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The reset right embedded in a derivative refers to the feature that the holder can alter
certain terms in the derivative contract according to some preset rules. In this paper,
we consider options that allow the holder to reset the strike price with preset number
of times at any moment during the life of the option. The determination of the optimal
reset policies adopted by the holder leads to a free boundary value problem. We explore
how the critical asset value at which the holder should exercise the reset right optimally
depends on the number of reset rights remaining, the relative magnitude of the riskless
interest rate and dividend yield, the original strike price set at initiation, etc. In partic-
ular, we examine the asymptotic behaviors of the optimal reset policies at infinite time
to expiry and the existence of threshold time earlier than which the holder should never
shout.

Keywords: Reset options; shout feature; optimal reset policies; free boundary value
problems.

1. Introduction

The reset right embedded in a derivative instrument refers to the feature that the

holder can alter certain terms of the derivative contract according to some pre-set

rules or conditions. In option contracts, the terms that can be reset include the strike

price, maturity date, etc. The time to reset may be chosen optimally by the holder

at any moment (the exercise of reset is normally called shouting). Alternatively,

the reset may be automatic upon the satisfaction of certain preset conditions (see

the examples analyzed by Gray and Whaley [4]). For example, in the reset strike

put option, the strike price is reset to the prevailing stock price upon shouting. The

earliest type of option with the reset right is the shout call option, which has the

embedded feature that allows its holder to lock in the profit via shouting [5]. The
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terminal payoff of a shout call option is max(ST − X, St − X, 0), where X is the

strike price, ST is the terminal stock price and St is the prevailing stock price at the

shouting instant t. Reset features are also common in bonds and funds. For example,

the Canadian segregated funds contain multiple embedded reset rights that allow

the holder to reset the guarantee level and the maturity date during the life of the

contract [6]. In general, the embedded reset feature is attractive to investors who

would like to lock in the gain at the prevailing state and seek potential higher gain.

It is relatively straightforward to price derivatives with the automatic reset fea-

ture. Dependent on whether the reset conditions are satisfied or not, the payoff on

the reset date is the maximum of the reset payoff and the original payoff. However,

the pricing of a derivative with voluntary reset right leads to an optimal stop-

ping problem. In the valuation procedure, it is necessary to investigate the optimal

shouting policy, that is, to determine the critical asset price at which it is optimal

to shout.

Unlike the early exercise feature in American options where the holder can exer-

cise only once, it is common to allow multiple reset opportunites in reset options. In

this paper, we consider the optimal shouting policies of a put option with multiple

rights to reset the strike price. Whenever the holder shouts, the strike price of

the put is reset to the prevailing stock price. The number of shouts commenced

throughout the life of the option is more than once but with an upper limit. The

shout floor corresponds to the special type of reset put option where the strike price

is not set at initiation, rather it is put in place at the first shout [1]. This paper is

an extension of an earlier work by the authors [2] that deals with reset put option

with single shouting right. As an analogy, this is similar to the extension of pricing

of vanilla options to compound European options. We consider the characterization

of the optimal shouting boundary, in particular, the monotonicity properties of the

price functions and critical asset prices with respect to the number of outstanding

reset rights remaining. Our results confirm with the financial intuition that the

holder exercises the reset rights at a lower critical asset price (the put is less out-of-

the-money) when there are more reset rights outstanding and less time remaining

before expiration. Similar to the one-reset case, we show that the relative magnitude

of the riskless interest rate r and dividend yield q plays a crucial role in the optimal

shouting policy. When r > q, it is never optimal to shout when the remaining life of

the option is longer than some threshold length of time, and this threshold length

increases with more reset rights outstanding. On the other hand, when r < q, it is

always optimal to shout when the asset price reaches some critical asset value, and

this critical value decreases with more reset rights outstanding.

The paper is organized as follows. In the next section, we present the linear

complementarity formulation of the free boundary value problem associated with

the pricing of the n-reset put option. We also develop the put-call parity relation

between the reset put and the shout call. We show that the lookback options are

related to the limiting cases of reset put options with infinite number of shouting

rights. In Sec. 3, the characterization of the optimal reset policies of the n-reset
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put options is examined. We start with the exploration of the optimal shouting

policies of the reset put options through numerical experiments by computing their

option value and shouting boundary under different set of parameter values. We

then illustrate how the optimal shouting policies would depend on the monotonicity

properties of the price functions of the at-the-money reset put options. We examine

and postulate some analytic properties of the optimal shouting boundary of the

reset put options. For the n-reset shout floor, we manage to obtain an analytic

representation of the price formula and deduce the corresponding optimal reset

policies. The paper ends with summaries and conclusive remarks in the last section.

