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A knock-in American option under a trigger clause is an option contract in
which the option holder receives an American option conditional on the
underlying stock price breaching a certain trigger level (also called barrier
level). We present analytic valuation formulas for knock-in American
options under the Black-Scholes pricing framework. The price formulas
possess different analytic representations, depending on the relation
between the trigger stock price level and the critical stock price of the
underlying American option. We also performed numerical valuation of
several knock-in American options to illustrate the efficacy of the price
formulas. © 2004 Wiley Periodicals, Inc. Jrl Fut Mark 24:179–192, 2004

INTRODUCTION

The trigger clause in an option contract refers to the feature where the
option underlying the contract is triggered to become alive or other
embedded features in the contract become activated when certain preset
trigger conditions are met. Trigger clauses are commonly found in
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derivative contracts. For example, the issuer of a convertible bond can
activate the callable feature only when the underlying stock price
exceeds the trigger level consecutively for a number of trading days.
Also, a convertible bond may have its conversion price lowered when the
stock price recorded on certain dates falls below some threshold level.
As another example, we may have a bond whose interests are being
accrued only when the dollar/Yen exchange rate stays outside a certain
corridor range. In executive warrants issued by companies to their
employees, it is common to have the reset feature where the strike price
and/or the maturity date of the warrants can be altered, subject to cer-
tain preset trigger conditions on the movement of the price of the com-
pany stock.

Knock-in options with a trigger clause are closely related to barrier
options. Barrier options are common path-dependent options traded in
the financial markets. The derivation of the price formula for barrier
options was pioneered by Merton (1973) in his seminal paper on option
pricing. A list of price formulas for one-asset barrier options and multi-
asset barrier options can be found in the articles by Rich (1994) and
Wong and Kwok (2003), respectively. Gao et al. (2000) analyzed option
contracts with both knock-out barrier and American early exercise fea-
tures. In this article, we consider knock-in American options that are
triggered into existence (knock-in) only when the underlying stock
price falls below a certain preset barrier (or threshold) level. Let S
denote the stock price and H be the barrier level. The holder of the con-
tract is entitled to receive an American option with strike price X and
maturity date T when S falls below H during the life of the option; oth-
erwise, the option contract expires worthless on the maturity date T.
When the underlying knock-in option is a European option, there exists
a simple valuation formula where the price of a knock-in European
option is given by the difference of the prices of the European vanilla
option and the knock-out European barrier option. Unfortunately, such
a valuation approach does not apply when the knock-in option is an
American option. Haug (2001) presented analytic valuation formulas
for knock-in American options. However, his formulas are valid only
under the condition H � X (such a restriction has not been explicitly
stated in his article). He has neglected the possible interaction of the
knock-in region and the exercise region of the underlying American
option. Here, we would like to present the analytic valuation formulas
for knock-in American options that are applicable under all possible
cases.
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This article is organized as follows. In the next section, we present
the derivation of the analytic valuation formulas using the Black-Scholes
pricing framework for knock-in American options under a trigger clause.
The valuation formulas take different analytic forms, depending on the
relation between the trigger level H and the critical stock price at which
the American option should be optimally exercised. The different
analytic forms reflect the various possibilities of interaction of the knock-
in region of the option contract and the underlying exercise region of the
American option. We then present numerical results that demonstrate
the efficacy of the valuation formulas. Some comments on the imple-
mentation of the numerical calculations are given. The article ends with
conclusive remarks in the last section.

