 0.014452 0.013045 0.012056
CPU time (s) 113.64 113.75 114.51 115.35 115.74 113.97

QV approximation 0.019588 0.016912 0.015334 0.014272 0.012986 0.012099
CPU time (s) 0.64 0.54 0.49 0.41 0.45 0.43

KR-MK correction 0.019673 0.017005 0.015404 0.014307 0.012893 0.012037
CPU time (s) 0.62 0.55 0.47 0.40 0.45 0.41

Monte Carlo 0.019835 0.017000 0.015580 0.014497 0.013002 0.012160
CPU time (s) 897.19 1802.00 2685.31 3567.90 5365.62 7148.78

SE 0.000224 0.000202 0.000190 0.000182 0.000169 0.000161

Table 2: Comparison of numerical accuracy for pricing at-the-money (ATM) put options
on daily monitored variance under pure jump models computed by the recursive algorithm,
quadratic variation (QV) approximation, convexity correction method of Keller-Ressle and
Muhle-Karbe, and Monte Carlo simulation. The computational (CPU) times are measured
in units of second. In the Monte Carlo simulation, we used 100,000 paths for the NIG-CIR
model, and 10,000 paths for the VG-CIR model. Here, SE stands for the standard error in
the simulation.

strike for the variance put option is found to be 0.028018. It is known that the parameter
α controls the tail behavior of the NIG distribution, so smaller α gives heavier tails. The
respective plots show that the variance put option price is increasing in α while the fair strike
of the volatility swap decreases in α. This is expected since the tails of the NIG distribution
become thinner as α increases. As a result, high asset returns or large realized variance
would occur less likely.

We perform a similar sensitivity analysis of the discrete variance put option price and
volatility swap strike with respect to the model parameter C in the VG-CIR model. The
10-day ATM strike is found to be 0.027502. Madan et al. (1998) argue that C provides the
control over the kurtosis of the VG distribution. More precisely, the tail becomes thicker
when C increases. This conforms with the pricing behavior of the discrete variance put
option and volatility swap shown in Figures 3 and 4.

Lastly, we investigate the pricing behavior of the discrete variance put option and volatil-
ity swap under the Heston model, where the base Brownian motion is correlated with the
CIR clock through the diffusion. In particular, we are interested in the sensitivity of the
variance put price and volatility swap fair strike with respect to the correlation coefficient
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NIG-CIR model

N (days) 5 10 15 20 30 40

Strike (ITM) 0.033369 0.033621 0.033351 0.033256 0.034035 0.033684

Recursive algorithm 0.023507 0.021255 0.019701 0.018468 0.017662 0.016345
QV approximation 0.023230 0.021007 0.019430 0.018173 0.017346 0.016120
KR-MK correction 0.023760 0.021394 0.019981 0.019001 0.017706 0.016890

Monte Carlo 0.023453 0.021218 0.019650 0.018414 0.017489 0.016244
SE 0.000083 0.000077 0.000073 0.000069 0.000067 0.000063

Strike (OTM) 0.022246 0.022414 0.022341 0.022171 0.022689 0.022456

Recursive algorithm 0.014078 0.012180 0.010963 0.010006 0.009251 0.008322
QV approximation 0.013886 0.012014 0.010753 0.009794 0.009036 0.008176
KR-MK correction 0.014220 0.012252 0.011084 0.010283 0.009243 0.008609

Monte Carlo 0.014100 0.012214 0.010948 0.009986 0.009167 0.008274
SE 0.000052 0.000047 0.000043 0.000040 0.000038 0.000036

VG-CIR model

Strike (ITM) 0.032915 0.033003 0.033141 0.033302 0.033727 0.033887

Recursive algorithm 0.024321 0.021432 0.019749 0.018619 0.017112 0.016023
QV approximation 0.024158 0.021248 0.019548 0.018409 0.017051 0.016088
KR-MK correction 0.024261 0.021363 0.019635 0.018453 0.016931 0.016007

Monte Carlo 0.024443 0.021337 0.019808 0.018671 0.017050 0.016161
SE 0.000273 0.000249 0.000236 0.000227 0.000213 0.000205

Strike (OTM) 0.021943 0.022002 0.022094 0.022202 0.022485 0.022591

Numerical Scheme 0.015267 0.012836 0.011484 0.010537 0.009282 0.008422
QV approximation 0.015136 0.012751 0.011338 0.010387 0.009227 0.008453
KR-MK adjustment 0.015202 0.012822 0.011391 0.010412 0.009159 0.008409

Monte Carlo 0.015335 0.012824 0.011538 0.010600 0.009289 0.008504
SE 0.000176 0.000157 0.000146 0.000138 0.000127 0.000120

Table 3: Comparison of numerical accuracy for pricing in-the-money (ITM) and out-of-the-
money (OTM) put options on daily monitored variance under pure jump models computed
by the recursive algorithm, quadratic variation (QV) approximation, convexity correction
method of Keller-Ressel and Muhle-Karbe, and Monte Carlo simulation under daily moni-
toring. In the Monte Carlo simulation, we used 100,000 paths for the NIG-CIR model, and
10,000 paths for the VG-CIR model. Here, SE stands for the standard error in the simu-
lation. The OTM strikes are taken to be 80% of the ATM strikes and 120% for the ITM
strikes.