2. Pricing Formulation of Reset Put Options

We consider the pricing models of put options with multiple rights to reset the

strike price throughout the life of the option contract. Let n denote the maximum

number of resets allowed for the holder and X be the strike price set at initiation.

Let tj denote the time of the jth reset to be chosen optimally by the holder of a

n-reset put option, and S∗
j denote the critical asset value at the reset instant tj .

Since the new reset strike price should be higher than the previous strike price, we

should have S∗
j > S∗

j−1 and S∗
j > X are observed in all resets. The terminal payoff

of the n-reset put option is given by max(S∗
` − ST , 0), where S∗

` is the strike set in

the last reset by the holder.

We adopt the usual Black-Scholes pricing framework in our model, where the

asset price S under the risk neutral measure is assumed to follow the lognormal

diffusion process

dS

S
= (r − q)dt + σdZ , (1)

where r and q are the constant riskless interest rate and dividend yield, σ is the

volatility and dZ is the standard Wiener process. Let Vn(S, τ ; X) denote the value

of the n-reset put option with time to expiry τ . Let T denote the expiration date of

the option and t be the current time so that time to expiry τ = T − t. Upon the jth

reset, the reset put becomes an at-the-money (j−1)-reset put where the strike price

equals the prevailing asset price at the reset instant. The strike price of the reset

put with j reset rights remaining will be S∗
j+1; and for notational convenience, we

write S∗
n+1 = X . The voluntary reset right leads to the following optimal stopping

problem where

Vj(S, τ ; S∗
j+1) = sup

tj∈T
(j)

t,T

E∗[e−r(tj−t)Vj−1(Stj
, T − tj ; Stj

)|St = S] ,

j = n, n − 1, . . . , 1 , (2)

where E∗ denotes the expectation under the risk neutral measure, and T
(j)

t,T is the set

of stopping times between t and T associated with the jth reset right, j = 1, . . . , n.
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In particular, at the commencement of the last reset right, the option reduces to

an at-the-money vanilla put option.

It can be shown that Vj observes linear homogeneity in S and X so that

Vj(S, τ ; X) = XVj(S/X, τ ; 1). When the reset put is at-the-money, that is, S/X =

1, we have Vj(S, τ ; S) = SVj(1, τ ; 1). We define Pj(τ) = Vj−1(1, τ ; 1), j = 1, 2, . . . , n

so that the value of the reset put option at the instant of the jth reset is equal to

SPj(τ).

2.1. Linear complementarity formulation

Let S∗
n(τ) denote the critical asset price at which it is optimal for the holder to shout

the reset put with n reset rights outstanding. The stopping region and continuation

region correspond to S ≥ S∗
n(τ) and S < S∗

n(τ), respectively. In the stopping region,

Vn(S, τ) = SPn(τ); while in the continuation region, Vn(S, τ) satisfies the Black-

Scholes equation. The linear complementarity formulation of the free boundary

value problem associated with the n-reset put option can be expressed as

∂Vn

∂τ
−

σ2

2
S2 ∂2Vn

∂S2
− (r − q)S

∂Vn

∂S
+ rVn ≥ 0 , Vn(S, τ) ≥ SPn(τ) ,

[
∂Vn

∂τ
−

σ2

2
S2 ∂2Vn

∂S2
− (r − q)S

∂Vn

∂S
+ rVn

]
[Vn − SPn(τ)] = 0 , (3)

Vn(S, 0) = max(X − S, 0) .

For the n-reset shout floor, the strike price is not prescribed at initiation, but

rather being set at the first reset moment. This corresponds to the choice of zero

value for the strike price X .

An alternative representation of the governing equation for Vn(S, τ), valid for

S ∈ (0,∞) and τ ∈ (0, T ], is given by

∂Vn

∂τ
−

σ2

2
S2 ∂2Vn

∂S2
−(r − q)S

∂Vn

∂S
+ rVn =

{
0 , 0<S <S∗

n(τ) ,

Se−qτ d
dτ

[eqτPn(τ)] , S≥S∗
n(τ) ,

(4)

where the non-homogeneous term in the stopping region is obtained by substitut-

ing Vn(S, τ) = SPn(τ) into the Black-Scholes equation. The non-homogeneous term

can be interpreted as the rate of delayed compensation required to compensate the

holder for not shouting in the stopping region, and it has the following financial

interpretation. The reset payoff at the shout moment u is Pn(u) units of asset whose

price is Su, t ≤ u ≤ T , and its no-arbitrage value at time t is Ste
q(u−t)Pn(u). Sup-

pose the holder delays his shouting by ∆u time periods, he should be compensated

with cash amount St[e
q(u−t)Pn(u) − eq(u+∆u−t)Pn(u + ∆u)]. The rate of delayed

compensation is given by

−
d

du
[Ste

q(u−t)Pn(u)] = −Ste
−qt d

du
[equPn(u)] = −e−quSu

d

du
[equPn(u)] . (5)
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We then deduce that a necessary condition for optimal shouting is given by the

positivity of the quantity d
dτ

[eqτPn(τ)].

