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Abstract
In debt financing, existence of information asymmetry on the firm quality between the firm
management and bond investors may lead to significant adverse selection costs. We develop
the two-stage sequential dynamic two-person game option models to analyze the market
signaling role of the callable feature in convertible bonds. We show that firms with pos-
itive private information on earning potential may signal their type to investors via the
callable feature in a convertible bond. We present the variational inequalities formulation
with respect to various equilibrium strategies in the two-person game option models via
characterization of the optimal stopping rules adopted by the bond issuer and bondholders.
The bondholders’ belief system on the firm quality may be revealed with the passage of time
when the issuer follows his optimal strategy of declaring call or bankruptcy. Under sepa-
rating equilibrium, the quality status of the firm is revealed so the information asymmetry
game becomes a new game under complete information. To analyze pooling equilibrium,
the corresponding incentive compatibility constraint is derived. We manage to deduce the
sufficient conditions for the existence of signaling equilibrium of our game option model
under information asymmetry. We analyze how the callable feature may lower the adverse
selection costs in convertible bond financing. We show how low quality firm may benefit
from information asymmetry and vice versa, underpricing of the value of debt issued by a
high quality firm.
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1 Introduction

There have been various theories in corporate finance that explain why some firms may
be motivated to issue convertibles. These theories can be briefly categorized as agency
costs models and asymmetric information models. One aspect of agency costs is related
to asset substitution in debts, where managers may tend to take on risky projects after
issuing straight debts since the debt holders bear the risks of loss while the managers hold
the growth benefit of the firm. Green (1984) postulates that there exists better alignment
between investors’ conversion value held in convertibles and managers’ incentive to improve
firm performance, so agency costs in convertible bonds are less compared to those in straight
debts. Adverse selection in corporate finance may lead to the phenomenon that capital is
raised mainly by low quality firms in the financial markets. Under information asymmetry
on the firm’s quality, investors may not be able to differentiate between high and low quality
firms and tend to undervalue securities issued by a high quality firm. In one of the earlier
academic studies on debt financing, Myers and Majluf (1984) argue that a high quality firm
may prefer to forego a valuable investment opportunity since the management is unwilling to
sell undervalued securities to finance the investment, leading to a socially inefficient outcome.
The information signaling approach in the academic literature attempts to explain why
issuance of convertibles may help mitigate adverse selection costs arising from information
asymmetry on firm’s perceived potential earning between bond issuers and investors. Harris
and Raviv (1985) pioneer the study of signaling effect of call policies in convertible bonds.
Using a discrete time model, they predict that under asymmetric information, the use of
forced conversion conveys a negative signal to the market.

There are later studies that examine the optimal contract design in a convertible bond
in mitigating adverse selection costs arising from information asymmerty. Kim (1990) shows
that the conversion ratio of a convertible bond is a credible parameter in signaling the firms
quality to the market, say, issuing a more debt-like convertible (with smaller conversion ra-
tio) conveys more positive information to the market. Stein (1992) considers a two-period
convertible bond model in which information asymmetry is assumed to be perfectly resolved
at the intermediate time by some external shock. When the financial distress cost is suffi-
ciently large, he shows that the callable-convertible bond may be used by a medium firm
(intermediate level of future earning) to signal its type to the market. Consequently, the
adverse selection problem is reduced. A bad firm would choose to issue convertible only
if the overpricing amount (resulted from mimicking a medium firm) exceeds the expected
distress cost; otherwise, a bad firm should choose equity financing. If a good firm chooses to
mimic a bad firm or a medium firm, it can only sell what it sees as an underpriced security
with no compensation benefit. Since a good firm bears a lower expected distress cost, Stein
argues that the good firm would issue debt as an optimal choice of financing. Chakraborty
and Yilmaz (2011) consider a two-period model which is similar to that of Stein. Suppose
information asymmetry is perfectly resolved at the intermediate time, they show that the
callable-convertible bond can be designed such that its market price is independent of market
information. The firm (either good or bad) can achieve its first-best efficient outcome by
issuing this callable-convertible bond. On the other hand, even when information asymmetry
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cannot be resolved perfectly, the firm can still achieve the first-best efficient outcome by is-
suing the callable-convertible bond with a restrictive call provision. Korkeamaki and Moore
(2004) examine the role of call provisions in convertible bond design and capital investment.
They show that firms with investment options expected to expire sooner will offer weaker call
protection. From their empirical studies on the data of convertible bonds and straight debt
issues, Krishnaswami and Yaman (2008) show that all three types of contracting costs (moral
hazard, adverse selection and financial distress) are important in determining whether a firm
chooses to issue convertibles. The likelihood of issuing convertibles is greater for high growth
firms and also firms with high level of information asymmetry. Once it has decided to issue
a convertible, the bond structure is mainly influenced by financial distress considerations.
They also conclude that firms with higher level of firm-specific information asymmetry would
issue more debt-like convertibles in order to mitigate the higher adverse selection costs in
equity-like securities.

Under the assumption of perfect capital markets, finance theory predicts that a firm
should call a convertible bond as soon as its conversion value exceeds its call price (Ingersoll,
1977). However, in contrast to this optimal call policy, various empirical studies have docu-
mented that many convertible bonds were called only after the conversion value has exceeded
the call price by a wide margin, so called the “delayed call phenomenon”. On the other hand,
Cowan et al. (1993) study calls in which the conversion is out-of-the-money. Various theories
have been proposed to explain both in-the-money calls and out-of-the-money calls. A more
recent survey of these theories can be found in Sarkar (2003). The empirical tests performed
by Sarkar show that late calls are commonly associated with high call premium, dividend
yield, tax rate and interest rate, and low coupon and volatility. Also, common stock returns
are significantly negative around the announcement of late (in-the-money) calls. On the
other hand, positive average stock price reaction is commonly observed for out-of-the-money
calls (Cowan et al., 1993), which serves as evidence that supports positive signaling effects.
A possible explanation is that corporate managers are willing to pay the premium to convert-
ible bondholders when they receive favorable private information about the firm’s quality.
The early call can separate from the pool of call announcements that imply bad news.

The interaction between optimal calling and conversion policies in convertibles with an
underlying stochastic state variable (firm value or stock price) leads to a two-person stochas-
tic differential game model. Under the assumption of zero bankruptcy cost and tax benefit,
the game option model reduces to a zero-sum game. Sirbu and Shreve (2006) develop the
variational inequalities formulation of the optimal stopping problem associated with the
callable-convertible bond model and provide a full characterization of the optimal calling
and conversion timing of the two counterparties. Hennessy and Tserlukevich (2008) ex-
tend the two-person game option model by incorporating tax benefit and agency conflicts
(risk-shifting), which leads to a non-zero sum stochastic differential game between the eq-
uity holder and bondholder. They show that the equilibrium prices are dependent on the
Markov perfect equilibriums of an infinite sequence of such games. In a related work, Chen
et al. (2013) analyze the interaction between issuer’s optimal calling and bankruptcy and
bondholder’s optimal conversion under the presence of credit risk and tax benefit. Using
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the concept of super solution, they provide a full mathematical characterization of the var-
ious optimal stopping times. They also manage to derive a unique Nash equilibrium of
the game and the corresponding explicit pricing formulas of the callable-convertible bond.
Egami (2010) uses the game options approach to analyze the optimal strategies involved in
an investment option using convertible debt financing.

The above two-person game models are limited to complete information. To investigate
the information role of issuer’s call, it is necessary to incorporate the concept of information
updating and signaling game into the system of variational inequalities in the two-person
dynamic game models. In this paper, we follow a similar analysis of signaling from investment
timing using the concept of “separating equilibrium” and “pooling equilibrium” in Morellec
and Schürhoff (2011). Using a two-stage sequential two-person dynamic game model, we
analyze the signaling effect from the bankruptcy rule and call policy in our convertible bond
model. In the first stage of the sequential games, information asymmetry on firm’s quality
exists between the two counterparties. The bond investors’ belief system may be updated
through the optimal decision actions of call or bankruptcy declared by the issuer. Once the
quality status is revealed to the bond investors, the second stage is entered and the game is
transformed to a new game under complete information. We investigate how the inclusion
of call provision may signal credibly the firm type (good firm or bad firm) and compare the
adverse selection cost associated with convertible bond financing with and without callable
feature. Our model produces the following result that is consistent with empirical findings.
A low-quality firm may choose to call an out-of-the-money convertible early under pooling
equilibrium provided that the benefit extracted from information asymmetry is higher than
the premium paid to knock out an out-of the-money conversion option.

In our model, equity holder chooses the optimal stopping time of calling or declaring
bankruptcy so as to maximize the firm value while the bondholder chooses the optimal
stopping time of conversion to maximize the sum of expected cashflows. In the process of
the competing game, the bondholder can update its information set based on the strategies
adopted by the equity holder whose quality type is not known. We show how to determine
the optimal strategies under the Perfect Bayesian Equilibrium (PBE) of the game. The
type of equilibrium to be analyzed is different from the classical Nash equilibrium since the
bondholder’s belief changes during the process of competing game through the observation
of the optimal strategies adopted by the equity holder. As a result, the bondholder’s strate-
gies change in response to the updated belief on the quality type of the equity holder. In
order to construct the PBE of the competing game, we adopt the two-stage approach with
information asymmetry in the first stage and complete information in the second stage. The
corresponding variational inequalities are constructed in each stage. In order to verify the
optimality of the strategies, the incentive constraint conditions are imposed into the various
stopping sets in the variational inequalities formulation.

This paper is organized as follows. In the next section, we present the model formulation
of the convertible bond with reference to the issuer’s rights of bankruptcy and call and
bondholder’s right of voluntary conversion. We derive the expectation of cash flows to the
equity holder and bondholder in terms of the belief (information) system of the bondholder.
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We construct the belief system on the firm’s quality held by the bondholder and introduce
the relevant concept of separating and pooling equilibriums. In Section 3, we develop the
system of variational inequalities associated with the coupled optimal stopping problems that
model the strategic interaction between the two counterparties in a convertible bond. To
complete the system, we impose the incentive constraint, which are the necessary conditions
required to ensure that the firm has no incentive to deviate from the strategy prescribed in
a stopping set. In Section 4, we perform the mathematical characterization of the various
optimal stopping sets and derive the corresponding pricing formulas of the convertible bond.
We determine the respective continuation region corresponding to different firm types (good
or bad) and examine the information role of call. We also study the dependence of adverse
selection costs (with and without call provision) on various model parameters. Conclusive
remarks of the paper are presented in the last section.

2 Callable-convertible bonds under information asym-

metry

We consider a firm that has issued a perpetual convertible bond with call provision to
finance an investment project. The quality of the investment project can be “high” (H-
type) or “low” (L-type). To model information asymmetry in our callable-convertible bond
model, we assume that the firm management (referred as the equity holder henceforth) has
complete information about the quality of the project while the bond investors (referred as
the single-person bondholder henceforth) have only partial information on the quality. As
known to the bondholder at time zero, the stochastic revenue flow rate generated from the
investment project can be either πHxt (H-type) or πLxt (L-type), with constant probability
of H-type and L-type being p and 1 − p, respectively, where p ∈ (0, 1) and πH > πL. The
equity holder knows exactly the quality type of the project at time zero. Both πH and πL

are assumed to be fixed constants while the stochastic state variable xt is governed by

dxt = µxt dt + σxt dZt. (2.1)

Here, µ is the constant drift rate, σ is the constant volatility parameter and Zt is the standard
Wiener process. Throughout the paper, we assume that all agents in the financial markets
are risk neutral and cash flows are discounted at the riskfree interest rate r. As usual in real
options investment models, we assume µ < r in order to satisfy the “no-bubble” condition.
The bondholder’s information (belief system) on the quality can be described by a vector-
valued function B defined by

B(xt, t|x0 = x) = (pt, 1 − pt),

where the first and second component in the vector give the time-t updated belief on H-
type or L-type, respectively. At time zero, the sequential games model is in the first stage.
As stated in the above, the initial belief at time zero is B(x0, 0|x0 = x) = (p, 1 − p).
The bondholder is able to update his belief on the quality of the project by observing the
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evolution of the state variable and also the optimal stopping strategies adopted by the equity
holder. When the quality type is revealed, the second stage is entered where the belief system
becomes that of complete information. The corresponding value of pt becomes 1 or 0 if the
firm quality is H-type or L-type, respectively. In summary, pt can only assume three discrete
values, namely, 0, p and 1.