ρ and volatility of variance ϵ. Figures 5 and 6 show that both the discrete variance put
option price and fair strike of volatility swap are insensitive to the correlation coefficient
ρ. This is not surprising since the quadratic variation (continuous sampling limit of the
discrete realized variance) of the time-changed Lévy process is seen to be independent of
ρ. A similar phenomenon of insensitivity of the variance option price with respect to the
correlation between the stock price process and variance process in the Heston model has
also been reported in several earlier papers (Sepp, 2012; Drimus et al., 2014). It implies that
when considering pricing derivative products on daily monitored realized variance one may
just ignore the correlation between diffusion components. However, the impact of correlation
does become significant when we consider derivative products on exotic realized variance,
such as gamma swaps and corridor variance swaps (Zheng and Kwok, 2014a). On the other
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NIG-CIR model

N (weeks) 4 8 12 16 20

Strike (ATM) 0.028267 0.028346 0.028832 0.029018 0.029200

Recursive algorithm 0.015111 0.012905 0.012081 0.011319 0.010799
QV approximation 0.014382 0.012265 0.011545 0.011058 0.010793
KR-MK correction 0.014611 0.012654 0.011801 0.011386 0.011189

Monte Carlo 0.015068 0.012879 0.012123 0.011557 0.011259
SE 0.000058 0.000052 0.000050 0.000049 0.000048

Strike (ITM) 0.033921 0.034015 0.034599 0.034822 0.035041

Recursive algorithm 0.019583 0.017147 0.016255 0.015366 0.014758
QV approximation 0.018818 0.016473 0.015687 0.015113 0.014785
KR-MK correction 0.019106 0.016973 0.016020 0.015543 0.015307

Monte Carlo 0.019513 0.017128 0.016312 0.015688 0.015324
SE 0.000073 0.000066 0.000064 0.000069 0.000062

Strike (OTM) 0.022614 0.022677 0.023066 0.023214 0.023361

Recursive algorithm 0.010880 0.008976 0.008274 0.007664 0.007289
QV approximation 0.010198 0.008391 0.007786 0.007413 0.007224
KR-MK correction 0.010368 0.008673 0.007968 0.007644 0.007502

Monte Carlo 0.010856 0.008940 0.008298 0.007823 0.007594
SE 0.000043 0.000038 0.000037 0.000036 0.000034

Table 4: Comparison of numerical accuracy for pricing put options on weekly monitored
variance under pure jump models computed by the recursive algorithm, QV approxima-
tion, KR-MK correction, and Monte Carlo simulation. In the Monte Carlo simulation, we
used 100,000 paths for the NIG-CIR model. Here, SE stands for the standard error in the
simulation. The OTM (ITM) strikes are taken to be 80% (120%) of the ATM strikes.

NIG-CIR model

N (days) 5 10 15 20 30

Recursive algorithm 0.105724 0.120067 0.126671 0.132393 0.138035
QV approximation 0.107939 0.121797 0.129157 0.133923 0.139889

Monte Carlo 0.105879 0.120410 0.128103 0.133024 0.140125
SE 0.000524 0.000526 0.000527 0.000528 0.000537

VG-CIR model

Recursive algorithm 0.092962 0.111862 0.121129 0.128982 0.137155
QV approximation 0.091643 0.111988 0.122582 0.129188 0.137040

Monte Carlo 0.093534 0.112981 0.121593 0.128231 0.137675
SE 0.001696 0.001666 0.001648 0.001662 0.001677

Table 5: Comparison of the numerical values of the fair strike prices of the daily monitored
volatility swaps under pure jump models obtained from the recursive algorithm, QV approx-
imation, and Monte Carlo simulation. In the Monte Carlo simulation, we used 100,000 paths
for the NIG-CIR model, and 10,000 paths for the VG-CIR model. Here, SE stands for the
standard error in the simulation.

hand, ϵ has some mild impact on the put option price and the fair strike of volatility swap.
In fact, the variance put option price increases with an increase in ϵ, whereas the fair strike
of volatility swap is a decreasing function of ϵ.
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5 Conclusion