DERIVATION OF VALUATION FORMULAS

We consider the valuation of knock-in American call options under the
Black-Scholes pricing framework. The stock price S is assumed to follow
the risk neutral process

(1)

where r and q are the constant risk-free interest rate and dividend yield,
respectively, s is the volatility, and dZ is a standard Wiener process.
Let t denote the current time, T be the maturity date of the knock-in
American call option, and write as the time to expiry. We
assume that the down-in trigger clause entitles the holder to receive an
American call option, with maturity date T and strike price X when S falls
below the threshold level H. We let denote the price of
the down-and-knock-in American call option and denote the
price of the underlying American option received upon knock-in. The
governing equation for is given by the usual Black-
Scholes equation

(2)

with left fixed boundary H. The auxiliary conditions are

(3)Cdi(S, 0) � 0�S � H�and�Cdi(H, t) � C(H, t; X)

for S � H�and�t � 0
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where the knock-in American option is modeled as the rebate payment
when . On the other hand, the governing equation for 
is given by

(4)

where the free boundary is the critical stock price at which the
American option should be exercised optimally. The associated auxiliary
conditions are

(5)

It is known that is monotonically increasing with respect to t with

where

(6)

(Kwok, 1998). The solution to Equations (2) and (3) can be formally
represented by

(7a)

where is the time lapsed from the current time and

(7b)

is the density function of the first passage time that the stock price
moves from S to the barrier level H. Unfortunately, the direct analytic
evaluation of the integral is, in general, formidably tedious.

Haug (2001) postulated that Cdi(S, t; X, H) and C(S, t; X) are
related by

(8)Cdi(S, t; X, H) � a S
H
b1�[2(r�q)�s2]

C aH2

S
, t; Hb
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� rC � 0

C(S, t; X)S � H



Knock-in American Options 183

by virtue of the reflection principle. However, for knock-in American call
options, the above formula is valid only for H � X. Due to the possible
interaction of the knock-in region: S � H and the exercise region:
S � S*(t), the price formula for Cdi(S, t; H, X) takes different analytic
forms under the following cases 

(i)

(ii) and

(iii)

First, we consider the case 

This corresponds to the scenario where the knock-in region lies com-
pletely inside the continuation region of the American option. When 

so that the point

in the plane lies in the continuation region of the American
option. Let V(S, t) be defined by

(9)

it can be shown that satisfies the Black-Scholes equation. In
addition, we observe 

(10)

Both V(S, t) and Cdi(S, t; X, H) share the same auxiliary condition along
S � H, and they both satisfy the Black-Scholes equation for S � H and
t� 0. Suppose we define W(S, t) where

(11)W(S, t) � V(S, t) � Cdi(S, t; X, H)

V(H, t) � C(H, t)�and�V(S, 0) � a S
H
b1�[2(r�q)�s2]

 aH2

S
� Xb�

V(S, t)

V(S, t) � a S
H
b1�[2(r�q)�s2]

C aH2

S
, t; Xb�for S � H

S � t

aH2

S
, tb

S � H, we have H
2

S
� H � max aX, rq  Xb

 H � S*(0�)max aX, rq  Xb
 S*(0�) �

S*(0�) � H � S*(� )

H � S*(� )

H � S*(0�),
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then W(S, t) satisfies the Black-Scholes equation and observes homoge-
neous boundary condition along S � H. The initial condition for W(S, t)
is given by

(12)

Let c(S, t; X) denote the price function of the vanilla European call
option counterpart. The above initial condition W(S, 0) matches with 

Let cdi(S, t; X, H) denote the price function of the European barrier call
option with down-and-in barrier H and strike price X. The sum of
W(S, t) and cdi(S, t; X, H) is equal to

so that W(S, t) can be expressed as the difference of price functions of
European vanilla and barrier options. Indeed, we have

(13)

One can easily check that the above solution to W(S, t) satisfies the
Black-Scholes equation, together with homogeneous boundary condi-
tions and initial conditions as specified in Equation (12). Combining the
results, we then have

(14)

which is valid for

One observes that the price of a knock-in American option can be
decomposed into the prices of options of simpler form. The first term in
the above price formula represents the early exercise premium associated

H � max aX, 
r
q  Xb

� a S
H
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S
, t; Xb � c aH2

S
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a S
H
b1�[2(r�q)�s2]

 c aH2

S
, t; Xb

a S
H
b1�[2(r�q)�s2]

c(S, 0; X)

W(S, 0) � a S
H
b1�[2(r�q)�s2]aH2

S
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with the knock-in American call option, which is obtained by applying
the reflection principle to the early exercise premium of the usual
American call option. In particular, when H � X, we observe

so that the price formula (14) reduces to the simpler form as given by
Haug [see Equation (8)].