To complete the formulation of the callable-convertible bond model, it is necessary to
define the relevant model parameters associated with the convertible bond contract. We let
c be the constant perpetual coupon rate and K be the call price. With regard to the call
provision, the equity holder has the right to call back the bond at any time after issuance
of the convertible bond (no call protection period). Upon call by the equity holder, the
bondholder can choose whether to receive the cash amount K or convert the bond into
equity. We let α ∈ [0, 1] be the conversion ratio; that is, the bondholder’s payoff upon
forced conversion in the first stage would be α times the expected value of the revenue flow
generated from the project based on the current belief system at the call time. To model
financial distress associated with bond issuance, we assume that the firm has the right to
declare bankruptcy so as to avoid the equity value to fall below zero. This bankruptcy right
relieves the burden of servicing the coupons when the expected value of the revenue flow is
low due to low value of xt. Upon declaration of bankruptcy, the bondholder receives 1 − γ
times the equity value after reduction of the liquidation cost, where γ ∈ [0, 1]. For the
bondholder, he has the voluntary right to convert the bond into equity at any time with
the same conversion factor α. The interaction of optimal call and bankruptcy by equity
holder and optimal conversion by bondholder under the stochastic fundamental xt leads to
a two-person stochastic game option model. In the remaining part of this section, we focus
our discussion on the formulation of the first stage of the sequential games where the quality
status has not been revealed.

Expected value of cash flows received by the bondholder and equity holder
Let τcon denote the optimal stopping time of bondholder’s conversion (referred as conversion
time henceforth). Since the quality of the project as seen by the bondholder can be either
H-type or L-type, we let τb,i denote the optimal stopping time of bankruptcy declared by the
equity holder for project quality of type i (Firm i), i = H or L; and similarly, let τc,i denote
the optimal stopping time of call announced by the equity holder. Henceforth, τb,i and τc,i

are referred as the bankruptcy time and call time, respectively, for project of type i. The
bond is terminated at the minimum among all these stopping time τi = min(τcon, τb,i, τc,i),
with respect to the project quality type, i = H or L.

Under the risk neutral valuation framework, all cash flows are discounted at the riskfree
interest rate r. Provided µ < r, the expected value of the perpetual revenue flow at the level
xτ of the stochastic state variable at time τ is given by

E

[
∫ ∞

τ

e−ruπixu du|xτ

]

=
πixτ

r − µ
, πi = πH or πL.

Here, E[·] is the expectation taken with respect to the randomness of the stochastic fun-
damental xt. The expected cash flows received by the bondholder and equity holder are
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functions of x, with dependence on the stopping times and belief B on the project quality.
When the bondholder makes assessment on the expected value of the perpetual revenue flow
of Firm i, he cannot use the certain value πi for the cash flow multiplier due to information
asymmetry. Let π̃i denote the cash flow multiplier adopted by the bondholder based on his
belief system. Upon receiving the signal from the equity holder via call, the bondholder set
π̃i to be πi if the status of Firm i is revealed and πi = π̄ = pπH + (1 − p)πL if the status of
Firm i is not revealed.

The sources of cash flows to the bondholder come from the coupon flow, payoff upon
voluntary conversion or forced conversion and residual equity value upon bankruptcy. In the
first stage of the sequential games, the sum of expected cash flows to the bondholder under
information asymmetry at time zero is given by

D(x; τcon, τb,L, τc,L, τb,H, τc,H , B)

= Ep

[

E

[
∫ τi

0

ce−rs ds + 1{τi=τcon}
απixτcon

r − µ
e−rτcon + 1{τi=τb,i}(1 − γ)

πixτb,i

r − µ
e−rτb,i

+ 1{τi=τc,i}e
−rτc,i

(

1

K≥
απ̃ixτc,i

r−µ

ffK + 1

K<
απ̃ixτc,i

r−µ

ff

απixτc,i

r − µ

)

∣

∣

∣

∣

x0 = x, B(x, 0) = (p, 1 − p)]] . (2.2)

The bondholder chooses to convert into shares or receive cash amount K, depending on
whether the expected value of the perpetual revenue flow based on the uncertain cash flow

multiplier π̃i is higher than K or otherwise; or equivalently, K <
απ̃ixc,i

r − µ
or otherwise [see

the last term in eq. (2.2)]. Here, the expectation operator Ep signifies that one has to take
the weighted average with respect to the belief on the probabilities of occurrence of the two
project types. The debt value has dependence on the optimal bankruptcy times and optimal
call times of both types of firms since the status of the equity holder has not been revealed.

In a similar manner, the sum of expected cash flows to the equity holder at time zero of
project type i is given by

Ei(x; τcon, τb,i, τc,i, B)

= E

[
∫ τi

0

(πixs − c)e−rs ds + 1{τi=τcon}

(1 − α)πixτcon

r − µ
e−rτcon

+ 1{τi=τc,i}e
−rτc,i

(

πixτc,i

r − µ
− 1

{K≥
απ̃ixτc,i

r−µ
}
K − 1

{K<
απ̃ixτc,i

r−µ
}

απixτc,i

r − µ

)

∣

∣

∣

∣

x0 = x, B(x, 0) = (p, 1 − p)

]

, i = H or L. (2.3)

Though the equity holder has complete information on the project type, the equity holder
chooses his optimal decisions on bankruptcy time and call time based on the strategic profile
of the bondholder, so the equity value also has dependence on the bondholder’s belief.
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Signaling game: separating and pooling equilibrium
The equity holder may be considered as the sender of signal. In the present context, the
sender knows his type (either H-type or L-type) and the signal is the issuer’s call. The
bondholder only observes the signal but not the type. In separating equilibrium, each type
of sender finds that it is optimal to take a different action. On the other hand, pooling
equilibrium occurs under which each type takes the same action, so there is no revelation of
the firm’s type.

Firstly, we would like to deduce the incentive compatibility constraint for the existence
of pooling equilibrium in our dynamic callable-convertible model. Suppose the equity holder
of type i would declare call at the level x, pooling equilibrium exists if the other type (type
j) also declares call at the same level. Since both types would send the signal at the same
level x, the bondholder cannot infer the true quality type so the belief system cannot be
updated. On the other hand, if the equity holder chooses not to pool, then the game enters
in the second stage of complete information.

Necessary condition for the existence of pooling equilibrium (incentive compatibility con-
straint)
Let Ve,j(x) denote the value function of the equity holder of type j evaluated based on the
first-best equilibrium under complete information. Since the bondholder cannot distinguish
the project quality, he adopts the optimal decision of either receiving the cash amount K or

converting into equity based on K ≥
απ̄x

r − µ
or K <

απ̄x

r − µ
, respectively, where the converted

equity value is calculated based on the weighted cash flow multiplier π̄ = pπH + (1 − p)πL.
The resulting equity value function of type j under pooling is given by the difference of the

expected value of revenue flow
πjx

r − µ
and the expected value of payoff to the bondholder:

1{K≥απ̄x
r−µ

}K + 1{K< απ̄x
r−µ

}

απjx

r − µ
. Pooling equilibrium exists only if the resulting value func-

tion of pooling is greater than the value function based on the first-best equilibrium under
complete information upon call; that is,

πjx

r − µ
−

(

1{K≥απ̄x
r−µ

}K + 1{K< απ̄x
r−µ

}

απjx

r − µ

)

≥ Ve,j(x). (2.4)

As an illustration, H-type firm would have the incentive to pool with type L when
K(r − µ)

απH

< x <
K(r − µ)

απ̄
. To verify the claim, from ineq. (2.4) and observing the range

of x specified above, we obtain

πHx

r − µ
−

(

1{K≥απ̄x
r−µ

}K + 1{K< απ̄x
r−µ

}

απHx

r − µ

)

=
πHx

r − µ
− K >

(1 − α)πHx

r − µ
,

where the last quantity is the value function of H-type under complete information upon call.
As a result, the corresponding necessary condition for the existence of pooling equilibrium is
satisfied. In a similar manner, we can also show that L-type firm would have the incentive

to pool with H-type firm when
K(r − µ)

απ̄
< x <

K(r − µ)

απL

.
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Necessary condition for the existence of separating equilibrium
On the other hand, type i can be separated from type j only if type j has no incentive to
mimic type i by declaring call at the same level (it is preferable to take different signaling
actions). Suppose type j chooses to mimic type i, the bondholder treats type j as type i,

so the payoff to bondholder equals K when K ≥
απix

r − µ
and

απjx

r − µ
when K <

απix

r − µ
. The

actual expected value of revenue flow of type j equals
πjx

r − µ
. We conclude that separating

equilibrium exists only if

πjx

r − µ
−

(

1{K≥
απix

r−µ
}K + 1{K<

απix

r−µ
}

απjx

r − µ

)

≤ Ve,j(x). (2.5)

Payoff functions of equity holder and bondholder upon call
Before we derive the variational inequalities formulation of our dynamic two-stage two-person
game option model, it is necessary to prescribe the payoff to different types of equity holder
upon call. In the first stage of incomplete information, upon call, the bondholder chooses to

receive K or convert into equity depending on the relative magnitude of K and
απ̃ix

r − µ
, at

the level x at which the equity holder declares call. The payoff function of the equity holder
of type i at the time of call is given by

h
(p)
c,i (x) =

{

πix
r−µ

−K if x < K(r−µ)
απ̃i

(1−α)πix

r−µ
if otherwise

. (2.6)

Here, we adopt the convention where the superscript “(p)” signifies that the payoff function
to the equity holder is defined under information asymmetry.

In developing the variational inequalities formulation of our model, it is important to
specify the exact value for the multiplier π̃i so that the obstacle function can be obtained.
As mentioned in the earlier part of this section, the value of π̃i depends on whether the
status of Firm i can be revealed to the bondholder. More precisely, π̃i takes the value πi if
the separating equilibrium criterion [see ineq. (2.5)] holds. As a result, the status of Firm
i can then be revealed. Otherwise, π̃i takes the expected value π̄ = pπH + (1 − p)πL if the
pooling equilibrium criterion [see ineq. (2.4)] holds. Under such scenario, the status of Firm
i cannot be revealed.

It may occur that neither separating equilibrium criterion nor pooling equilibrium cri-
terion hold such that π̃i cannot be determined. One can impose a technical assumption to
rule out such ambiguity. More precisely, suppose the call price K observes

K < min(K1, K2), (2.7)

where K1 is given by Chen et al. (2013) (see Lemma D.2) and K2 is explicitly given by

K2 =
c

r

β+(1 − β−) + (β+ − 1)β−zβ+−β−

− (β+ − β−)z−β−

β+(1 − β−) + (β+ − 1)β−zβ+−β−
.
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Here, β+ and β− are positive root and negative root of the equation σ2

2
β(β−1)+µβ − r = 0

respectively and z is the unique solution of the following algebraic equation

−β+β−(1 − zβ+−β−

)

β+(1 − β−) + (β+ − 1)β−zβ+−β− − (β+ − β−)z−β−
=

πL

απH

.