We have proposed effective recursive algorithms for pricing discrete variance options and
volatility swaps with short-maturity or low sampling frequency under a variety of time-
changed Lévy processes. By employing the randomization formula, we obtain a recursive
algorithm for computing the Laplace transform of the discrete realized variance. The result-
ing recursive algorithm admits a matrix representation which boils down to the calculation
of a power of the transition matrix in which each entry in the matrix is the expectation
of the transition probability with respect to different levels of instantaneous variance. By
virtue of the efficient built-in algorithm in Mathematica for computing matrix power, we
achieve a computational complexity that is almost constant across different maturities. The
availability of the Laplace transform of the discrete realized variance enables us to calculate
the prices of options on discrete realized variance and discrete volatility swaps using the s-
tandard inverse Laplace transform method. An intriguing feature of our recursive algorithm
is that computational complexity of the algorithm is independent of the number of moni-
toring instants. However, in actual numerical implementation, denser grids are required to
achieve the same level of numerical accuracy in numerical quadrature when the number of
monitoring instants is higher, so the computational costs would increase.

We performed numerical calculations under the NIG-CIR, VG-CIR and Heston for pric-
ing the discrete variance options and volatility swaps. We show that our recursive algo-
rithms work particularly well in numerical accuracy for short-maturity variance derivatives
compared to other approximation methods. The advantage of the recursive algorithms in
numerical accuracy over other approximation methods is even more profound when we con-
sider pricing under time-changed Lévy models with a nonzero diffusion component. In terms
of computational efficiency, the recursive algorithms outperform the Monte Carlo simulation
when we consider pricing discrete variance derivatives under time-changed Lévy models with
jumps since the simulation of asset price paths with jumps is computationally demanding.
In addition, we examine price sensitivity of the discrete variance option and volatility swap
with respect to several model parameters in various time-changed Lévy models.

19



References

[1] Aı̈t-Sahalia, Y. (2004). Disentangling diffusion from jumps. Journal of Financial Eco-
nomics, 74, 487-528.

[2] Asmussen, S. & Rosinski, J. (2001). Approximations of small jumps of Lévy processes
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Appendix A: Proof of Lemma 1

For the CIR process defined in eq. (2.2), one can derive the Laplace transform of the join-
t transition density of vt and

∫ t
0
vs ds by following the standard procedure of solving the

characteristic function in the affine models. Specifically, we let

ϕ(λ, η) = E
[
exp

(
− λvτ − η

∫ τ

0

vs ds
)
|v0

]
= exp(A(τ) + v0B(τ)),

one can obtain the Riccati equations for A(τ) and B(τ) (Jeanblanc et al., 2009). The
functions A(τ) and B(τ) are given by

A(τ) =
2kθ

ϵ2
ln

(
2δe(δ+k)τ/2

ϵ2λ(eδτ − 1) + δ(eδτ + 1) + k(eδτ − 1)

)
B(τ) = − λ(δ + k + eδτ (δ − k)) + 2η(eδτ − 1)

ϵ2λ(eδτ − 1) + δ(eδτ + 1) + k(eδτ − 1)
,

where δ =
√
k2 + 2ϵ2η. To simplify the notations, we define

A1 = 2δe(δ+k)τ/2, B1 =
1

ϵ2(eδτ − 1)
, C1 = δ(eδτ + 1) + k(eδτ − 1),

D1 = −(δ + k + eδτ (δ − k))v0, E1 = −2η(eδτ − 1)v0 and β =
2kθ

ϵ2
.

Suppressing the dependence on η, the joint characteristic function ϕ(λ) can be written as

ϕ(λ) = exp(B1D1)

(
A1B1

λ+ C1B1

)β

exp

(
B1(E1 −B1D1C1)

λ+ C1B1

)
.

On the other hand, let fCIR(v, y, τ ; v0) be the joint transition density of vτ and
∫ τ
0
vs ds from

(v0, 0) at time 0 to (v, y) at time τ , then the characteristic function can also be expressed as

E
[
exp

(
− λvτ − η

∫ τ

0

vs ds
)
|v0

]
=

∫ ∞

0

∫ ∞

0

e−λv−ηyfCIR(v, y, τ ; v0) dy dv

=

∫ ∞

0

e−λvGCIR(v, τ ; v0, η) dv.

We may view exp((A(τ) + v0B(τ)) as the Laplace transform of GCIR(v, τ ; v0, η) on v. To
recover the value of GCIR, we apply the inverse Laplace transform formula

L −1
[
p−ν−1ea/p

]
(x) =

1

2πi

∫ α+i∞

α−i∞
epx

(
p−ν−1ea/p

)
dp

=
(x
a

)ν/2
Iν(2

√
ax),

where ν > −1, a is a constant and Iν is the modified Bessel function of the first kind of order
ν. Substituting ϕ(λ) into the above formula, we obtain
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GCIR(v, τ ; v0, η)

= L −1[ϕ(λ)]

= L −1

[
exp(B1D1)

(
A1B1

λ+ C1B1

)β

exp

(
B1(E1 −B1D1C1)

λ+ C1B1

)]
= (A1B1)