2.2. Put-call parity relation between reset put and shout call

The most original class of options with the reset feature resemble the ladder options,

which were first called “shout options” by Thomas [5]. Consider the shout option

with the call payoff, its terminal payoff is given by max(ST −X, Su−X) if shouting

has occurred at time u, and stays at max(ST − X, 0) if no shout has commenced

throughout the option’s life. Here, the “effective ladder” in a shout call option is

Su, but the ladder is chosen by the holder.

Suppose there are n shouting rights allowed in a shout call, and let S∗
` denote

the asset price at the last shouting chosen by the holder, 0 ≤ ` ≤ n. The terminal

payoff of the n-shout call option will be max(ST − X, S∗
` − X). We write Un(S, τ)

as the price of the n-shout call option. Consider the portfolio of holding an n-

shout call option and shorting a forward contract with the delivery price same as

the strike price of the shout call option. Both derivatives are assumed to have the

same initiation date and maturity date T . The terminal payoff of this portfolio is

seen to be (i) max(ST − X, 0) − (ST − X) = max(X − ST , 0) if there is no shout

throughout the whole life of the contracts, and (ii) max(ST−X, S∗
` −X)−(ST−X) =

max(S∗
` − ST , 0) if the holder last shouts at asset price S∗

` prior to maturity. The

terminal payoff structure is seen to resemble that of the n-reset put option. Since

the n-shout call option can be replicated by the combination of the n-reset put

option and the corresponding forward contract, both the shout call and reset put

should share the same optimal shouting policy. The put-call parity relation between

their prices is given by

Un(S, τ) = Vn(S, τ) + Se−qτ − Xe−rτ . (6)

2.3. Limiting case of infinite reset rights

When the number of allowable reset rights n tends to infinity, the shout call becomes

the fixed strike lookback call with terminal payoff: max(MT −X, 0), where MT is the

realized maximum asset value. This is because the holder should always shout when-

ever a new maxima for the asset value is realized. Another justification of such shoot-

ing policy is presented in Sec. 3.3. By the put-call parity relation [see Eq. (6)], the

price of an infinite-reset put is given by the difference of a fixed strike lookback call

and a forward contract; or equivalently, it becomes a lookback option with terminal

payoff: max(MT −ST , X−ST ). In particular, when X = 0 (corresponds to the shout

floor), the terminal payoff becomes that of a floating strike lookback call option.

3. Properties of the Price Functions and Optimal Reset Policies

In this section, we examine the characterization of the optimal shouting boundary

S∗
n(τ) of the n-reset put. We start with the examination of the properties on the
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price functions Vn(S, τ) and shouting boundary S∗
n(τ) from numerical experiments

under the following separate cases: (i) r < q and (ii) r > q.

3.1. Numerical results on price functions and optimal shouting

boundaries

We applied the binomial method to compute the option values and critical asset

prices of one-shout, two-shout and three-shout reset put options. To incorporate the

reset feature, we adopted the usual dynamic programming procedure of comparing

the continuation value and reward value upon reset at each binomial node. The

strike price and volatility are taken to be X = 1.0 and σ = 0.2 in all calculations.

For r < q, we take r = 0.02 and q = 0.06; while for r > q, we take r = 0.06 and

q = 0.02.

In Fig. 1(a), we plot V1(S, τ), V2(S, τ) and V3(S, τ) against S at τ = 1, given that

r < q. We observe the monotonic property V1(S, τ) < V2(S, τ) < V3(S, τ), which

agrees with the intuition that put option with more reset rights should have higher

value. At the critical asset price, each of the price curves touches tangentially the

line representing the value of the corresponding at-the-money put option. The price

function of the at-the-money (n − 1)-reset put option is given by SPn(τ), which

is linear in S. The critical asset prices, S∗
1 (τ), S∗

2 (τ) and S∗
3 (τ), corresponding to

the one-shout, two-shout and three-shout reset put options, observe the monotonic

property: S∗
1 (τ) > S∗

2 (τ) > S∗
3 (τ).