Under this assumption, it can be shown that exactly one of ineqs. (2.4) and (2.5) hold so
that π̃i can be uniquely determined (see Appendix A). The exact value for π̃i is found to be

π̃i =

{

πi if x < xc,H

π̄ if x ≥ xc,H

, i = L, H. (2.8)

Here, xc,H refers to the optimal call threshold of Firm H under complete information. The

derivation of xc,H is discussed in later section. Given that xc,H < K(r−µ)
απH

, the explicit expres-

sion of h
(p)
c,i is found to be

h
(p)
c,i (x) =

{

πix
r−µ

−K if x < K(r−µ)
απ̄

(1−α)πix

r−µ
if otherwise

. (2.9)

When the call issued by the equity holder is optimal with reference to the maximization
of the expected value of cash flow based on his own quality type, it is said to be “proactive”.
On the other hand, the call is said to be “mimicking” if the equity holder chooses to mimic
call with respect to equity holder of the other quality type, provided that the necessary
condition for the incentive of pooling is satisfied. Note that the payoff to the equity holder
is independent of the incentive type of calling (proactive or mimicking).

In the second stage where the quality type has been revealed, the corresponding payoff
function of the equity holder of type i upon call is given by

hc,i(x) =

{

πix
r−µ

− K if x < K(r−µ)
απi

(1−α)πix

r−µ
if otherwise

=
πix

r − µ
− gc,i(x), (2.10a)

where

gc,i(x) = max

(

K,
απix

r − µ

)

(2.10b)

is the payoff to the bondholder under complete information upon call when the quality of
type i is revealed.

The specification of the payoff function to the bondholder under information asymmetry
upon call [denoted by g

(p)
c,i (x)] depends on how the call is initiated (proactive or mimicking),

the details of which will be presented in Section 3.
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3 Optimal stopping rules and variational inequalities

formulation

There are two sequential stages of the two-person options game in our callable-convertible
bond model, namely, under information asymmetry and complete information. Let V

(p)
e,i (x)

and V
(p)
d (x) be the respective value function of the equity holder of type i, i = H or L,

and the bondholder (quality type not specified) under information asymmetry. Similarly, we
define Vd,i(x) to be the value function of the bondholder under complete information when
the equity holder is type i, i = H or L. The coupled system of optimal stopping problems is
governed by a set of variational inequalities derived from the optimal stopping strategies of
the two counterparties in the convertible bond. The two-stage sequential two-person game
is solved using backward induction; that is, we first solve for the value functions and optimal
stopping regions under complete information (second stage). It is necessary to specify the
mechanism under which the game moves from the first stage to the second stage; that is,
from information asymmetry to complete information.

Variational inequalities formulation under complete information
To present the variational inequalities formulation with reference to the equilibrium strategies
of the equity holder and bondholder, it is necessary to prescribe the obstacle functions and
the optimal stopping rules of the two counterparties.

Obstacle functions
Since the bondholder can always exercise the voluntary conversion right and the correspond-

ing conversion value is
απix

r − µ
if the equity holder is of type i, so the debt value function of

Firm i has the following obstacle condition:

Vd,i(x) ≥
απix

r − µ
, i = H or L. (3.1a)

On the other hand, the equity holder of type i can always declare bankruptcy to avoid the
equity value to fall below zero. Also, the equity holder can choose optimally to call the bond
resulting in payoff hc,i(x) [see eq. (2.10a)]. We then have the following obstacle condition
for the equity value function of Firm i:

Ve,i(x) ≥ max(hc,i(x), 0), i = H or L. (3.1b)

Optimal stopping regions
The optimal stopping region SD,i of optimal voluntary conversion chosen by the bondholder
is characterized by

SD,i = cl

({

x ∈ [0,∞) : Vd,i(x) =
απix

r − µ
,

σ2

2
x2d2Vd,i

dx2
+ µx

dVd,i

dx
− rVd,i + c < 0

})

, (3.2a)

i = H or L, where cl(A) denotes the closure of the set A. The above inequality condition
ensures that Vd,i(x) assumes the value of the obstacle function under voluntary conversion
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rather than forced conversion. When x ∈ SD,i, the payoff to the equity holder of type i

becomes Vd,i =
(1 − γ)πix

r − µ
. When x /∈ SD,i, the equity holder has the right to terminate

the contract (by declaring call or bankruptcy) or chooses to continue, so Ve,i(x) satisfies the
following linear complementarity relation:

min{Ve,i(x)−max(hc,i(x), 0),−
σ2

2
x2 d2Ve,i

dx2
−µx

dVe,i

dx
+rVe,i−πix+c} = 0, i = H or L. (3.2b)

On the other hand, the optimal stopping region SE,i of optimal call or bankruptcy adopted
by the equity holder of type i is characterized by

SE,i = cl

({

x ∈ [0,∞) : Ve,i(x) =max(hc,i(x), 0),

σ2

2
x2 d2Ve,i

dx2
+ µx

dVe,i

dx
− rVe,i + πix − c < 0

})

. (3.3a)

Suppose x ∈ SE,i, we have Vd,i =
(1 − γ)πix

r − µ
when Ve,i(x) = 0 (optimal bankruptcy); and

Vd,i(x) = max

(

K,
απix

r − µ

)

when Ve,i(x) = hc,i(x) (optimal call). When x /∈ SE,i, then Vd,i(x)

satisfies the following linear complementarity relation:

min{Vd,i(x) −
απix

r − µ
,−

σ2

2
x2d2Vd,i

dx2
− µx

dVd,i

dx
+ rVd,i − c} = 0. (3.3b)

One may be concerned with potential overlapping of the two stopping regions, SD,i and
SE,i (though this is almost ruled out in real convertibles). By imposing certain technical
condition on the call price K (to be discussed later), the two optimal stopping regions would
become disjoint so that ambiguity of the optimal stopping rules does not occur.

Variational inequalities formulation under information asymmetry
Under information asymmetry (first stage of the sequential game), the optimal call policy
of the equity holder becomes more complicated due to the possibilities of proactive call and
mimicking call (pooling is advantageous). Since mimicking call occurs only if the other type
would initiate proactive call, the optimal stopping region corresponding to mimicking call
would be a subset of the optimal stopping region corresponding to proactive call of the other
type. When the incentive constraint condition is not satisfied (pooling equilibrium does not
exist), the status of the quality type of the equity holder is revealed to the bondholder and
the game enters into the second stage (complete information).

Obstacle functions
Under information asymmetry, the expected equity value envisioned by the bondholder upon

voluntary conversion is
απ̄x

r − µ
, where π̄ = pπH + (1 − p)πL. Therefore, the value function
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V
(p)
d (x) is bounded below by

απ̄x

r − µ
. This gives

V
(p)
d (x) ≥

απ̄x

r − µ
. (3.4a)

Similar to the formulation under complete information, the lower bound for the value function
V

(p)
e,i (x) is given by

V
(p)
e,i (x) ≥ max(h

(p)
c,i (x), 0), (3.4b)

where h
(p)
c,i (x) is specified in eq. (2.9).

Optimal stopping regions
Similar to the formulation under complete information, the optimal stopping region S

(p)
D of

optimal voluntary conversion in the first stage (information asymmetry) is characterized by

S
(p)
D = cl

(

{

x ∈ [0,∞) : V
(p)
d (x) =

απ̄x

r − µ
,

σ2

2
x2 d2V

(p)
d

dx2
+ µx

dV
(p)

d

dx
− rV

(p)
d + c < 0

}

)

.

(3.5a)

When x ∈ S
(p)
D , the payoff to the equity holder of type i becomes V

(p)
e,i (x) =

(1 − α)πix

r − µ
.

When x /∈ S
(p)
D , V

(p)
e,i (x) satisfies the following linear complementarity relation:

min{V
(p)
e,i (x) − max(h

(p)
c,i (x), 0),−

σ2

2
x2

d2V
(p)
e,i

dx2
− µx

dV
(p)
e,i

dx
+ rV

(p)
e,i − πix + c} = 0. (3.5b)

Under information asymmetry, the equity holder may issue proactive or mimicking call.
Hence, the optimal stopping region S

(p)
E,i for the equity holder of type i is the union of

S
(p)
pro,i, S

(p)
mim,i and S

(p)
b,i , corresponding to the respective optimal decision of proactive call,

mimicking call and bankruptcy declared by the equity holder. The decisions of proactive
call and bankruptcy are similar to those under complete information, so the optimal stopping
region S

(p)
pro,i ∪ S

(p)
b,i can be defined by:

S
(p)
pro,i ∪ S

(p)
b,i = cl

({

x ∈ [0,∞) :V
(p)

e,i (x) = max(h
(p)
c,i (x), 0),

σ2

2
x2

d2V
(p)
e,i

dx2
+ µx

dV
(p)
e,i

dx
− rV

(p)
e,i + πix − c < 0

})

. (3.6)

The characterization of the optimal stopping region S
(p)
mim,i is more complicated. First,

we define S
(p)
pool,i to be the set of points where the incentive compatibility constraint condition

for mimicking call by type i is satisfied. Based on the constraint condition (2.4), we have

S
(p)
pool,i = cl

({

x ∈ [0,∞) :
πjx

r − µ
−

(

1{K≥απ̄x
r−µ

}K + 1{K< απ̄x
r−µ

}

απjx

r − µ

)

≥ Ve,j(x)

})

. (3.7)

Recall that pooling occurs only if the other type also chooses to call optimally at the same
level x. Conditional on x ∈ S

(p)
pro,j, we have the following three possibilities:
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(i) x also lies inside S
(p)
pro,i, then proactive call prevails;

(ii) x /∈ S
(p)
pro,i but x ∈ S

(p)
pool,i, then mimicking call prevails;

(iii) x /∈ S
(p)
pro,i ∪ S

(p)
pool,i, no call signal is initiated by the equity holder. His status of quality

type is revealed, and as a result, the game enters into the second stage of complete
information.

We can conclude that S
(p)
mim,i is characterized by

S
(p)
mim,i = (S

(p)
pro,j \ S

(p)
pro,i) ∩ S

(p)
pool,i,

and the optimal stopping region for the equity holder of type i is given by

S
(p)
E,i = S

(p)
pro,i ∪ S

(p)
b,i ∪ S

(p)
mim,i.

Similar to the formulation under complete information, suppose x /∈ S
(p)
E,i ∪ S

(p)
E,j, then

V
(p)
d (x) satisfies the following linear complementarity relation:

min{V
(p)

d (x) −
απ̄x

r − µ
,−

σ2

2
x2d2V

(p)
d

dx2
− µx

dV
(p)
d

dx
+ rV

(p)
d − c} = 0. (3.8)

Note that when x ∈ S
(p)
E,i and the equity holder may be type i or type j (the other type),

the payoff to the bondholder and the equity holder are dependent on how the game is termi-
nated or whether it enters into the second stage of the game. The schematic representation
of the evolution of the two-stage sequential stochastic game is summarized in Figure 1. The
discussion on the payoff function under various scenarios is presented below.