βe(B1D1−C1B1v)L −1

[(
1

λ

)β

exp

(
B1(E1 −B1D1C1)

λ

)]
= (A1B1)

βe(B1D1−C1B1v)

[
v

B1(E1 −B1D1C1)

](β−1)/2

Iβ−1

(
2
√
B1(E1 −B1D1C1)v

)
= 2 exp

(
ϵ2k(v0 − v)− (1 + eδτ)(v + v0)δϵ

2

eδτ − 1

)[
e−δτ (eδτ − 1)2vϵ4

v0δ2

]β−1
2

[
e

1
2
(k+δ)τδ

(eδτ − 1)ϵ2

]β
Iβ−1

(
4

√
eδτv0vδ2

(eδτ − 1)2ϵ4

)
.

Appendix B: Parameter functions for the quadratic Gaus-

sian OU process

Let ϕ(t, s, zt;λ, η) = E
[
exp(λvs+η

∫ s
t
vudu)

∣∣Gt], where vt = (zt+p+qt)
2 and zt is a Gaussian

OU process: dzt = κ(θ − zt)dt + σ dWt. Then, ϕ satisfies the following partial differential
equation:

∂ϕ

∂t
+ κ(θ − z)

∂ϕ

∂z
+
σ2

2

∂2ϕ

∂z2
+ η(z + p+ qt)2ϕ = 0.

We look for a solution in the following exponential quadratic form:

ϕ(t, s, zt;λ, η) = exp(H0(t, s;λ, η) +H1(t, s;λ, η)zt +H2(t, s;λ, η)z
2
t ).

Plugging the above exponential quadratic form into the governing equation yields the fol-
lowing Riccati system of ordinary differential equations for the parameter functions:

∂H2

∂t
= 2κH2 − 2σ2H2

2 − η,

∂H1

∂t
= κH1 − 2σ2H1H2 − 2κθH2 − 2(p+ qt)η,

∂H0

∂t
= −κθH1 −

σ2

2
(H2

1 + 2H2)− (p+ qt)2η,

with terminal conditions:

H2(s, s;λ, η) = λ, H1(s, s;λ, η) = 2(p+ qs)λ, H0(s, s;λ, η) = (p+ qs)2λ.
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The solution to the above system is found to be

H2(t, s;λ, η) =
λ(ξ−e

−ζτ + ξ+) + 2η(1− e−ζτ )

γ+e−ζτ + γ−
,

H1(t, s;λ, η) =
4(p+ qs)λζ

γ+e−ζτ/2 + γ−eζτ/2
+
κθ

ζ

(λξ+ + 2η)eζτ/2 − (λξ− − 2η)e−ζτ/2 + 4(κλ− η)

γ+e−ζτ/2 + γ−eζτ/2

+
4ηp

ζ

γ+(1− e−ζτ/2) + γ−(e
ζτ/2 − 1)

γ+e−ζτ/2 + γ−eζτ/2
+

4ηq

ζ

s(γ+ − γ−)− t(γ+e
−ζτ/2 − γ−e

ζτ/2)

γ+e−ζτ/2 + γ−eζτ/2

−8ηq

ζ2
γ+(1− e−ζτ/2)− γ−(e

ζτ/2 − 1)

γ+e−ζτ/2 + γ−eζτ/2
,

H0(t, s;λ, η) = (p+ qs)2λ+
η

3
[(p+ qs)3 − (p+ qt)3]− 1

4

[
ξ+τ + 2 ln

γ+e
−ζτ + γ−
2ζ

]
+

∫ s

t

[
κθH1(u, s;λ, η) +

σ2

2
H1(u, s;λ, η)

2
]
du,

where τ = s− t, and

ζ = 2
√
κ2 − 2σ2η,

ξ± = ζ ∓ 2κ,

γ± = ξ± ± 4σ2λ.
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Figure 1: Plot of the price of the 10-day
put option on daily monitored realized
variance against the model parameter α in
the NIG-CIR model. The at-the-money
strike is taken to be 0.028018.
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Figure 2: Plot of the fair strike of the
10-day daily monitored volatility swap a-
gainst the model parameter α in the NIG-
CIR model.
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Figure 3: Plot of the price of the 10-day
put option on daily monitored realized
variance against the model parameter C
in the VG-CIR model. The at-the-money
strike is taken to be 0.027502.
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Figure 4: Plot of the fair strike of the
10-day daily monitored volatility swap a-
gainst the model parameter C in the VG-
CIR model.
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Figure 5: Plot of the price of the 10-day put option on daily monitored realized variance
against the correlation coefficient ρ given three different values of ϵ in the Heston model.
The at-the-money strike is taken to be 0.03640.
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Figure 6: Plot of the fair strike of the 10-day daily monitored volatility swap against the
correlation coefficient ρ given three different values of ϵ in the Heston model.
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