In Fig. 1(b), we plot V1(S, τ), V2(S, τ) and V3(S, τ) against S at τ = 12, given

that r > q. All of the monotonic properties stated in the last paragraph remain

valid. At τ = 12, only the price curve V3(S, τ) touches the corresponding at-the-

money put option value line. The price curves V1(S, τ) and V2(S, τ) always stay

above the corresponding at-the-money put option value lines, implying that it is

never optimal to shout at any asset price level.

Figures 2(a) and 2(b) show the plots of S∗
n(τ) against τ, n = 1, 2, 3 for r < q and

r > q, respectively. When r < q, we observe that S∗
n(τ) is defined for τ ∈ (0,∞)

and S∗
n+1(τ) < S∗

n(τ), n = 1, 2. Also, S∗
n(τ) tends to a finite asymptotic value as

τ → ∞, n = 1, 2, 3. From Fig. 2(a), these asymptotic values are estimated to be

1.5, 1.31 and 1.23, for the one-shout, two-shout and three-shout reset put options,

respectively. On the other hand, when r > q, the shouting boundaries in Fig. 2(b)

reveal that S∗
n(τ) is defined only for τ ∈ (0, τ∗

n), n = 1, 2, 3. These critical values

are estimated to be τ∗
1 ≈ 5.71, τ∗

2 ≈ 9.55 and τ∗
3 ≈ 13.0 for the one-shout, two-

shout and three-shout reset put options, respectively. Since τ ∗
1 < τ∗

2 < 12 < τ∗
3 , the

holder of the one-shout option or two-shout option will not shout at any asset price

level. This explains why the two price curves V1(S, τ) and V2(S, τ) stay above the

corresponding at-the-money put option value lines in Fig. 1(b).

Summary of pricing properties. When r < q, the optimal shouting bound-

ary exists at all times, that is, S∗
n(τ) is defined for τ ∈ (0,∞). For a given value

of τ , one observes S∗
n+1(τ) < S∗

n(τ), n = 1, 2, . . .. This can be deduced from the
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Fig. 1. (a) Plot of the price function Vn(S, τ), n = 1, 2, 3, against the asset value S at τ = 1,
given that r < q. The parameter values used in the calculations are: r = 0.02, q = 0.06, σ = 0.2 and
X = 1.0. All price curves touch tangentially the lines representing the values of the corresponding
at-the-money put options. (b) Plot of the price function Vn(S, τ), n = 1, 2, 3, against the asset
value S at τ = 12, given that r > q. The parameter values used in the calculations are: r = 0.06,
q = 0.02, σ = 0.2 and X = 1.0. The price curve of the three-shout put option touches the value
line of the corresponding at-the-money put option, while the price curves of the one-shout and
two-shout put options always stay above the corresponding at-the-money put option value lines.
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Fig. 2. (a) Plot of the shouting boundary as a function of time to expiry for the reset put
option with right of one, two or three shouts, given that r < q. The parameter values used in the
calculations are: r = 0.02, q = 0.06, σ = 0.2 and X = 1.0. The asymptotic values of the critical
asset price at infinite time to expiry are found to be 1.5, 1.31 and 1.23, respectively, according to
Eqs. (10a) and (10b). (b) Plot of the shouting boundary as a function of time to expiry for the
reset put option with right of one, two or three shouts, given that r > q. The parameter values
used in the calculations are: r = 0.06, q = 0.02, σ = 0.2 and X = 1.0. The critical values of the
time to expiry beyond which it is never optimal to shout are estimated to be 5.71, 9.55 and 13.0,
respectively.
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financial intuition that the holder should choose to shout at a higher critical asset

price with less allowable shouts remaining. The shouting boundary starts at X , that

is, S∗
n(0+) = X , and S∗

n(τ) is an increasing function of τ with a finite asymptotic

value at τ → ∞. Furthermore, from the monotonic property on n, we have

lim
τ→∞

S∗
n+1(τ) < lim

τ→∞
S∗

n(τ) , n = 1, 2, . . . . (7)

In the special case r = q, we expect S∗
n(τ) → ∞ as τ → ∞, n = 1, 2, . . ..