Second, we consider the case that is, the trigger level
S � H lies completely inside the exercise region of the American option.
Upon the receipt of the American option when the trigger level S � H is
reached, the American option should be exercised at once. Hence, the
price formula as depicted in Equation (7a) can be simplified to become

(15a)

where

(15b)

(15c)

Last, we consider the case S*(0�) � H � S*( ), corresponding to
the scenario where the knock-in region S � H is partly inside and partly
outside the continuation region of the American option (see Figure 1).
Let tH be the solution to the algebraic equation S*(t) � H. For t� tH,
the American option received upon reaching the trigger level should be
exercised at once. This is because for t� tH, we have H � S*(t) so that
the point (H, t) in the S � t plane lies inside the exercise region. Similar
to the first case, we define the same set of functions

(16a)

and

(16b)W(S, t) � V(S, t) � Cdi(S, t; X, H)�for S � H
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H
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0
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FIGURE 1
When the trigger level H satisfies there exists unique value tH such
that When t � tH, the American option received upon knock-in should be

exercised at once, because (H, t) lies inside the exercise region.
S*(tH) � H.

S(0�) � H � S*(� ),

For S � H and t� tH, the point 

lies inside the continuation region of the American option. Hence, both
V(S, t) and W(S, t) satisfy the Black-Scholes equation, when S � H and
t � tH. Along the barrier S � H, W(S, t) observes the boundary condi-
tion W(H, t) � 0, t� tH. Over the time interval t� tH, Cdi(S, t; X, H)
is given by formula (15a) because (S, t) lies in the exercise region of the
American option for S � H and t� tH. In particular, at t� tH

(17)

Note that the solution to W(S, tH) in Equation (17) differs from the ear-
lier formula for W(S, t) in Equation (13) evaluated at tH. The difference
represents the premium associated with the early exercise right of the
transformed American price function W(S, t) over the period t � tH.
To solve for Cdi(S, t; X, H) when t � tH, one has to solve for W(S, t)

� �
TH

0

 e�rj (H � X)Q(j; S)  dj

W(S, tH) � a S
H
b1�[2(r�q)�s2]

 C aH2

S
, tH; Xb

aH2

S
, tb
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with t � tH based on the “terminal” payoff prescribed at t � tH. The
function W(S, t) with t � tH essentially gives the price function of a
European down-and-out barrier option with knock-out barrier H and
“terminal” payoff function at t � tH [given by Equation (17)]. Once
W(S, t) for t� tH is obtained, Cdi(S, t; X, H) for t� tH is then given by
the difference of V(S, t) and W(S, t) [see Equation (16a)].

IN-OUT BARRIER PARITY RELATION

For European barrier options, the sum of the prices of down-and-in bar-
rier option and down-and-out barrier option is equal to the price of the
European vanilla option. However, such in-out barrier parity relation is
not observed for American barrier options. Suppose we let Cdo(S, t; X, H)
denote the American down-and-out barrier call option and write 

U(S, t; X, H) as the sum of Cdi(S, t; X, H) and Cdo(S, t; X, H)

The sum function U(S, t) satisfies the following linear complementarity
formulation

(18)

The obstacle function for U(S, t) is Cdi(S, t) � (S � X)�, which is always
greater than the obstacle function (S � X)� for C(S, t). Because both
U(S, t) and C(S, t) share the same boundary and initial conditions, so
U(S, t) is guaranteed to be greater than C(S, t).