1. Termination of the game due to bankruptcy or call
This occurs when x ∈ S

(p)
E,i and the equity holder is type i. We first determine the

payoff of the equity holder (Firm i). When the optimal stopping decision is due to

optimal bankruptcy, the payoff to the equity holder is simply V
(p)
e,i (x) = 0. When the

optimal stopping decision is due to optimal call, the payoff to the equity holder is
V

(p)
e,i (x) = h

(p)
c,i (x). The determination of payoff to the bondholder is complicated by

the fact that the bondholder does not know in advance the exact type of the equity
holder upon receiving call/bankruptcy signal when x falls within S

(p)
E,i. The exact payoff

depends on whether x falls into the stopping region of another type of firm. We let pi,
i = L or H, be the probability that the firm is of type i. Firstly, we consider the case
when x /∈ S

(p)
E,j, the bondholder expects that call/bankruptcy signal is received with

probability pi and no signal is received with probability 1− pi. If the call/bankruptcy
signal is received, the bondholder conjectures that the firm is of type i and makes
its optimal decision accordingly (receiving K or conversion when the call signal is
received). The corresponding payoff is seen to be

fi(x) =

{

0 if x ∈ S
(p)
b,i

max
(

K, απix
r−µ

)

if x ∈ S
(p)
c,i

. (3.9)
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If no signal is received, the bondholder conjectures that the firm is of type j and the
game enters into the second stage. The corresponding payoff is seen to be Vd,j(x).
Summing up, the expected payoff to the bondholder is given by

V
(p)
d (x) = pifi(x) + (1 − pi)Vd,j(x). (3.10a)

We consider another case where x ∈ S
(p)
E,j. If the two types of firm adopt different

strategies, the bondholder can still update its belief on the firm’s type by observing
the signal received. The expected payoff to the bondholder is again the weighted
average of payoff with respect to different signals received. We then have

V
(p)

d (x) =







(1 − pi)max
(

K,
απjx

r−µ

)

if x ∈ S
(p)
b,i ∩ S

(p)
c,j

pi max
(

K, απix
r−µ

)

if x ∈ S
(p)
c,i ∩ S

(p)
b,j

. (3.10b)

If the two types of firm adopt the same strategies (bankruptcy or call), the bondholder
cannot update its belief using the signal received and make his optimal decision using
the original belief (when the call signal is received). Thus, the payoff to the bondholder
in this case is seen to be

V
(p)
d (x) =

{

0 if x ∈ S
(p)
b,i ∩ S

(p)
b,j

max
(

K, απ̄x
r−µ

)

if x ∈ S
(p)
c,i ∩ S

(p)
c,j

. (3.10c)

2. Quality status is revealed and the game enters into the second stage
This occurs when the equity holder is type j while x ∈ S

(p)
pro,i ∪ S

(p)
b,i \ S

(p)
E,j. Under this

scenario, the status is revealed since the equity holder of the other type (type i) would

have called or declared bankruptcy optimally. However, since x /∈ S
(p)
E,j, type j would

not call or declare bankruptcy. The game enters into the second stage of complete
information, so the payoff to the equity holder is simply

V
(p)
e,j (x) = Ve,j(x). (3.11)

On the other hand, the bondholder does not know in advance whether the bankruptcy/
call signal is sent when x hits the above stopping sets. If a signal is received, the
bondholder conjectures that the firm must be of type i. If no signal is received, the
bondholder conjectures that the firm must be of type j and the game enters into second
stage. Therefore, the payoff to the bondholder is seen to be

V
(p)
d (x) =

{

(1 − pi)Vd,j(x) if x ∈ S
(p)
b,i

pi max
(

K, απix
r−µ

)

+ (1 − pi)Vd,j(x) if x ∈ S
(p)
c,i

. (3.12)

Optimal stopping time and incentive constraint
Based on the variational inequalities developed above, the optimal stopping times adopted
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by Firm i and bondholder should be defined as the first hitting time to its corresponding
stopping set, respectively. Unlike the case under complete information (Chen et al., 2013),
the bondholder’s belief may be updated during the game and the optimal stopping times
adopted by the two counterparties change accordingly. This happens when the state variable
hits the boundary of the stopping regions of the equity holder in which the bondholder may
receive some signal from the equity holder.

We let τ ∗
b,i, τ ∗

c,i i = L or H and τ ∗
con be the optimal bankruptcy time of Firm i, the optimal

call time of Firm i and optimal conversion time of bondholder, respectively. During the first
stage of the game under information asymmetry, the optimal stopping times τ ∗

b,i, τ ∗
c,i and

τ ∗
con should be taken as the first hitting time to the optimal stopping sets S

(p)
b,i , S

(p)
c,i and S

(p)
D ,

respectively. On the other hand, if the state variable xt hits the optimal stopping set of
Firm j, where S

(p)
E,j = S

(p)
b,j ∪ S

(p)
c,j , j 6= i before hitting the stopping sets S

(p)
E,i or S

(p)
D , the

bondholder’s belief changes and the game enters into second stage of complete information.
The optimal stopping times τ ∗

b,i, τ ∗
c,i and τ ∗

con become the first hitting time of the optimal
stopping sets Sb,i, Sc,i and SD, respectively.

We define the stopping times t
(p)
b,i , t

(p)
c,i and t

(p)
D to be the respective first hitting time of

the stopping sets S
(p)
b,i , S

(p)
c,i and S

(p)
D , respectively. The optimal stopping times τ ∗

b,i, τ ∗
c,i (i = L

or H) and τ ∗
con can be expressed as

τ ∗
b,i =

{

t
(p)
b,i if t

(p)
b,i ≤ min{t

(p)
b,j , t

(p)
c,j }

inf{t ≥ min{t
(p)
b,j , t

(p)
c,j } : xt ∈ Sb,i} if t

(p)
b,i > min{t

(p)
b,j , t

(p)
c,j }

, (3.13a)

τ ∗
c,i =

{

t
(p)
c,i if t

(p)
c,i ≤ min{t

(p)
b,j , t

(p)
c,j }

inf{t ≥ min{t
(p)
b,j , t

(p)
c,j} : xt ∈ Sc,i} if t

(p)
c,i > min{t

(p)
b,j , t

(p)
c,j }

, (3.13b)

τ ∗
con =

{

t
(p)
D if t

(p)
D ≤ min{t

(p)
b,j , t

(p)
c,j }

inf{t ≥ t
(p)
E,j : xt ∈ SD,i} if t

(p)
D > min{t

(p)
b,j , t

(p)
c,j}

. (3.13c)

Perfect Bayesian Equilibrium
To ensure that the optimal stopping times defined above constitute the so called Perfect
Bayesian Equilibrium2 (PBE), it is essential to impose some extra conditions on the stopping

sets S
(p)
b,i and S

(p)
c,i , i = L or H. These conditions are often called the incentive constraints.

They are used to ensure that each type of firm has no strict incentive to deviate from the
strategy prescribed in the stopping sets. Furthermore, they also guarantee that the belief
system is consistent with respect to the strategic profile of the equity holder of either type
and that of the bondholder.

2In general, the Perfect Bayesian equilibrium is a strategic profile (τ∗b,L, τ∗b,H, τ∗c,L, τ∗c,H , τ∗con) associated
with a belief system B endowed with the following two properties: (i) The value function of each party (equity
holder of type i or bondholder) is maximized given that the other parties have adopted the strategies described
in the strategic profile (property of sequentially rationality). (ii) The belief system B(S) is determined as
much as possible based on the strategic profile and Bayes’ rule (property of consistency).
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Separation
For x ∈ S

(p)
E,i\S

(p)
E,j, Firm i either declares call (if x ∈ S

(p)
c,i ) or declare bankruptcy (if x ∈ S

(p)
b,i )

while Firm j does nothing. On the other hand, the bondholder’s belief conjectures that the
firm’s type must be type j if no signal (either call or bankruptcy) is received at that time.

To ensure that the strategies described above constitute the desired PBE, we require that

(1) Firm j has no strict incentive to mimic Firm i and adopt its optimal strategy under
complete information. This requires

{

Ve,j(x) > 0 if x ∈ S
(p)
b,i

Ve,j(x) >
πjx

r−µ
− K1{K>

απix

r−µ }
−

απjx

r−µ
1{K≤

απix

r−µ }
if x ∈ S

(p)
pro,i

. (3.14a)

(2) Firm i has no strict incentive to delay its exercising decision when xt hits the stopping

sets S
(p)
E,i \ S

(p)
E,j. The corresponding sufficient condition is given by

{

Ve,i(x) ≤ 0 if x ∈ S
(p)
b,i

Ve,j(x) ≤ πix
r−µ

− K1{K>
απix

r−µ }
− απix

r−µ
1{K≤

απix

r−µ }
if x ∈ S

(p)
pro,i

. (3.14b)

For x ∈ S
(p)
b,i ∩S

(p)
pro,j , Firm i declares bankruptcy and Firm j declares call at the same time.

We state the following required conditions for ensuring that this strategic profile constitutes
PBE.

(1) Neither Firm i nor Firm j has strict incentive to mimic another type of firm. This
requires







πix
r−µ

− K1{K>
απj x

r−µ }
− απix

r−µ
1{K≤

απj x

r−µ }
≤ 0

πjx

r−µ
− K1{K>

απj x

r−µ }
−

απjx

r−µ
1{K≤

απj x

r−µ }
≥ 0

. (3.15a)

(2) Both types of firm have no strict incentive to delay its exercising decision given a set
of off-the-equilibrium belief. This requires

{

0 ≥ Ve,i(x)
πjx

r−µ
− K1{K>

απix

r−µ }
−

απjx

r−µ
1{K≤

απix

r−µ }
≥ Ve,j(x)

. (3.15b)

Pooling
For x ∈ S

(p)
b,i ∩S

(p)
b,j or x ∈ S

(p)
c,i ∩S

(p)
c,j , both types of firm either issue call or declare bankruptcy

at the same time. To ensure that this strategic pair constitute the PBE, we require that
both firms have no strict incentive to delay their exercising decision. In other words, both
types of firms have incentive to pool with the firm of another type instead of having its type
being revealed to the bondholder. Mathematically, we require that both Ve,i(x) and Ve,j(x)

are non-positive for x ∈ S
(p)
b,i ∩ S

(p)
b,j and







πix
r−µ

− K1{K> απ̄x
r−µ}

− απix
r−µ

1{K≤απ̄x
r−µ}

≥ Ve,i(x)
πjx

r−µ
− K1{K> απ̄x

r−µ}
−

απjx

r−µ
1{K≤απ̄x

r−µ}
≥ Ve,j(x)

for x ∈ S
(p)
c,i ∩ S

(p)
c,j . (3.16)
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Provided that the stopping sets S
(p)
b,i and S

(p)
c,i observe all of the above properties [see eqs.

(3.14a,b)-(3.16)], one can show that the stopping times defined in eqs. (3.13a,b,c) constitute
the PBE associated with the objective functions (2.2) and (2.3). Furthermore, the value

functions V
(p)

e,i (x) and V
(p)
d (x) obtained from the variational inequalities formulation satisfy

V
(p)

e,i (x) = Ei(x; τ ∗
con, τ ∗

b,i, τ
∗
c,i, B), i = L or H, (3.17a)

V
(p)
d (x) = D(x; τ ∗

con, τ ∗
b,L, τ ∗

b,H, τ ∗
c,L, τ ∗

c,H, B). (3.17b)

4 Characterization of stopping regions and determina-

tion of value functions

Next, we proceed to obtain the optimal stopping policies and the corresponding value func-
tions by solving the variational inequalities developed in the last section. Note that the
game consists of two stages in which the first stage is under information asymmetry while
the second stage is under complete information. One should solve the two-stage game option
model backwards by first solving for the value functions in the second stage, then solve for
the value functions in the first stage. To determine the value functions of each stage, one has
to determine the various optimal stopping regions (bankruptcy, call and conversion). Once
the stopping regions are determined, the value function of each counterparty can be solved
using the linear complementarity formulation [see eqs. (3.2a,b)-(3.3a,b)].

Stopping regions and value functions under complete information (second stage)

The complete information case (second stage) can be done using a similar analysis as in
Chen et al. (2013) (see Theorem 4.2). We summarize the result in the following proposition
and refer the readers to Chen et al. (2013) for the detailed derivation of Proposition 1.