When r > q, S∗
n(τ) retains the monotonic properties in both n and τ and S∗

n(τ)

also starts at S∗
n(0+) = X . However, S∗

n(τ) is defined only for τ ∈ [0, τ∗
n), where

τ∗
n is the critical value for τ such that it is never optimal for the holder to shout

the n-reset put whenever τ > τ∗
n . With less number of shouts remaining, the holder

would become more conservative on the use of the shouting rights. For a given τ ,

it may occur that it would be optimal to shout a n-reset put at sufficiently high

asset price level but never shout for its (n− 1)-reset counterpart. Hence, we expect

τ∗
n+1 > τ∗

n , n = 1, 2, . . ..

3.2. Properties of Pn(τ)

The functions Pn, (τ), n = 1, 2, . . . play an important role in determining the optimal

shouting policies of the n-shout reset put options. The function Pn(τ) is expected

to observe the following properties.

(i) If r ≤ q, then

d

dτ
[eqτPn(τ)] > 0 for τ ∈ (0,∞) . (8)

(ii) If r > q, there exists a unique critical value τ ∗
n ∈ (0,∞) such that

d

dτ
[eqτPn(τ)]|τ=τ∗

n
= 0 , (9a)

and

d

dτ
[eqτPn(τ)] > 0 for τ ∈ (0, τ∗

n) , (9b)

d

dτ
[eqτPn(τ)] < 0 for τ ∈ (τ∗

n ,∞) . (9c)

In addition, we have τ∗
n < τ∗

n+1 and lim
n→∞

τ∗
n = ∞.

We prove the validity of Eq. (8) in Appendix A. The results in Eqs. (9a),

(9b) and (9c) are stated as conjecture. Due to the lack of the analytic formulas

for Pn(τ), n > 1, the rigorous proof of Eqs. (9a), (9b) and (9c) is not available.

We illustrate the validity of the above results through numerical verification (see

Figs. 3(a)–(c)). The following observations verify the validity of Eq. (9a). When

r > q (see Fig. 3(c)), the functions eqτPn(τ), n = 1, 2, 3, attain their respective

absolute maxima at τ∗
1 ≈ 5.71τ∗

2 ≈ 9.55 and τ∗
3 ≈ 13.0. These threshold time values

agree well with those obtained in Fig. 2(b). In each of these figures, the curve for
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Fig. 3. (a)The curves show the plot of eqτ Pn(τ), n = 1, . . . , 4,∞, against τ , given that r < q.
The parameter values used in the calculations are: r = 0.02, q = 0.06, X = 1.0 and σ = 0.2. The
curves are monotonically increasing for all values of τ . The price function SP∞(τ) corresponds
to the value of shout floor with infinite number of reset rights. (b) The curves show the plot
of eqτPn(τ), n = 1, . . . , 4,∞, against τ , given that r = q. The parameter values used in the
calculations are: r = q = 0.02, X = 1.0 and σ = 0.2. The curves are monotonically increasing and
concave downward for all values of τ . (c) The curves show the plot of eqτ Pn(τ), n = 1, · · · , 4,∞,
against τ , given that r > q. The parameter values used in the calculations are: r = 0.06, q = 0.02,
X = 1 and σ = 0.2. The maximum values of Pn(τ), n = 1, 2, 3, are attained roughly at τ∗

1
= 5.71,

τ∗

2
= 9.55 and τ∗

3
= 13.0, respectively. These estimated values for τ∗

1
, τ∗

2
and τ∗

3
agree well with

those obtained in Fig. 2(b).
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Fig. 3. (Continued)

eqτP∞(τ) = eqτ limn→∞ Pn(τ) is also included for comparison. We compute P∞(τ)

using the relation: SP∞(τ) = c`b(S, S, τ), where c`b(S, M, τ) denotes the price func-

tion of a floating strike lookback call option with realized maximum asset value M .

Such relation can be deduced from the observation that an infinite-reset shout floor

is effectively a floating strike lookback call and the realized maxima of asset value

at initiation is simply the current asset value S [see Sec. 2.3 and Eq. (11b)].

3.3. Analytic properties of the optimal shouting boundary

At those times when the term d
dτ

[eqτPn(τ)] in the non-homogeneous term in Eq. (4)

is negative, the holder should never shout optimally. Hence, we deduce that for r >

q, the optimal shouting boundary S∗
n(τ) is defined only for τ ∈ (0, τ∗

n), where τ∗
n is

defined in Eq. (9a). This result is verified by the numerical plots shown in Figs. 2(b)

and 3(c). When r < q, we have
d

dτ
[eqτPn(τ)] > 0 for all τ > 0; correspondingly,

S∗
n(τ) is defined for all τ > 0. In particular, we manage to derive the asymptotic

value for S∗
n(τ) as τ → ∞.

