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Professors Gerber and Shiu have done a refined job of evaluating the value of the dynamic fund

protection option with perpetual life, and relating the fund protection option with the perpetual
maximum option and the Russian option (perpetual American lookback option). In particular,

they have done a detailed and insightful analysis of the optimal exercise strategy of these options.
The two general concepts in arbitrage option pricing theory, smooth paste condition and replicating
portfolio, are demonstrated as part of the solution procedure. In this discussion note, we would
like to derive the price functions of the dynamic fund protection option and maximum option by
relating them to the value of a protection fund with rights to reset to value of another guaranteed
fund.

We consider a primary fund with value process 54, which is protected with reference to another
(guaranteed) fund with value process S%. The holder of the primary fund has the right to reset
the value to that of the guaranteed fund upon exercising the reset right. The number of resets
allowed can be finite or infinite. Further, the protection fund is assumed to have perpetual life
and withdrawal right. With infinite number of resets, the holder should always exercise the reset
right whenever the value of the primary fund falls to the value of the guaranteed fund. This reset
strategy is exactly the same as the perpetual dynamic fund protection option considered by Gerber
and Shiu. When the holder is allowed to reset only once, the perpetual protection fund is equivalent
to the perpetual maximum option. This is because the fund becomes S upon withdrawal and St
upon reset, corresponding to the payoff that takes the maximum of S} and Si. In this discussion
note, we would like to obtain the price formula of such perpetual protection fund with withdrawal
right and n reset rights. By setting n = 1 and n — o0, we recover the price functions of the
perpetual maximum option and the dynamic fund protection option, respectively. We also discuss
the monotonic properties of the value functions and the threshold values at which the holder should
withdraw or reset.

With both withdrawal and reset rights, the option pricing model has two-sided thresholds. Let
Sy and S; denote the values of the primary fund and guaranteed fund at the current time (taken
to be the zero), respectively. Under the Black-Scholes risk neutral valuation framework, the value
processes are assumed to follow the lognormal processes
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where r is the riskless interest rate, (; is the dividend yield of fund i, o; is the volatility parameter of
fund ¢ and dZ; is the standard Wiener process. We assume dZ; dZs = p dl, where p is the correlation

coefficient between ST and Si. Let V,,(S1,S2) denote the value of the perpetual protection fund

with n reset rights and withdrawal right. In our pricing formulation, we take advantage of the
linear homogeneity property of V,,(51,52); and accordingly, we define
o Vn(S 1, 52) Sl

W, (z) = —, 0 T (2)

This corresponds to the choice of S5 as the numeraire. In the continuation region, the governing
equation for W, (x) takes the form
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where 02 = 02 —2po109 + 03, 2% and 27, are the threshold values for o at which the holder should

optimally withdraw and reset, respectively. The boundary conditions are prescribed as follows:

W,(z¥) =1 and W/ (z¥) =0, (4a)
Wo(xy) =2, Wi (1) and W, (27) = W, 1 (1). (4b)

Upon withdrawal, V,,(51,52) becomes Sy and so we have W,,(z%¥) = 1. When the holder resets
at x = 2, the option writer has to supply enough funding to increase the number of units of the
primary fund such that the new fund value equals S5;. The corresponding number of units equals
2y, which is the ratio of the fund values at the reset threshold x] . Subsequently, the protection
fund has one reset right less and x becomes 1 since the values of the new “upgraded” fund and
guaranteed fund are identical upon reset. Hence, the value of the protection fund at reset threshold
becomes z" W, _1(1). When n = 0, there is no reset right so we have Wy(z) = 1 for all values of
z. The derivative conditions at ¥ and x], represent optimality conditions at the withdrawal and

reset thresholds, respectively.

Consider the limiting case n — 00, we have W (2 ) = 2L W4 (1). The equation is seen to be
satisfied by 27, = 1 [for a more rigorous justification, see Eq. (13)]. This represents immediate reset
whenever S% falls to S%, given that the holder has infinite number of reset rights. Furthermore, the
corresponding derivative condition becomes W/ (1) = W (1), which is equivalent to Eq. (3.14) in
Gerber-Shiu’s paper [they argue that the value of V(5S7, S2) is unaffected by marginal changes in
Sy when Sj is “close” to S1]. We would like to obtain closed form solutions for =7, 2% and W, (z).
Since the protection fund with more outstanding reset rights should be more expensive, we have
the obvious monotonic properties on the price functions:

Wi(z) < Wa(z) < -+ < Weo(2), (5a)
from which we deduce the following monotonic properties of the threshold values:
xy >y > >y, (5b)
] > x> > ol = 1 (5¢)
When n = 1, Gerber and Shiu obtained the solution for Wi(z) in terms of the function
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where 0; and 0, are the two roots of the auxiliary equation:

%29(9 D+ (@-a)f -G =0 (7)

The function g(z) satisfies the governing differential equation (3) and the boundary conditions:

g(1) =1 and ¢'(1) = 0. Suppose we set Wy (z) = g(iw
1
automatically satisfied. The other two boundary conditions, W1 (x}) = 27 and W7 (z7) = 1, lead to

the following pair of equations for the determination of z{¥ and z7:
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Solving the above equations, we obtain
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) so that Wi (2¥) = 1 and W/ () = 0 are

By setting

] = Wh_1(1)z),

n

and ¥ = W,_1(1)z¥ (10)
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in Egs. (8a,b) and considering the function g (—w)7 we observe that
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Hence, we deduce that
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); then we apply the recursive
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Once we know z¥, 27 and Wi(z), we can compute Wi(1) = g(

1

relations (10) to obtain z¥ and 25, also Wa(x) = g(iw) and Wa(1) = g(—w
x4 x4

From the recursive relations (10) and the monotonic properties on W, (x) in Eq. (5a), we deduce

)7 and so forth.

immediately the monotonic properties on ¥ and z!, [see Egs. 5(b,c)].

Consider the limiting case where n — oo, the boundary conditions (4b) become

Woo(20,)) = 2l Woo(1) and W/ (2])) = W (1). (13)

(o)
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By virtue of the monotonic increasing property of W/ (), the curve of y = W (x) and the line
y = Weo(1)x can intersect at only one point, namely, z = 1. Hence, the equation W (2L, ) =

2 W, (1) can have the unique root, =7, = 1. The other condition becomes W’ (1) = W (1).

Hence, the governing equation for the value of the perpetual fund protection option, which is equal
to Wy (z), is given by

%2:[;2 de" + (¢ — @):z:dzzw —(We =0, 2% <z <1, (14)
subject to the auxiliary conditions:
We(22)=1 and W/ (22) =0, (15a)
W! (1) = Woo(1). (15b)
The solution to W () is easily seen to be
Woo(z) — hf(La(cZi)’ <z <l, (16)
where
h(z) = (6 — D)z? — (6, — 1)zb, = >0, (17)

Note that h(z) satisfies Eq. (14) and the Robin boundary condition (15b). The boundary condition
Woo(z) = 1 is satisfied by the inclusion of the multiplicative factor 1/h(z%) in W (). The

optimality condition, W/_(z% ) = 0, gives the following algebraic equation for z* :

R (2%) = 01(62 = 1)(2)" = 02(61 — 1)(22)" = 0. (18)

Alternatively, from the recursive relations (10), we deduce that [see Eq. (4.5) in Gerber-Shiu’s
paper]

¥ ¥
$—1T -2 (19)
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Also, from Eqgs. (12) and (16), we obtain another relation [see Egs. (4.11) and (4.17) in Gerber-
Shiu’s paper]

x h(z)
We(z) =g — ) = 2l <z <l. 20
o) =9 () -k (20)
In Figure 1, we show the plots of the price functions W, (z) for n = 1,2,3 and co. The values of
the price functions increase monotonically with increasing number of reset rights and always stay

above 1. We also plot the threshold values, z! and z], against 1/n in Figure 2. The monotonic

n?
properties on z¥ and z! as stated in Egs. (5b,c) are verified. In particular, we observe that a7

tends to 1 as n — oo.

In summary, we have illustrated that the maximum call and the dynamic protection fund
option correspond to the protection fund with rights to reset to a reference guaranteed fund once
and infinite number of times, respectively. We obtain the closed form formula for the price function
of the protection fund with n reset rights. With finite number of resets, there are two threshold
values, an upper threshold for reset and a lower threshold for withdrawal. When infinite number
of resets allowed, we prove mathematically that the holder exercises the reset right whenever the
value of the protection fund falls to the value of the guaranteed fund.
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Figure 1 The figure shows the plots of the price functions of the protection fund W, (z) against
z, with varying number of reset rights n.
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at which the holder of the protection fund
should optimally withdraw and reset, respectively, against the reciprocal of the number
of reset rights, 1/n.

Figure 2 We plot the threshold values, x¥ and z;
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