Proposition 1 There are two critical thresholds xb,i and xc,i (with xb,i < xc,i) such that the
optimal stopping regions can be expressed as

Sb,i = [0, xb,i], Sc,i =

[

xc,i,
c

απi

]

, Sd =

[

c

απi

,∞

)

, i = L or H. (4.1)

Here, the thresholds xb,i and xc,i are called the optimal bankruptcy threshold and optimal
call threshold of the equity holder. These two thresholds can be solved using the following
smooth-pasting conditions:







dV
(p)
e,i

dx
|x=xb,i

= 0
dV

(p)
e,i

dx
|x=xc,i

= πi

r−µ

. (4.2)

18



The corresponding value functions Ve,i(x) and Vd(x) are given by

Ve,i(x) =



























0 if x ≤ xb,i

πix
r−µ

− c
r

+
(

c
r
−

πixb,i

r−µ

)

A(x; xb,i < xc,i)

+
(

c
r
− K

)

A(x; xc,i < xb,i) if xb,i < x < xc,i

πix
r−µ

− max
{

K, απix
r−µ

}

if x ≥ xc,i

, (4.3a)

Vd,i(x) =



























(1−γ)πix

r−µ
if x ≤ xb,i

c
r

+
(

(1−γ)πix

r−µ
− c

r

)

A(x; xb,i < xc,i)

+
(

K − c
r

)

A(x; xc,i < xb,i) if xb,i < x < xc,i

max
{

K, απix
r−µ

}

if x ≥ xc,i

. (4.3b)

Here, A(x; a < b) is the value of Arrow security corresponding to the event where the state
variable xt hits a before b, the explicit form of which is given by

A(x; a < b) =
bβ+−β−

− xβ+−β−

bβ+−β− − aβ+−β−

(x

a

)β−

.

Stopping regions and value functions under incomplete information (first stage)

Next, we proceed to find the value functions in the first case (incomplete information).
Similar to that for the second stage, we first characterize the various optimal stopping regions.
The analysis is complicated by the possibility that the optimal bankruptcy region of one type
of firm and optimal call region of another type of firm may overlap. We need to derive a
necessary and sufficient condition under which the above phenomenon does not happen. In
fact, it can be shown that the call region and bankruptcy region do not overlap if and only
if the following condition holds:

xb,L < xc,H ⇔
πL

πH

> z, (4.4)

where z ∈ (0, 1) is the unique root of the algebraic equation

K =
c

r

β+(1 − β−) + (β+ − 1)β−zβ+−β−

− (β+ − β−)z−β−

β+(1 − β−) + (β+ − 1)β−zβ+−β−
.

We first consider the case when πL

πH
> z. As there will be no overlapping between the optimal

bankruptcy region and optimal call/conversion region, so one can perform the characteriza-
tion of optimal bankruptcy region and optimal call/conversion region separately.

Proposition 2 Under the assumption that
πL

πH

> z, there are two critical thresholds x∗
b,L

and x∗
c,H satisfying xb,H < x∗

b,L < x∗
c,H < xc,L such that the optimal stopping regions are given

by

S
(p)
b,H = [0, xb,H], S

(p)
b,L = [0, x∗

b,L], S
(p)
c,H =

[

x∗
c,H,

c

απH

]

, S
(p)
c,L =

[

xc,L,
c

απL

)

,
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S
(p)
D =

[ c

απ̄
,∞
)

.

Here, the threshold x∗
b,L and x∗

c,H are called the optimal bankruptcy threshold of Firm L and
optimal call threshold of Firm H, respectively. These threshold values can be obtained using
the following smooth-pasting conditions:







dV
(p)
e,L

(x)

dx
|x=x∗

b,L
= 0

dV
(p)
e,H(x)

dx
|x=x∗

c,H
= πH

r−µ

. (4.5)

The corresponding value functions Ve,L(x), Ve,H(x) and Vd(x) are given by

V
(p)

e,H(x) =



































0 if x ≤ xb,H

Ve,H(x) if xb,H < x ≤ x∗
b,L

πHx
r−µ

− c
r

+
[

Ve,H (x∗
b,L) + c

r
−

πHx∗

b,L

r−µ

]

A(x; x∗
b,L < x∗

c,H)

+
(

c
r
− K

)

A(x; x∗
c,H < x∗

b,L) if x∗
b,L < x < x∗

c,H

πHx
r−µ

− K1{K≥ απ̄x
r−µ}

− απHx
r−µ

1{K< απ̄x
r−µ}

if x > x∗
c,H

.

(4.6a)

V
(p)
e,L (x) =



































0 if x ≤ x∗
b,L

πLx
r−µ

− c
r

+
(

c
r
−

πLx∗

b,L

r−µ

)

A(x; x∗
b,L < x∗

c,H)

+
[

Ve,L(x∗
c,H) + c

r
−

πLx∗

c,H

r−µ

)

A(x; x∗
c,H < x∗

b,L) if x∗
b,L < x < x∗

c,H

Ve,L(x) if x∗
c,H ≤ x < xc,L

πLx

r−µ
− K1{K≥απ̄x

r−µ}
− απLx

r−µ
1{K< απ̄x

r−µ}
if x > xc,L

.

(4.6b)

V
(p)
d (x) =











































0 if x ≤ xb,H

pVd,H(x) if xb,H < x < x∗
b,L

c
r

+ [pVd,H(x∗
b,L) + (1 − p)

(1−γ)πLx∗

b,L

r−µ
− c

r
]A(x; x∗

b,L < x∗
c,H)

+ [pK + (1 − p)Vd,L(x∗
c,H) − c

r
]A(x; x∗

c,H < x∗
b,L) if x∗

b,L < x < x∗
c,H

pK + (1 − p)Vd,L(x) if x∗
c,H < x < xc,L

max
(

K, απ̄x
r−µ

)

if x > xc,L

.

(4.6c)
The detailed derivation of the analytic results in Proposition 2 is presented in Appendix

B. The schematic plots of the various stopping regions are shown in Figure 2. One can
observe from Proposition 2 that each type of firm adopts different bankruptcy strategy and
call strategy under information asymmetry so that the signaling time (whenever bankruptcy
or call) is a credible signal for bondholders to identify the firm’s quality (High or Low).
In particular, when x falls within (xb,H, x∗

b,L) and the firm does not declare bankruptcy,
then its H-type status is revealed to the bondholder. On the other hand, when x falls within
(x∗

c,H, xc,L) and no call is issued by the firm, then L-type status is revealed to the bondholder.
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It is not surprising to see that Firm H (Firm L) tends to declare bankruptcy at a lower
(higher) threshold since xb,H < x∗

b,L since Firm H has relatively larger revenue flow. On the
other hand, the result indicates that Firm H tends to declare out-of-the-money call at a lower
threshold (since x∗

c,H < xc,L) since Firm H has stronger revenue flow and it is willing to pay
the premium at an earlier time. This implies that an earlier out-of-the-money call can deliver
some favorable information about the firm type to the investors and the corresponding stock
price moves positively. This agrees with the empirical study by Cowan et al., (1993) stating
that positive average stock price reaction is commonly observed for out-of-the-money call.

It is also instructive to investigate the value functions of the equity holder (type L and
type H) and the bondholder under this scenario. In Figures 3(a-c), we show the various plots
of the equity value functions of each type and debt value functions against x. The common
set of parameter values used in the numerical calculations for plotting the value functions
are chosen to be: r = 0.05, µ = 0.02, σ = 0.3, πL = 1, πH = 1.2, p = 0.4, c = 1, α = 0.3,
K = 12, γ = 0.2.

In Figure 3(a), we show the plot of the equity value function V
(p)

e,H (x) of type H. When

x ≤ xb,H, the equity holder of type H optimally chooses to declare bankruptcy, so V
(p)

e,H (x) =
0. When xb,H < x ≤ x∗

b,L, the quality type is revealed to the bondholder since the equity

holder does not declare bankruptcy (see Figure 2). In this case, V
(p)
e,H(x) is simply the equity

value under complete information, that is, V
(p)
e,H(x) = Ve,H(x). When x∗

b,L < x < x∗
c,H, it is the

continuation region for both firm types and the game remains to be in the first stage. The
equity holder of type H chooses to declare call (out-of-the-money call) when xt hits x∗

c,H from
below. On the other hand, its firm type will be revealed to bondholder if xt hits x∗

b,L from

above, thus the value function V
(p)
e,H(x) is simply given by (4.6a). When x∗

c,H ≤ x < K(r−µ)
απ̄

,

the equity holder of type H optimally chooses to call. Since x < K(r−µ)
απ̄

, the bondholder

chooses to receive the cash amount K [see eq. (2.6)]. This gives V
(p)
e,H(x) = πHx

r−µ
− K.

When x ≥ K(r−µ)
απ̄

, either the equity holder of type H issues call (forced conversion) or the

bondholder voluntarily converts into shares, so we have V
(p)
e,H(x) = (1−α)πHx

r−µ
. It is worthwhile

to point out that there is a downward jump in the equity value at the conversion threshold
K(r−µ)

απ̄
. This is because the equity holder of both types issue the call near the conversion

threshold so that the firm’s type cannot be revealed to the bondholder. The bondholder has
to make its decision (receiving cash or convert into shares) based on the relative magnitude
of K and the expected conversion value απ̄x

r−µ
. On the other hand, the equity holder knows

its type and its equity value is calculated based on the actual value of πi, namely, πi = πH.
This generates a jump at the conversion threshold since the bondholder changes its optimal
decision at this critical threshold. Figure 3(b) shows the plot of equity value function of

type L [(V
(p)
eL (x)] and similar set of patterns as discussed in the above are found in the

corresponding plot for the L-type firm.
In Figure 3(c), we plot the debt value function V

(p)
d (x) against x. The value function

V
(p)
d (x) is given by eq. (4.6c). When x ≤ x∗

b,H, the firm (regardless of firm type) is sure to
declare bankruptcy and the firm quality is not revealed. Hence, the debt value is the weighted
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average of the salvage value (after the reduction of bankruptcy cost), where V
(p)
d (x) = (1−γ)π̄x

r−µ
.

When x ∈ (xb,H, x∗
b,L], the probability that the firm declares bankruptcy is 1 − p since its

quality status is L-type. On the other hand, the probability that the firm takes no action
is p. Under such scenario, the status of H-type is then revealed. Summarizing the above
results, the value function is given by

V
(p)
d (x) = pVd,H(x) + (1 − p)

(1 − γ)πLx

r − µ
.

When x∗
b,L < x < x∗

c,H , no action is taken by the equity holder as x lies in the continuation
region. The game remains at the first stage. When the state variable xt either hits x∗

b,L from
above or hits x∗

c,H from below, an appropriate optimal decision action will occur (subject to
certain probability). When x∗

c,H ≤ x < xc,L, there exists probability p that the firm declares
call since its quality is H-type and the bondholder chooses to receive K (since K > απHx

r−µ
).

Likewise, there exists probability 1−p that the firm takes no action and the status of L-type
is revealed. Summing the results together, the debt value function is seen to be

V
(p)
d (x) = pK + (1 − p)Vd,L(x).

When x ≥ xc,L, either the firm is sure to declare call and the status of quality type is not
revealed to bondholder or the bondholder converts the bond voluntarily into shares. In the
event of call, the bondholder chooses to receive K when x is less than K(r−µ)

απ̄
and chooses to

receive απ̄x
r−µ

(force conversion) if otherwise. The resulting debt value function is given by

V
(p)
d (x) =

{

K if xc,L ≤ x < K(r−µ)
απ̄

απ̄x
r−µ

if x ≥ K(r−µ)
απ̄

.

On the other hand, we consider the other case where
πL

πH

≤ z. An overlapping of the

bankruptcy region of Firm L and the call region of Firm H occurs. In order to characterize
the stopping regions, one has to determine this overlapping region and it can be shown to
be a bounded interval. The remaining part (outside this region) will be divided into two
sub-intervals where the left interval is the bankruptcy region while the right interval is the
call / conversion region. One can then follow a similar analysis as above to determine the
remaining region. We summarize the results in Proposition 3.