Theorem 3.1. Let S∗
n,∞ denote limτ→∞S∗

n(τ). For r < q, we have

S∗
n,∞ =

(
1 +

1

α

)
X

βn

(10a)

where α = 2(q − r)/σ2, β1 = 1 and

βn = 1 +
αα

(1 + α)1+α
β1+α

n−1 . (10b)
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Fig. 4. Plot of the price function Vn(S, τ ;X), n = 1, 2, 3, of the n-reset put option against the
initial strike price X. The parameter values used in the calculations are: r = 0.06, q = 0.02,
σ = 0.2, τ = 5.0 and S = 1.0. The slopes of the price curves tend to one as X → ∞ and tend to
zero as X → 0.

In addition, we have the monotonic property S∗
n,∞ < S∗

n−1,∞, n = 2, 3, . . . , and

limn→∞ S∗
n,∞ = X. If r = q, then S∗

n,∞ becomes infinite.

The proof of Theorem 3.1 is presented in Appendix A.

Infinite-reset put. Let S∗
∞(τ) denote the critical asset price at which it is optimal

to shout the infinite-reset put option. Since S∗
∞(τ) is non-decreasing function of

τ, S∗
∞(τ) ≤ limn→∞ S∗

n,∞ = X , for all τ . Together with the constraint that S∗
∞(τ) ≥

X , we deduce that S∗
∞(τ) = X for all τ ≥ 0. This agrees with the intuition that

the holder should shout the infinite-reset put whenever the option becomes in-

the-money (see Sec. 2.3). We see that the pricing model of the infinite-reset put

is no longer a free boundary value problem since the exercise boundary becomes

deterministic.

3.4. Dependence of price functions on the strike price

In Fig. 4, we show the plot of the price function of the n-reset put option against

the initial strike price X . The parameter values used in the calculations are:

r = 0.06, q = 0.02, σ = 0.2, τ = 5.0 and S = 1.0 .

The slopes of the price curves observe the properties:

lim
X→0

∂Vn

∂X
= 0 and lim

X→∞

∂Vn

∂X
= 1 .
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These analytic properties can be understood by the following financial arguments.

At exceedingly high value of X , the holder should never reset the strike price

optimally, so the reset put is equal to that of the vanilla put. We then have

lim
X→∞

∂Vn

∂X
= lim

X→∞

∂pE

∂X
= 1 .

At infinitesimally small value of X , the reset put is sufficiently deep-in-the-money

so that the put should be shouted immediately to establish a new strike price. This

implies S∗
n(τ) → 0 as X → 0. The put is almost sure to stay in the stopping region

so that Vn(τ) ≈ SPn(τ); and accordingly,

lim
X→0

∂Vn

∂X
= 0 .

3.5. Shout floors

Unlike the reset put, the shout floor has no preset strike price at the initiation of

the contract. We may visualize a shout floor as a special case of a reset put where

the strike price X is zero. The value of the n-reset shout floor shares the same

governing equation as that of n-reset put option except that the terminal payoff

is set to be zero. The price function of a n-reset shout floor takes different forms

according to r ≤ q or r > q, whose properties are summarized in Theorem 3.2.

Theorem 3.2. Let Rn(S, τ) denote the price function of the n-reset shout floor.

(i) If r ≤ q,

Rn(S, τ) = SPn(τ) , τ ∈ (0,∞) . (11a)

(ii) If r > q,

Rn(S, τ) =

{
SPn(τ) τ ∈ (0, τ∗

n ]

e−q(τ−τ∗

n)SPn(τ∗
n) , τ ∈ (τ∗

n,∞) ,
(11b)

where τ∗
n is the unique solution to d

dτ
[eqτPn(τ)] = 0.

The proof of Theorem 3.2 is given in Appendix A. The above analytic rep-

resentation of Rn(S, τ) is not an explicit analytic formula. Recall that Pn(τ) =

Vn−1(1, τ ; 1), so one has to find V1(S, τ), V2(S, τ), . . ., successively in order to ob-

tain Pn(τ).

