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A wide variety of computational schemes have been proposed for the
numerical valuation of various classes of options. Experiences in numerical
computation have revealed that the details of the implementation of the
auxiliary conditions in the numerical algorithms may have profound effects
on numerical accuracy. Difficulties in designing algorithms that deal with
the path-dependent payoffs, monitoring features, etc., have been well
reported in the literature. In this article, the theoretical issues on the
assessment of numerical schemes with regard to accuracy of approximation
of auxiliary conditions, rate of convergence, and oscillation phenomena are
reviewed. In particular, the oscillation phenomena in bond-price calcula-
tions and the intricacies in implementing the auxiliary conditions in barrier
options, proportional step options, and lookback options are discussed.
With different types of options and modes of monitoring (continuous or
discrete), the optimal method of placing the lattice nodes with reference to
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the boundary (absorbing or reflecting) are examined in order to achieve
linear temporal rate of convergence. © 2001 John Wiley & Sons, Inc. Jrl
Fut Mark 21:875–903, 2001

INTRODUCTION

The option-pricing model initiated by Black and Scholes (1973) led to a
parabolic partial differential equation. The individual contractual speci-
fications are distinguished by the auxiliary conditions in the option mod-
els. From the arbitrage-option-pricing theory, the option value can be
interpreted as the discounted expectation value of the terminal payoff in
the risk-neutralized world. However, only a few of the option models
lend themselves to closed-form pricing formulas. Even with the availabil-
ity of these so-called analytic formulas, they often are expressed in terms
of multivariate cumulative normal distribution functions. The valuation
of the analytic formulas normally requires some numerical procedures.
For options with more-exotic payoffs, one must resort to numerical algo-
rithms for their valuation. Nowadays, it becomes quite common to
demand the computation of thousands of option values within a short
duration of time. This prompts the necessity to develop numerical algo-
rithms for option valuation that are competitive in terms of accuracy,
efficiency, and reliability.

Roughly speaking, option valuation algorithms can be classified into
three categories. The analytic-approximation approach seeks a simpler
approximating model whose value gives a well-acceptable approximation
to that of the original option model. The main advantages are that com-
paratively simpler valuation procedures are required to obtain the
approximation values. In American-option models, the prominent exam-
ples are the compound option-approximation method (Geske & Johnson,
1984), the quadratic-approximation method (MacMillan, 1986), and the
recursive-integration method (Huang, Subrahmanyam, & Yu, 1996).
Other examples include the approximation formulas for the discretely
monitored barrier options and lookback options (Broadie, Glasserman, &
Kou, 1999). The derivation of these approximation formulas invariably
require sophisticated analytic techniques. At the other end of the spec-
trum, one may obtain an estimate of the price of a newly structured
option through Monte Carlo simulation. The Monte Carlo method is
basically a numerical procedure for estimating the expected value of a
random variable, so it leads itself naturally to option-pricing problems
represented as expectations. Monte Carlo simulation is invariably
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computationally demanding, but its efficiency can be enhanced greatly
through the use of various variance reduction techniques (Boyle,
Broadie, & Glasserman, 1997).

Between the analytic-approximation methods and the Monte Carlo
simulation lie the tree methods (binomial/trinomial schemes) and the
finite difference methods. Collectively, they are called the lattice methods
because option values at the lattice nodes are calculated in the numerical
procedures. The tree methods simulate the asset price process by a dis-
crete random-walk model, and the discrete process converges to the con-
tinuous lognormal diffusion as the time step tends to zero (Cox, Ross, &
Rubinstein, 1979). The finite difference approach seeks the discretization
of the differential operators in the governing equation of the continuous-
option model. Indeed, the tree methods and the finite difference methods
are related closely, though they are derived based on different approaches.
The tree methods can be considered as members in the class of explicit
finite difference schemes. The amount of computation time required
and the algorithmic development efforts demanded for the tree methods
and the finite difference methods somewhat lie between the analytic-
approximation approach and the Monte Carlo simulation.

The literature on the construction and analysis of option-pricing
algorithms using the lattice approach is quite voluminous. The articles
by AitSahlia and Carr (1997) and Broadie and Detemple (1997) list
detailed comparisons of the performance of various option-pricing algo-
rithms. It is known widely that accuracy of numerical-option values may
deteriorate due to the proximity of the asset price to the barrier (Boyle &
Tian, 1998; Steiner & Wallmeier, 1999) and the discontinuity of the
derivative of the terminal payoff at the strike price (Heston & Zhou,
2000; Tian, 1999).