Proposition 3 Under the assumption that πL

πH
≤ z, the optimal stopping regions can be

characterized as

S
(p)
b,H = [0, xb,H], S

(p)
b,L = [0, xb,L], S

(p)
c,H =

[

xc,H,
c

απH

]

, S
(p)
c,L =

[

xc,L,
c

απL

]

SD =
[ c

απ̄
,∞
)

.
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Here, xb,L > xc,H so that there is an overlapping of the stopping regions S
(p)
b,L and S

(p)
c,H. The

corresponding value functions are found to be

V
(p)
e,H(x) =











0 if x ≤ xb,H

Ve,H (x) if xb,H < x ≤ xc,H

πH x
r−µ

− K1{K≥απ̄x
r−µ}

− απHx
r−µ

1{K< απ̄x
r−µ}

if x > xc,H

. (4.7a)

V
(p)
e,L (x) =











0 if x ≤ xb,L

Ve,L(x) if xb,L ≤ x < xc,L

πLx
r−µ

− K1{K≥απ̄x
r−µ}

− απLx
r−µ

1{K< απ̄x
r−µ}

if x > xc,L

. (4.7b)

V
(p)
d (x) =







































0 if x ≤ xb,H

pVd,H (x) if xb,H < x < xc,H

pmax
(

K, απHx

r−µ

)

if xc,H < x < xb,L

pmax
(

K, απHx
r−µ

)

+ (1 − p)Vd,L(x) if xb,L < x < xc,L

max
(

K, απ̄x
r−µ

)

if x > xc,L

. (4.7c)

We observe from Proposition 3 that every point in the interval [0,∞) must lie in either
the stopping region of equity holder or the stopping region of bondholder. Either the game is
terminated immediately or the game enters into second stage immediately after the issuance
of convertible bond. Indeed, this represents an uninteresting degenerate case.

5 Adverse selection cost

Under incomplete information, H-type firm suffers from a higher adverse selection cost since
the equity component of the convertible bond is often underpriced in the market. It is
more apparent for non-callable convertible bond since the resulting bond value at both the
upper barrier (voluntarily conversion) and lower barrier (bankruptcy) depend on the equity
value. In this section, we shall investigate how the inclusion of the callable provision in
the convertible bond reduces the adverse selection cost. Intuitively, we define the adverse
selection cost of a security to be the relative price change of the security under the existence
of incomplete information:

adverse selection cost =
Vd,H(x) − V

(p)
d (x)

Vd,H(x)
,

where x should be chosen in the continuation region so that no information is revealed to the
bondholder and the game remains at the first stage. In order to investigate the role of the
call provision in affecting the adverse selection cost, we shall compare the adverse selection
cost of non-callable convertible bond and callable convertible bond. In Figures 4(a) and 4(b),
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we present the plots of the respective adverse selection cost of the two convertible bonds
against probability p and the ratio of profit flow constants πH

πL
, respectively. The common set

of parameter values used in the numerical calculations are chosen to be: r = 0.05, µ = 0.02,
σ = 0.3, c = 1, α = 0.3, K = 12, γ = 0.2.

In plotting Figure 4(a), the parameter values of πH and πL are chosen to be 2 and 1,
respectively. The level of the state variable x is chosen to be 0.45. We observe that the
adverse selection costs of the two bonds are larger when the bondholder’s belief is biased
low. This cost decreases to zero as p increases to 1 since the market perception is getting close
to the actual firm’s quality as p tends to 1. On the other hand, we observe that the adverse
selection cost of the callable convertible bond is about 50% lower then that of the non-
callable counterpart. Since the call price K of the callable convertible bond is relatively low
so that the equity holder chooses to declare the out-of-the-money call before the voluntary
conversion by the bondholder, the upper barrier of the callable-convertible bond is equal to
the cash amount K instead of equity. Recall that only the equity component of a security
is being underpriced in the market under incomplete information. We conclude that the
inclusion of the callable feature can greatly reduce the adverse selection cost.

In plotting Figure 4(b), the values of p and πL are chosen to be 0.4 and 1, respectively.
The level of the state variable x is chosen to be 0.31. We observe that the adverse selection
costs of two types of convertible bonds are both increasing with respect to the ratio of πH

πL
.

Also, we observe that the adverse selection cost of the non-callable convertible bond increases
faster than that of the callable counterpart. This is because the non-callable convertible bond
are more equity-like (as payments at the upper barrier and lower barrier are both settled by
equity), the mispricing problem is more apparent. Therefore, the price difference in the two
types of convertible bonds is more significantly under incomplete information.

6 Conclusion

A two-stage sequential two-person stochastic game option model with information asym-
metry is proposed to analyze the information role of the optimal call policies in a callable-
convertible bond. Under information asymmetry, the equity holder may choose to call due
to either regular optimal stopping rule or pooling with the other type in order to extract the
benefit of information asymmetry. When pooling equilibrium prevails, the low quality firm
may choose to call earlier in order to pool the signal of the quality type to the bondholder.
In our analysis of the Perfect Bayesian Equilibrium of the optimal strategies adopted by the
bondholder and equity holder, we establish the incentive compatibility constraint for pooling
equilibrium. The true status of firm quality may be revealed either by declaration of call
or bankruptcy, or no action taken when the value of the stochastic fundamental falls in the
stopping region of firm of other type. Under separating equilibrium, the quality status of
the firm is revealed. As a result, the two-stage game enters into the second stage of complete
information.

Mathematically, we provide the full characterization of the optimal stopping rules of call,
conversion and bankruptcy adopted by the bondholder and equity holder. We also present
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the variational inequalities formulation with respect to various equilibrium strategies in the
two-person sequential game option model of the callable-convertible bond. We discuss the
required conditions for ensuring that the optimal stopping strategies constitute the Perfect
Bayesian Equilibrium. Once the stopping rules are fully characterized, we manage to deter-
mine the equity value functions of both the high quality firm and low quality firm, and the
debt value function. We also show that the inclusion of the callable feature in a convertible
bond and lower level of information asymmetry help reduce adverse selection cost.
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Appendix A - Proof of eq. (2.7)
We would like to show that exactly one of ineqs. (2.4) and (2.5) holds when K < min(K1, K2).
This assumption on K would guarantee that the optimal call threshold xc,L of Firm L under

complete information exists and satisfies xc,L <
K(r − µ)

απH

. Without loss of generality, we

consider the case for i = H and j = L.
For x < xc,L, we have x < K(r−µ)

απH
so that

πLx

r − µ
− 1{K>

απH x

r−µ }K − 1{K≤
απHx

r−µ }
απLx

r − µ
=

πLx

r − µ
− K < Ve,L(x).

The last inequality follows from the result in Chen et al. (2013). Hence, ineq. (2.5) is
satisfied. On the other hand, it can be shown that

πLx

r − µ
− 1{K> απ̄x

r−µ}
K − 1{K≤απ̄x

r−µ}
απLx

r − µ
=

πLx

r − µ
− K < Ve,L(x).

This shows that ineq. (2.4) is violated and the exact value of π̃i is given by πi.

For x ≥ xc,L, by following similar procedures in Chen et al. (2013), one can show that

πLx

r − µ
− 1{K>

απHx

r−µ }K − 1{K≤
απH x

r−µ }
απLx

r − µ

>
πLx

r − µ
− 1{K>

απLx

r−µ }K − 1{K≤
απLx

r−µ }
απLx

r − µ
= Ve,L(x).

The above step reveals that ineq. (2.5) is violated. On the other hand, one can show easily
that

πLx

r − µ
− 1{K> απ̄x

r−µ}
K − 1{K≤απ̄x

r−µ}
απLx

r − µ

>
πLx

r − µ
− 1{K>

απLx

r−µ }K − 1{K≤
απLx

r−µ }
απLx

r − µ
= Ve,L(x).
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This shows ineq. (2.4) is satisfied and the exact value of π̃i is given by π̄.
The case for i = L and j = H can be proven in a similar fashion.

Appendix B - Proof of Proposition 2

Under the assumption that πL

πH
> z, the optimal bankruptcy region and optimal call region

are disjoint so that one can characterize these two stopping regions separately.

Intervals of various optimal stopping regions
Firstly, we state the following lemma regarding the intervals of various optimal stopping
regions which is useful in the characterization of stopping regions later. The result can
be established easily using the definition of stopping sets [see eqs. (3.5a) and (3.6a)] and
following the argument adopted by Chen et. al. (2013) [see Lemma C1 of Chen et. al.
(2013)].

Lemma B1
Given that the values functions V

(p)
e,i (x) i = L, H, and V

(p)
d (x) satisfy the variational inequal-

ities formulation described in Section 3, the intervals of various optimal stopping regions are
given by

S
(p)
b,i ⊆

[

0, min

(

K(r − µ)

πi

,
c

πi

))

, S
(p)
pro,i ⊆

[

K(r − µ)

πi

,
c

απi

]

, S
(p)
D ⊆

[ c

απ̄
,∞
)

. (B.1)

Characterization of the optimal bankruptcy region

Since V
(p)

e,H (x) ≥ V
(p)
e,L (x) ≥ 0 for πH > πL, then we have

S
(p)
b,H ⊆ S

(p)
b,L.

Based on this simple fact, we can characterize the bankruptcy region by (i) first characterizing

the stopping set S
(p)
b,L ∩ S

(p)
b,H and (ii) then characterize the stopping set S

(p)
b,L \ S

(p)
b,H .

(i) Characterization of S
(p)
b,L ∩ S

(p)
b,H

We shall establish that S
(p)
b,L ∩ S

(p)
b,H = [0, xb,H], where xb,H is the optimal call threshold of

Firm H under complete information. This can be done in two steps. Firstly, we establish
that S

(p)
b,L∩S

(p)
b,H = [0, x0] if x0 ∈ S

(p)
b,L∩S

(p)
b,H . Secondly, we show the upper bound of sup{S

(p)
b,L∩

S
(p)
b,H} = xb,H.

We argue that [0, x0] ⊆ S
(p)
b,L ∩ S

(p)
b,H for x0 ∈ S

(p)
b,L ∩ S

(p)
b,H. It is obvious that both types of

firm should declare bankruptcy when there is no revenue flow (x = 0). It then follows that

0 ∈ S
(p)
b,L ∩ S

(p)
b,H . Suppose (0, x0) \ (S

(p)
b,L ∩ S

(p)
b,H) 6= φ, one can use the fact that S

(p)
b,L ∩ S

(p)
b,H is

closed to show that (0, x0) \ (S
(p)
b,L ∩ S

(p)
b,H) is open and can be expressed as the disjoint union

of open intervals:

(0, x0) \ (S
(p)
b,L ∩ S

(p)
b,H) =

⋃

n∈N

(xn, xn).
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For any x ∈ (xn, xn) for some n ∈ N, we must have x /∈ S
(p)
b,H. On the other hand, we note

that x < x0 < K(r−µ)
πH

from eq. (B.1). We also have x /∈ S
(p)
c,H. Since K < K1, we can deduce

from Chen et al. (2013) that the threshold xc,H exists and xc,H < cH

απH
. Together with the

fact that S
(p)
D ⊆

[

cH

απ̄
,∞
)

, we deduce that x /∈ S
(p)
D . From eq. (3.5b), the value function

V
(p)
e,L (x) satisfies the following linear complementarity relation:







min

(

V
(p)
e,L (x) − 0,−σ2

2
x2 d2V

(p)
e,L

dx2 − µx
dV

(p)
e,L

dx
+ rV

(p)
e,L − πLx + c

)

= 0, x ∈ (xn, xn);

V
(p)

e,L (xn) = 0, V
(p)
e,L (xn) = 0.

(B.2)
From Lemma B1, we have x < x0 < c

πH
, it is seen that

−
σ2

2
x2 d20

dx2
− µx

d0

dx
+ r(0) − πLx + c = πLx + c > πL

(

c

πH

)

+ c > 0.

This implies that 0 is the supersolution of the eq. (B.2) so that V
(p)
e,L (x) ≤ 0. Together with

the obstacle condition (3.1b), we deduce that V
(p)
e,L (x) = 0 for all x ∈ (xn, xn). Therefore,

(xn, xn) ⊆ S
(p)
b,L. This implies that V

(p)
e,H (x) = Ve,H(x) for x ∈ (xn, xn) from eq. (3.11).