Optimal shouting policies of shout floors. First, consider the case r ≤ q. Since

we have Rn(S, τ) = SPn(τ) for all values of τ , we deduce that the first shouting

right will be utilized at once at any asset price level. Next, when r > q, the n-reset

shout floor will not be shouted at any asset price when τ > τ ∗
n . However, it will be

shouted at once at any asset price level whenever τ ≤ τ ∗
n . Once the first shouting

has occurred, the n-reset shout floor reduces to the at-the-money (n− 1)-reset put

option. The subsequent optimal shouting policies will be governed by those of the

multi-reset put option.
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4. Conclusion

In this paper, we have analyzed the optimal shouting policies of options with mul-

tiple shouting rights. The relations between the shout call option, reset put option

and shout floors have been examined. The behaviors of the shouting boundaries de-

pend crucially on the relative magnitude of the riskless interest rate r and dividend

yield q. When r ≤ q, the shouting boundary is defined at all times. This implies

that at any time during the life of the option, the holder should choose to shout

optimally when the asset value reaches some threshold value. On the other hand,

when r > q, there exists a threshold time value earlier than which it is never optimal

for the holder to shout at any asset value level. The optimal shouting policies of the

multi-reset shout floor have some striking properties. When r ≤ q, the shout floor

should be shouted at once at any time and at any asset price level. When r > q,

there exists a critical time earlier than which it is never optimal for the holder to

shout the shout floor. However, the shout floor should be shouted at once at any

asset price upon reaching the critical time. When the first shouting has occurred in

a multi-reset shout floor, the shout floor becomes the corresponding at-the-money

reset put option with one less shouting right.

A number of interesting analytic formulas have been derived in the paper. The

analytic representation of the price function of the n-reset shout floor is deduced.

In addition, we obtain the asymptotic critical asset prices at infinte time to expiry

for the n-reset put options when r < q.

Several results on the monotonic properties with regard to the critical asset

prices and shouting boundaries are established through theoretical arguments toge-

hter with numerical experiments. Some of these properties are: (1) an option with

more reset rights should have higher value compared to its counterpart with less; (2)

the holder shouts at a lower critical asset price with more shouting rights outstand-

ing; (3) the holder chooses to shout at a lower critical asset price for a shorter-lived

option; (4) the critical value of the time to expiry beyond which it is never optimal

to shout increases with more shouting rights outstanding. In particular, when the

number of allowable shouts tends to infinity, the reset put options are related to

lookback options. All these monotonic properties agree with financial intuitions.

Appendix A

Proof of Eq. (8). We prove by mathematical induction. The proposition holds

when n = 1 (see [2]). Assume
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d

dτ
[eqτPn(τ)] > 0

and since Pn+1(τ) = Vn(1, τ ; 1), it suffices to show

d

dτ
[eqτVn(1, τ ; 1)] > 0 for τ > 0 .

Let us consider the functions

Ṽn(S, τ) = eqτVn(S, τ ; 1) and Ṽ δ
n (S, τ) = eq(τ+δ)Vn(S, τ + δ; 1) with δ > 0 ,

we would like to show that

Ṽ δ
n (S, τ) > Ṽn(S, τ) for all S, τ > 0 .

It is seen that Ṽn(S, τ) and Ṽ δ
n (S, τ) satisfy

∂Ṽn

∂τ
−

σ2

2
S2 ∂2Ṽn

∂S2
− (r − q)S

∂Ṽn

∂S
+ (r − q)Ṽn ≥ 0 , Ṽn(S, τ) ≥ SeqτPn, (τ) ,

[
∂Ṽn

∂τ
−

σ2

2
S2 ∂2Ṽn

∂S2
− (r − q)S

∂Ṽn

∂S
+ (r − q)Ṽn

]
[Ṽn(S, τ) − SeqτPn(τ)] = 0 ,

Ṽn(S, 0) = max(1 − S, 0)

and

∂Ṽ δ
n

∂τ
−

σ2

2
S2 ∂2Ṽ δ

n

∂S2
−(r − q)S

∂Ṽ δ
n

∂S
+(r − q)Ṽ δ

n ≥ 0 , Ṽ δ
n (S, τ) ≥ Seq(τ+δ)Pn(τ +δ) ,

[
∂Ṽ δ

n

∂τ
−

σ2

2
S2 ∂2Ṽ δ

n

∂S2
−(r − q)S

∂Ṽ δ
n

∂S
+(r − q)Ṽ δ

n

]
[Ṽ δ

n (S, τ)−Seq(τ+δ)Pn(τ + δ)]=0 ,

Ṽ δ
n (S, 0) = Ṽn(S, δ) ,

respectively. Let pE(S, τ ; 1) denote the price of a European put option with unit

strike. It can be checked easily that

∂

∂τ
eqτpE(S, τ ; 1) ≥ 0 for r ≤ q ,

so

eqδpE(S, δ) ≥ pE(S, 0) for r ≤ q .

Clearly Vn(S, τ ; 1) > pE(S, τ ; 1) for all S, τ > 0, so we have

Ṽ δ
n (S, 0) = eqδVn(S, δ; 1) > eqδpE(S, δ; 1) ≥ pE(S, 0) = max(1 − S, 0) = Ṽn(S, 0) .