The financial intuition of the above result is quite obvious. It suf-
fices to show that a portfolio consisting of an American down-and-in call
Cdi(S, t; X, H) and an American down-and-out call Cdo(S, t; X, H) always
dominates the American nonbarrier call. Suppose the holder of the port-
folio follows an exercise policy for the down-and-out call identical to that
of the nonbarrier call (though this is suboptimal for the down-and-out
call). The exercise payoff of the portfolio is always higher than that of the
American nonbarrier call because the portfolio has the extra down-and-
in call. During the life of the options, when S hits the barrier H, the port-
folio becomes the nonbarrier call because one call is knocked out and

U(S, 0) � (S � X)�  for S � H

U(H, t) � C(H, t)
for S � H

c 0U
0t

�
s2

2
 S2 
02U
0S2 � (r � q)S

0U
0S

� rU d 5U � [Cdi(S, t) � (S � X)�]6 � 0

0U
0t

�
s2

2
 S2 
02U
0S2 � (r � q)S 

0U
0S

� rU � 0,�U � Cdi(S, t) � (S � X)�,
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the other call is knocked in. At expiry, both the portfolio and the nonbar-
rier call then have the same value. In all scenarios, the portfolio is at
least worth as much as the nonbarrier call; hence, the result.

AMERICAN UP-AND-IN PUTS

One may apply the above analytic procedures to derive the price formu-
las for American up-and-in puts. For reference, we quote the price for-
mula for an American up-and-in put corresponding to

which has close analogy to the price formula in Equation (14). Let
p(S, t; X) and P(S, t; X) denote the price function of a European vanilla
put and its American counterpart, respectively, and pui(S, t; X, H) and
Pui(S, t; X, H) denote the price function of a European up-and-in put
and its American counterpart, respectively. When 

we have

(19)

NUMERICAL RESULTS

We performed numerical experiments to verify the validity of the analytic
price formulas derived in the last section. The price formulas contain the
price function of the nonbarrier American option function C(S, t; X),
which has no explicit closed form analytic formula. In the literature,
there exists a wide variety of numerical methods and analytic approxi-
mation methods for the numerical valuation of C(S, t; X). It is well
known that explicit numerical schemes, like the binomial method, com-
monly suffer from degradation of accuracy in pricing barrier options
when rebates are incorporated into the pricing algorithm through
numerical boundary condition (Kwok & Lau, 2001). This is because
the numerical rebate value takes finite time to propagate into the interi-
or of the computational domain. In Figure 2, we illustrate the compari-
son of accuracy of computing a knock-in American call option using two
different methods (2) the full binomial method with the American
option price function as rebate (1) the use of price formula (14) where

� a S
H
b1�[2(r�q)�s2]

 cP aH2

S
, t; Xb � p aH2

S
, t; Xb d � pui(S, t; X, H)

Pui(S, t; X, H)

H � minaX, rq  Xb

H � minaX, rq  Xb
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FIGURE 2
The two curves show the plot of percentage error against the number of binomial steps used
in computing a knock-in American call option using the full binomial method with American

option value as rebate (shown in dashed line) and price formula (14) where C(S, t; X) is
obtained from binomial calculations (shown in solid line). The binomial calculations based
on price formula (14) are shown to be more accurate and exhibiting less erratic behaviors.

C(S, t; X) is obtained by the binomial method. The parameter values
used in the calculations are: X � 100, r � 0.1, q � 0.09, t � 1.0, s �

0.3, H � 110, S � 110.5. The limiting values of the critical stock price
of the American call option are found to be S*(0�) � 111.11 and

so that the trigger level H observes 

The “exact” option value is obtained by choosing 10,000 time steps in
the full binomial scheme. We plot the percentage error of the numerical
results against the number of binomial steps used (see Figure 2). The
percentage error using the full binomial method (shown in dashed line)
is invariably greater than that obtained using price formula (14) (shown
in solid line). Also, the convergence behaviors of the full binomial
method are shown to be more erratic.