Using the incentive constraint conditions embedded in S
(p)
b,L ∩ S

(p)
b,H and eq. (4.3a), we have

V
(p)
e,H(x0) = 0 and x0 < xb,H . Since x < x0, it follows from eq. (4.3a) that V

(p)
e,H(x) =

Ve,H(x) = 0 for all x ∈ (xn, xn). So we also have (xn, xn) ⊆ S
(p)
b,H . This contradiction implies

that [0, x0] ⊆ S
(p)
b,L ∩ S

(p)
b,H .

Next, we show that xb,H = sup(S
(p)
b,L∩S

(p)
b,H), where xb,H is the optimal bankruptcy thresh-

old of Firm H under complete information. Using the incentive constraint eq. (3.10a)

embedding in S
(p)
b,L ∩ S

(p)
b,H and the obstacle condition eq. (3.1b), we have Ve,H(x) = 0 for all

x ∈ S
(p)
b,L ∩ S

(p)
b,H so that x ≤ xb,H from eq. (4.3a). This implies sup(S

(p)
b,L ∩ S

(p)
b,H) ≤ xb,H.

Suppose that sup(S
(p)
b,L∩S

(p)
b,H ) < xb,H, this leads to a contradiction by showing both types

of firm has incentive to declare bankruptcy at some threshold between sup
(

S
(p)
b,L ∩ S

(p)
b,H

)

<

xb,H. We first note that S
(p)
c,H is non-empty in [0, K(r−µ)

απH
] under condition (2.7). For any

x ∈ (sup(S
(p)
b,L ∩ S

(p)
b,H), inf S

(p)
c,H), we have x /∈ S

(p)
e,H(x) ∪ S

(p)
D and the value function V

(p)
e,L

satisfies the following linear complementarity relation:


















min

(

V
(p)

e,L (x) − max(0, h
(p)
c,i (x)) − σ2

2
x2 d2V

(p)
e,L

dx2 − µx
dV

(p)
e,L

dx
+ rV

(p)
e,L − πLx + c

)

= 0,

x ∈ (sup S
(p)
b,H, inf S

(p)
c,H);

V
(p)

e,L (sup(S
(p)
b,L ∩ S

(p)
b,H)) = 0, V

(p)
e,L (inf S

(p)
c,H) = Ve,L(inf S

(p)
c,H)

.

(B.3)

Using the condition that K < K1, one can establish that [0, K(r−µ)
απH

] ∩ SD,L = φ [see Chen et

al. (2013)]. For any x ∈ (supS
(p)
b,H , inf S

(p)
c,H) ⊆ [0, K(r−µ)

απH
], the value function Ve,L(x) satisfies
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the linear complementarity relation shown in eq. (3.2b). On the other hand, h
(p)
c,i (x) = K

for x < K(r−µ)
απH

. We observe that Ve,L(x) is also the solution of eq. (B.3). By the uniqueness

of solution of eq. (B.3), we deduce that V
(p)

e,L (x) = Ve,L(x). Note that xb,H < xb,L, we deduce
that

V
(p)
e,L (x) = Ve,L(x) = 0 for x ≤ xb,H

This implies that V
(p)
e,L (x) = 0 for x ≤ xb,H and [0, xb,H] ⊆ S

(p)
b,L.

To arrive contradiction, we note that V
(p)
e,H(x) = Ve,H(x) = 0 for x ∈ (sup S

(p)
b,H, xb,H] from

eq.(3.11) and eq.(4.3a). Hence, we conclude that (supS
(p)
b,H , xb,H] ⊆ S

(p)
b,H. This contradiction

implies that xb,H = sup(S
(p)
b,L ∩ S

(p)
b,H). We finally have

S
(p)
b,L ∩ S

(p)
b,H = [0, xb,H]. (B.4)

(ii) Characterization of S
(p)
b,L \ S

(p)
b,H

We first establish the connectedness property of S
(p)
b,L \S

(p)
b,H by showing (xb,H , x1] ⊆ S

(p)
b,L \S

(p)
b,H

for any x1 ∈ S
(p)
b,L \ S

(p)
b,H. Using the incentive constraint embedded in the stopping sets

S
(p)
b,L\S

(p)
b,H and S

(p)
c,H [see eqs. (3.14b), (3.15b)] and obstacle condition (3.1b), we have Ve,L(x) =

0 for x ∈ S
(p)
b,L \ S

(p)
b,H and Ve,H = πHx

r−µ
− max

(

K, απHx
r−µ

)

. Using eq. (4.3a), we can show that

S
(p)
b,L \ S

(p)
b,H ⊆ [0, xb,L] and S

(p)
c,H ⊆ [xc,H,∞).

For any x ∈ (xb,H, x1), we have x < x1 < xb,L. Note that xb,L < xc,H from condition (4.4),

this implies that x /∈ S
(p)
e,H . Also xc,H < K(r−µ)

πH
< c

απH
, we have x /∈ S

(p)
D . Hence, V

(p)
e,L (x)

should satisfy the following linear complementarity relation:







min

(

V
(p)
e,L (x) − 0,−σ2

2
x2 d2V

(p)
e,L

dx2 − µx
dV

(p)
e,L

dx
+ rV

(p)
e,L − πLx + c

)

= 0, x ∈ (xb,H, x1)

V
(p)
e,L (xb,H) = 0, V

(p)
e,L (x1) = 0.

.

(B.5)
Using the fact that x < c

πL
(see Lemma A1), one can show that 0 is the supersolution of the

eq. (B.5) so that V
(p)
e,L (x) ≤ 0. Together with the obstacle condition (3.1b), we can conclude

that V
(p)

e,L (x) = 0 for all x ∈ (xb,H, x1) and (xb,H, x1] ⊆ S
(p)
b,L \ S

(p)
b,H . We define the critical

threshold x∗
b,L to be x∗

b,L = sup(S
(p)
b,L \ S

(p)
b,H). Then we can conclude that

(xb,H, x∗
b,L] ⊆ S

(p)
b,L \ S

(p)
b,H. (B.6a)

Since the value function V
(p)
e,L (x) is assumed to be smooth at x = x∗

b,L, then the critical
threshold x∗

b,L satisfies the following smooth pasting condition:

dV
(p)
e,L (x)

dx
|x=x∗

b,L
= 0. (B.6b)
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Characterization of the optimal call region and conversion region

Since the payoff upon call h
(p)
c,i (x) assumes two different forms in different regimes [see

eq. (2.6)]. We characterize those stopping regions in each of the intervals [0, K(r−µ)
απ̄

) and

[K(r−µ)
απ̄

,∞) separately.

Characterization of the stopping regions within [K(r−µ)
απ̄

,∞)

We first characterize the optimal call region and conversion region in the interval [K(r−µ)
απ̄

,∞).
We would like to show that either forced conversion (due to call) or voluntary conversion

must occur when x ∈ [K(r−µ)
απ̄

,∞). Using the objective functions in eqs. (2.2) and (2.3) as
well as eqs. (3.17a) and (3.17b), we establish that

V
(p)
d (x) + pV

(p)
e,H (x) + (1 − p)V

(p)
e,L (x)

=D(x, τ ∗
con, τ ∗

b,L, τ ∗
c,L, τ ∗

b,H, τ ∗
c,H , B) + pEH (x, τ ∗

con, τ
∗
b,H , τ ∗

c,H, B) + (1 − p)EL(x, τ ∗
con, τ

∗
b,L, τ ∗

c,L, B)

≤
π̄x

r − µ
. (B.7)

On the other hand, one can use the obstacle conditions [see eqs. (3.1a) and (3.1b)] and show
that

V
(p)
d (x) + pV

(p)
e,H (x) + (1 − p)V

(p)
e,L (x) ≥

π̄x

r − µ
.

This implies that V
(p)

d (x) + pV
(p)

e,H (x) + (1 − p)V
(p)
e,L (x) = π̄x

r−µ
. One can use the obstacle

conditions [see eqs. (3.1a) and (3.1b)] and deduce that

V
(p)
d (x) =

απ̄x

r − µ
, V

(p)
e,i (x) = h

(p)
c,i (x) =

(1 − α)πix

r − µ
.

This implies that either forced conversion or voluntary conversion occurs when x lies within in

the interval [K(r−µ)
απ̄

,∞). Therefore, the optimal stopping region in the interval
[

K(r−µ)
απ̄

,∞
)

can be characterized as follows:

(i) If K(r−µ)
απ̄

< c
απH

, then we have

S
(p)
c,H ∩

[

K(r − µ)

απ̄
,∞

)

=

[

K(r − µ)

απ̄
,

c

απH

)

S
(p)
c,L ∩

[

K(r − µ)

απ̄
,∞

)

=

[

K(r − µ)

απ̄
,

c

απL

)

,

S
(p)
D ∩

[

K(r − µ)

απ̄
,∞

)

=
[ c

απ̄
,∞
)

. (B.8a)

(ii) If K(r−µ)
απ̄

≥ c
απH

, then we have

S
(p)
c,H ∩

[

K(r − µ)

απ̄
,∞

)

= φ
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S
(p)
c,L ∩

[

K(r − µ)

απ̄
,∞

)

=

[

K(r − µ)

απ̄
,

c

απL

)

,

S
(p)
D ∩

[

K(r − µ)

απ̄
,∞

)

=
[ c

απ̄
,∞
)

. (B.8b)

Characterization of the stopping regions within [0, K(r−µ)
απ̄

]
We then focus on the characterization of optimal call and conversion regions in the interval
[

0, K(r−µ)
απ̄

]

. Since K(r−µ)
απ̄

< c
απ̄

and S
(p)
D ⊆ [ c

απ̄
,∞), then S

(p)
D ∩ [0, K(r−µ)

απ̄
] = φ. It remains to

characterize the optimal call region in the same interval, we first establish that it is optimal
for both types of firms to declare call at x = K(r−µ)

απ̄
. Substituting x = K(r−µ)

απ̄
into ineq.

(B.7), we have

V
(p)
d

(

K(r − µ)

απ̄

)

+ pV
(p)

e,H

(

K(r − µ)

απ̄

)

+ (1 − p)V
(p)

e,L

(

K(r − µ)

απ̄

)

=D(x, τ ∗
con, τ ∗

b,L, τ ∗
c,L, τ ∗

b,H, τ ∗
c,H , B) + pEH (x, τ ∗

con, τ
∗
b,H , τ ∗

c,H, B) + (1 − p)EL(x, τ ∗
con, τ

∗
b,L, τ ∗

c,L, B)

≤
π̄K(r−µ)

απ̄

r − µ
=

K

α
.

On the other hand, the obstacle conditions (3.1a) and (3.1b) imply

V
(p)
d

(

K(r − µ)

απ̄

)

+ pV
(p)

e,H

(

K(r − µ)

απ̄

)

+ (1 − p)V
(p)

e,L

(

K(r − µ)

απ̄

)

≥
απ̄ K(r−µ)

απ̄

r − µ
+

π̄K(r−µ)
απ̄

r − µ
− K =

απ̄ K(r−µ)
απ̄

r − µ
+

π̄K(r−µ)
απ̄

r − µ
−

απ̄x

r − µ
=

π̄ K(r−µ)
απ̄

r − µ
=

K

α
.

Combining the result with ineq. (B.9) and the obstacle conditions (3.1) and (3.1b), we
deduce that

V
(p)
d

(

K(r − µ)

απ̄

)

+ pV
(p)

e,H

(

K(r − µ)

απ̄

)

+ (1 − p)V
(p)
e,L

(

K(r − µ)

απ̄

)

=
K

α

⇒ V
(p)
d

(

K(r − µ)

απ̄

)

= K, V
(p)

e,i

(

K(r − µ)

απ̄

)

=
πi(

K(r−µ)
απ̄

)

r − µ
−K = h

(p)
i

(

K(r − µ)

απ̄

)

.