The assumption of induction gives Seq(τ+δ)Pn(τ + δ) > SeqτPn(τ). Since the ob-

stacle function and the terminal payoff associated with Ṽ δ
n (S, τ) are greater than

those of Ṽn(S, τ), by applying the maximum principle of variational inequality (see

[3]), we obtain the desired result. �
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Proof of Theorem 3.1. We write Wn(S, τ) = erτVn(S, τ), and let W∞
n (S) denote

the limit of Wn(S, τ) as τ → ∞. The governing equation for W∞
n (S) take the from

σ2

2
S2 d2W∞

n

dS2
+ (r − q)S

dW∞
n

dS
= 0 , 0 < S < S∗

n,∞ ,

with auxiliary conditions

W∞
n (S∗

n,∞) = βnS∗
n,∞ and

dW∞
n

dS
(S∗

n,∞) = βn ,

where βn = limτ→∞ erτPn(τ). When n = 1, it can be shown easily that

β1 = lim
τ→∞

erτPE(1, τ ; 1) = 1 .

In general, we have

βn = lim
τ→∞

erτPn(τ) = lim
τ→∞

Wn−1(1, τ ; 1) = W∞
n−1(1; 1) .

Hence, βn exists provided that W∞
n−1(1; 1) is defined. The existence of βn can be

argued as follows. Given the existence of β1, we can determine W∞
1 (1; 1). This

guarantees the existence of β2, and from which we can determine W∞
2 (1; 1), and so

forth.

The general solution for W∞
n (S) is found to be

W∞
n (S) = X + CS1+α ,

where α = 2(q − r)/σ2 and C is an arbitrary constant. Applying the two auxiliary

conditions, we obtain

C =
1

1 + α

βn

S∗α
n,∞

=
αα

(1 + α)1+α

β1+α
n

Xα
,

S∗
n,∞ =

(
1 +

1

α

)
X

βn

.

The recurrence relation for βn is deduced to be

βn = W∞
n−1(1; 1) = 1 +

αα

(1 + α)1+α
β1+α

n−1 .

The monotonic relation βn > βn−1 leads to the monotonic property S∗
n−1,∞ > S∗

n,∞.

Taking the limit n → ∞ in the above recurrence relation for βn gives

lim
n→∞

βn = 1 +
1

α
.

Correspondingly, this implies limn→∞ S∗
n,∞ = X . The first few values of βn and

S∗
n,∞ are obtained as follows:

(i) when n = 1, β1 = 1 and S∗
1,∞ = (1 + 1

α
)X ;

(ii) when n = 2, β2 = 1 + αα

(1+α)1+α and S∗
2,∞ =

1+ 1
α

1+ αα

(1+α)1+α

;

(iii) when n = 3, β3 = 1+ αα

(1+α)1+α [1+ αα

(1+α)1+α ] and S∗
3,∞ =

1+ 1
α

1+ αα

(1+α)1+α [1+ αα

(1+α)1+α ]
.
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Proof of Theorem 3.2. Since there is no strike price appearing in the linear

complementarity formulation, one deduces that Rn(S, τ) is linearly homogeneous

in S so that Rn(S, τ) = Sgn(τ). The set of governing equations for gn(τ) are given

by

d

dτ
[eqτgn(τ)] ≥ 0 , gn(τ) ≥ Pn(τ) ,

{
d

dτ
[eqτgn(τ)]

}
[gn(τ) − Pn(τ)] = 0 and gn(0) = 0 .

Within the time interval where
d

dτ
[eqτPn(τ)] ≥ 0, we observe that the equa-

tions are automatically satisfied by gn(τ) = Pn(τ). However, at those times where
d

dτ
[eqτPn(τ)] < 0, gn(τ) must satisfy

d

dτ
[eqτgn(τ)] = 0. Now, we consider the fol-

lowing two separate cases:

(i) r ≤ q.

Since d
dτ

[eqτPn(τ)] is strictly positive for all τ > 0 and Pn(0) = 0, we then

have gn(τ) = Pn(τ), τ ∈ (0,∞).

(ii) r > q.

For τ ∈ (0, τ∗
n ], we deduce similarly that gn(τ = Pn(τ). However, when τ > τ∗

n ,

we have eqτgn(τ) = eqτ∗

nPn(τ∗
n), so that gn(τ) = e−q(τ−τ∗

n)Pn(τ∗
n) for τ ∈

(τ∗
n ,∞).
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