X � H �
r
q  X

S*(� ) � 162.09,
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TABLE I

The Entries in the Table Show the Comparison of the Numerical Accuracy
of Computation of Knock-in American Call Option Value Under Different

Scenarios of Trigger Level H and Varying Stock Price Level S

Trigger Haug’s Formula Formula “Exact”
Level (H, S) Formula (14) (15a–c) Solution

H � X (99, 99.5) 10.7434 10.7434 — 10.7432
(99, 110.5) 6.8222 6.8222 — 6.8224

X � H � (110, 110.5) 17.2081 17.2063 — 17.2062
(110, 120.5) 12.5767 12.5411 — 12.5409
(110, 140.5) 6.4314 6.3551 — 6.3553
(110, 160.5) 3.1450 3.0664 — 3.0667

� H � S* (130, 130.5) 32.1595 32.1286 — 32.1285
(130, 140.5) 26.2911 25.6663 — 25.6659
(130, 150.5) 21.2959 20.1786 — 20.1773

H � S* (170, 170.5) 69.6604 — 69.4759 69.4759
(170, 180.5) 62.9935 — 59.3868 59.3874

(� )

(� )r
q  X 

r
q  X 

Table I provides more details about our numerical experiments that
were performed to verify various price formulas of knock-in American
call options under different scenarios of trigger level H and varying stock
price level S. The parameter values used in the knock-in American call
option model are X � 100, r � 0.1, q � 0.09, t � 1.0 and s � 0.3.
Correspondingly, we have S*(0�) � 111.11 and . To
obtain the “exact” solution to the option value for a given set of H and S
values (see the last column), we performed calculations with 10,000
time steps using the binomial scheme. The nonbarrier American option
values in the price formulas are obtained using the binomial scheme
with the same number of time steps. The entries in the third column
reveal the limitation of Haug’s formula. His formula provides accurate
results only for H � X. When

the entries in the fourth column show that our price formula (14) gives
very accurate results. Similarly, for price formula (15a–c)
also gives superb accuracy (see the fifth column). We also examined
whether price formula (14) can serve as an approximation formula when

Our numerical results (last three entries in the fourth column) show that
price formula (14) indeed can provide reasonably accurate option values

r
q  X � H � S*(� )

H � S*(� ),

X � H �
r
q  X

S*(� ) � 162.09
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under this scenario. This is attributed to the small difference between
W(S, tH) in Equation (17) and W(S, t) in Equation (13) when both are
evaluated at tH.

Last, we checked the violation of the in–out barrier parity relation
by computing the difference

for varying time to expiry t and stock price S. The above difference is used
as a measure of discrepancy in the parity relation. Here, we chose H � 110
and other parameter values for the knock-in American call option were
taken to be the same as in previous calculations. The numerical results are
obtained using 10,000 time steps in the binomial calculations.

In Figure 3, we plot the discrepancy in parity against stock price S for
varying time to expiry t. The level of discrepancy always stays positive,
and it decreases with increasing stock price and decreasing time to expiry.

Cdi(S, t; X, H) � Cdo(S, t; X, H) � C(S, t; X, H)
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FIGURE 3
The difference Cdi(S, t; X, H) � Cdo(S, t; X, H) � C(S, t; X) is taken as a measure of the

discrepancy in the in-out barrier parity relation. The discrepancy always stays positive,
and it decreases with increasing stock price and decreasing time to expiry.
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CONCLUSION

We have presented the analytic price formulas for knock-in American
options under the Black-Scholes pricing framework. Because the knock-
in region and the exercise region of the underlying American option may
intersect with each other, the price formulas take different analytic forms
depending on the interaction between the knock-in region of the down-
in feature of the option contract and the exercise region of the underly-
ing American option. The price function of a knock-in American option
can be expressed in terms of the price functions of simple barrier options
and American options. Such decomposition facilitates the numerical val-
uation of knock-in American options. We also showed that the sum of
the prices of knock-in and knock-out American options is always greater
than the price of the nonbarrier American counterpart. In future work,
we may consider the impact of other types of trigger, for example, the
holder receives the underlying American option only when the moving
average of the stock price over a fixed period falls below some threshold
level. Our results and valuation approach may shed light on the analysis
of the trigger clauses in other derivative contracts, like the Parisian
trigger requirement on the callable feature in convertible bonds.
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