So we have K(r−µ)
απ̄

∈ S
(p)
c,L ∩ S

(p)
c,H .

The remaining characterization of the optimal call region is similar to that of the optimal
bankruptcy region. Using eqs. (3.17a) and (3.17b) and the objective functions in eqs. (2.2)
and (2.3), we can establish that

V
(p)
e,H(x) −

(

πHx

r − µ
− K

)

≤ V
(p)
e,L (x)−

(

πLx

r − µ
− K

)

.
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For any x ∈ S
(p)
c,L ∩

[

0, K(r−µ)
απ̄

]

, we have

V
(p)

e,H (x)−

(

πHx

r − µ
− K

)

≤
πLx

r − µ
− K −

(

πLx

r − µ
− K

)

= 0

⇒ V
(p)
e,H(x) ≤

πHx

r − µ
− K.

Together with the obstacle condition (3.1b), we conclude that V
(p)
e,H(x) = πHx

r−µ
− K so that

x ∈ S
(p)
c,H ∩

[

0, K(r−µ)
απ̄

]

. In other words, Firm H chooses to declare the out-of-the-money call

if Firm L declares call at the same time. This implies

S
(p)
c,L ∩

[

0,
K(r − µ)

απ̄

]

⊆ S
(p)
c,H ∩

[

0,
K(r − µ)

απ̄

]

.

Using this fact, we first characterize the stopping region S
(p)
c,L ∩ S

(p)
c,H ∩

[

0, K(r−µ)
απ̄

]

and then

(S
(p)
c,H \ S

(p)
c,L) ∩

[

0, K(r−µ)
απ̄

]

.

Characterization of S
(p)
c,L ∩ S

(p)
c,H ∩

[

0, K(r−µ)
απ̄

]

We argue that [x2,
K(r−µ)

απ̄
] ⊆

(

S
(p)
c,L ∩ S

(p)
c,H ∩

[

0, K(r−µ)
απ̄

])

for x2 ∈ (S
(p)
c,L ∩ S

(p)
c,H) ∩

[

0, K(r−µ)
απ̄

]

.

Suppose that [x2,
K(r−µ)

απ̄
] \
(

S
(p)
c,L ∩ S

(p)
c,H ∩

[

0, K(r−µ)
απ̄

])

6= φ, the set must be open and it can

be expressed as a countable disjoint union of open sets:
[

x2,
K(r − µ)

απ̄

]

\

(

S
(p)
c,L ∩ S

(p)
c,H ∩

[

0,
K(r − µ)

απ̄

])

=
⋃

n∈N

(xn, xn).

Take x ∈ (xn, xn), we have x ≥ x2 > K(r−µ)
πL

from eq. (4.4), so that x /∈ S
(p)
b,L and x /∈ S

(p)
e,L∪S

(p)
D

for any x ∈ (xn, xn), the value function V
(p)

e,H(x) satisfies the following linear complementarity
relation:






min

{

V
(p)

e,H(x) −
(

πHx
r−µ

− K
)

, −σ2x2

2

d2V
(p)
e,H

dx2 − µx
dV

(p)
e,H(x)

dx
+ rV

(p)
e,H(x) − πHx + c

)

= 0, x ∈ (xn, xn);

V
(p)

e,H (xn) =
πHxn

r−µ
−K, V

(p)
e,H (xn) = πHxn

r−µ
−K

.

(B.8)

One can show that πHx
r−µ

− K is the supersolution of eq. (B.8) so that V
(p)

e,H (x) ≤ πH x
r−µ

− K.

Together with the obstacle condition (3.1b), we deduce that V
(p)
e,H(x) = πHx

r−µ
− K for all

x ∈ (xn, xn) and conclude that (xn, xn) ⊆ S
(p)
c,H. This implies that V

(p)
e,L (x) = Ve,L(x) for

x ∈ (xn, xn). Using the incentive constraint embedded in S
(p)
c,L ∩ S

(p)
c,H , we get x > x2 ≥ xc,L.

It follows from eq. (4.3a) that V
(p)
e,L (x) = Ve,L(x) = πLx

r−µ
−K. Thus, we deduce that x ∈ S

(p)
c,L.

This contradiction implies that [x2,
K(r−µ)

απ̄
] ⊆

(

S
(p)
c,L ∩ S

(p)
c,H ∩

[

0, K(r−µ)
απ̄

])

.

32



We proceed to argue that inf(S
(p)
c,L∩S

(p)
c,H) = xc,L. Using the incentive constraint condition

embedded in S
(p)
c,L ∩S

(p)
c,H [see eq. (3.16)] and the obstacle condition (3.1b), we have Ve,L(x) =

πLx

r−µ
−K for any x ∈ S

(p)
c,L∩S

(p)
c,H . From eq. (4.3a), we have x ≥ xc,L and inf(S

(p)
c,L∩S

(p)
c,H) ≥ xc,L.

Suppose that inf(S
(p)
c,L ∩ S

(p)
c,H) > xc,L, one can use a similar technique as in the proof of

sup
(

S
(p)
b,L ∩ S

(p)
b,H

)

= xb,H and show that both types of firm has strict incentive to declare call

at some threshold between xc,L and inf(S
(p)
c,L ∩ S

(p)
c,H).

For any x ∈ (sup S
(p)
b,L, inf(S

(p)
c,L ∩ S

(p)
c,H)), we note that x /∈ S

(p)
e,L(x) ∪ S

(p)
D and the value

function V
(p)
e,H satisfies the following linear complementarity relation:



















min

(

V
(p)
e,H(x) −max(0, h

(p)
c,H(x)) − σ2

2
x2 d2V

(p)
e,H

dx2 − µx
dV

(p)
e,H

dx
+ rV

(p)
e,H − πHx + c

)

= 0,

x ∈ (sup S
(p)
b,L, inf(S

(p)
c,L ∩ S

(p)
c,H));

V
(p)

e,H (supS
(p)
b,L) = Ve,H(sup S

(p)
b,L), V

(p)
e,H (inf(S

(p)
c,L ∩ S

(p)
c,H)) =

πH(inf(S
(p)
c,L∩S

(p)
c,H))

r−µ
− K

.

(B.11)

It can be seen that Ve,H (x) is the supersolution of eq. (B.11) and V
(p)
e,H(x) ≤ Ve,H (x). On the

other hand, Ve,H (x) = πHx
r−µ

−K for x ∈ (xc,H , inf(S
(p)
c,L∩S

(p)
c,H)) from eq. (4.3a). Together with

the obstacle condition (3.1b), we have V
(p)
e,H(x) = πHx

r−µ
−K for x ∈ (xc,H, inf(S

(p)
c,L ∩S

(p)
c,H )) and

(xc,H, inf(S
(p)
c,L ∩ S

(p)
c,H)) ⊆ S

(p)
c,H . This implies that V

(p)
e,L (x) = Ve,L(x) for x ∈ (xc,H , inf(S

(p)
c,L ∩

S
(p)
c,H)) from eq. (3.11). Since xc,L ∈ (xc,H, inf(S

(p)
c,L∩S

(p)
c,H)), we can deduce from eq. (4.3a) that

V
(p)
e,L (x) = Ve,L(x) = πLx

r−µ
−K for x ∈ (xc,L, inf(S

(p)
c,L∩S

(p)
c,H)) so that (xc,L, inf(S

(p)
c,L∩S

(p)
c,H)) ⊆ S

(p)
c,L

and (xc,L, inf(S
(p)
c,L ∩ S

(p)
c,H)) ⊆ S

(p)
c,L ∩ S

(p)
c,H . The contradiction implies inf(S

(p)
c,L ∩ S

(p)
c,H) = xc,L

and
[

xc,L,
K(r − µ)

απ̄

]

= S
(p)
c,L ∩ S

(p)
c,H ∩

[

0,
K(r − µ)

απ̄

]

. (B.12)

Characterization of (S
(p)
c,H \ S

(p)
c,L) ∩

[

0, K(r−µ)
απ̄

]

Lastly, we characterize the stopping region (S
(p)
c,H \ S

(p)
c,L) ∩ [0, K(r−µ)

απ̄
]. The analysis is similar

to that of S
(p)
b,L \ S

(p)
b,H and details are omitted here. Finally, we deduce that

(

S
(p)
c,H \ S

(p)
c,L

)

∩

[

0,
K(r − µ)

απ̄

]

=
[

x∗
c,H, xc,L

)

, (B.13a)

where x∗
c,H = inf(S

(p)
c,H\S

(p)
c,L) is the optimal call threshold of Firm H and satisfies the following

smooth pasting condition:

dV
(p)
e,H(x)

dx
|x=x∗

c,H
=

d

dx

(

πHx

r − µ
− K

)

|x=x∗

c,H
=

πH

r − µ
. (B.13b)

Determination of the value functions
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Once the optimal stopping regions are determined, the value functions can be determined
as follows:

(i) If x lies in the stopping regions of the equity holder or bondholder, the corresponding
value functions can be determined using eqs. (3.9)-(3.12).

(ii) If x lies in the continuation region (i.e. x ∈ (x∗
b,L, x∗

c,H)), the value functions V
(p)

e,L (x),

V
(p)
e,H(x) and V

(p)
d (x) can be obtained by solving the following differential equations:







σ2

2
x2 d2V

(p)
e,H

dx2 + µx
dV

(p)
e,H

dx
− rV

(p)
e,H + πHx − c = 0, x ∈ (x∗

b,L, x∗
c,H),

V
(p)
e,H(x∗

b,L) = Ve,H(x∗
b,L), V

(p)
e,H(x∗

c,H) =
πHx∗

c,H

r−µ
−K

, (B.14a)

{

σ2

2
x2 d2V

(p)
e,L

dx2 + µx
dV

(p)
e,L

dx
− rV

(p)
e,L + πLx − c = 0, x ∈ (x∗

b,L, x∗
c,H),

V
(p)
e,L (x∗

b,L) = 0, V
(p)
e,L (x∗

c,H) = Ve,L(x∗
c,H)

, (B.14b)















σ2

2
x2 d2V

(p)
d

dx2 + µx
dV

(p)
d

dx
− rV

(p)
d + c = 0, x ∈ (x∗

b,L, x∗
c,H),

V
(p)

d (x∗
b,L) = pVd,H (x∗

b,L) + (1 − p)
(1−γ)πLx∗

b,L

r−µ
,

V
(p)

d (x∗
c,H) = p

(

πHx∗

c,H

r−µ
−K

)

+ (1 − p)Vd,L(x∗
c,H)

. (B.14c)
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Figure 1: Schematic representation of the two-stage sequential two-person stochastic game
model.

Figure 2: Characterization of the stopping regions under
πL

πH

≥ z.
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Figure 3a: Plot of the equity value function of type H against x. The sequential game
is terminated either due to (i) bankruptcy when x ≤ xb,H, (ii) call when x∗

c,H ≤ x <

max
(

K(r−µ)
απL

, c
απH

)

. It may enter into the second stage of game under complete information

when x ∈ (xb,H, x∗
b,L).
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minated either due to (i) bankruptcy x ≤ x∗
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απL

, c
απL

)

.

It may enter into the second stage of game under complete information when x ∈ (x∗
c,H , xc,L).
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Figure 4a: Plot of the adverse selection cost of the non-callable convertible bond and callable
convertible bond against probability p. Both adverse selection costs decrease to zero when p
increases to 1 (complete information). The adverse selection cost of the callable-convertible
bond is always lower than that of the non-callable convertible bond.
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Figure 4b: Plot of the adverse selection cost of the non-callable convertible bond and callable
convertible bond against the ratio πH/πL. Both adverse selection costs increase when the
gap between πH and πL widens. The adverse selection cost of the non-callable convertible
bond increases at a faster rate than that of the callable convertible bond.
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