This article addresses some of the theoretical issues on the assess-
ment of the tree methods and the finite difference schemes. These
schemes are analyzed with reference to accuracy of approximation of
auxiliary conditions, rate of convergence, oscillation phenomena of com-
putation, etc. The article is organized as follows. In the next section, the
different approaches used for the construction of numerical algorithms
in the literature are summarized, and their similarities and differences
are addressed. The coefficients in all numerical schemes are shown to be
dependent on two parameters. The modified equivalent partial differen-
tial equation is used to analyze the order of accuracy of numerical
schemes. These analyses shed light on the issue on the choice of optimal
parameter in trinomial schemes. In the following section, the linkage of

Option Pricing Algorithms 877



the non-negativity of probability values in the tree methods with the
oscillation phenomena associated with numerical computation is exam-
ined. The sample calculations on pricing a bond are used to illustrate
how to avoid oscillation phenomena in numerical calculations. Then the
results are presented of numerical experiments with the barrier options,
proportional step option, and lookback option to reveal the impact of
approximation of auxiliary conditions on the overall rate of convergence
of numerical calculations. Some theoretical explanations to the success
of certain methods of approximation of auxiliary conditions are offered.
The article ends with summaries of results and conclusions.

RATE OF CONVERGENCE
OF NUMERICAL SCHEMES

The Black–Scholes pricing model is a continuous model where the con-
tinuous lognormal diffusion process is assumed for the asset price move-
ment. By following the replicating-portfolio approach, Cox et al. (1979)
developed the renowned discrete binomial pricing model, in which the
asset price is allowed to have binomial jumps over one time period. Their
binomial model still enjoys great popularity in the finance community for
numerical valuation of a variety of option models, due primarily to its
ease of implementation and pedagogical appeal. The jump probabilities
in the binomial model are determined by matching the mean and vari-
ance of the asset price ratio over one period in both continuous and
discrete models.

Trinomial Schemes

By allowing a three-jump process for the asset price movement, it was
envisioned that the availability of an additional parameter in a trinomial
model leads to a numerical scheme that may converge faster to the
continuous solution. The additional flexibility is reflected in the ratio of
the time step to the square of the logarithm of the jump ratio, which is
not necessarily fixed in the trinomial models. Boyle (1988) obtained the
parameter values in the trinomial model by matching the mean and vari-
ance of the asset price ratio over one period. Tian (1993) determined the
trinomial parameters by matching higher-order moments of the asset
price ratio. Since the mean and variance of the asset price ratio involve
exponential terms, the algebraic expressions of the parameters in their
trinomial models are quite cumbersome. The situation becomes worse
when Boyle (1988) extended the trinomial jump process to multi-asset
option models. Since the logarithm of the asset price ratio follows a
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normal distribution, a more sensible approach should match the mean
and variance of the logarithm of the asset price ratio process.

Let �t be the time step and write �x � ln u � �ln d, where u and d
are the upward- and downward-jump ratios of the asset price S. Let Vn

j

denote the option value at the trinomial node, n time steps from expiry,
and j upward jumps from the current asset price. The trinomial scheme
takes the form:

(1)

where r is the riskless interest rate. Since x � ln S follows the Brownian
process, the appropriate relative order of magnitude of differential
change of time �t and differential diffusion distance �x in a Brownian
process should observe

(2a)

It may be written as

(2b)

where s is the volatility of the asset price process and l is a free param-
eter. Next defined is

(3)

where m and c are called the volatility parameter and the drift parameter
(c is commonly called the Courant number in numerical analysis litera-
ture), respectively. It will be illustrated later that all option-pricing
schemes for one-asset option models can be expressed solely in terms of
these two parameters. Furthermore, one may observe from eqs. (2b) and
(3) that so if 

Lax–Wendroff Scheme

By equating the mean and variance of the logarithm of the asset price
ratio over one time period, the following linear system of equations for b1

and b�1 is obtained:

(4a)

(4b) (b1 � b�1)¢x2 � s2¢t � ar �
s2

2
b2 

¢t2.

 (b1 � b�1)¢x � ar �
s2

2
b ¢t

l2 � O(1), then c � O(1¢t ).m � 1
l

2;

m � s2
 
¢t
¢x2�and�c � ar �

s2

2
b ¢t
¢x

,

¢x2 � l2s2¢t,

¢x2 � ¢t.

V 
n�1
j � (b1V 

n
j�1 � b0V

n
j � b�1V

n
j�1) e

�r¢t,
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The remaining probability value, b0, is obtained from the relation:

(4c)

Solving the above equations for b�1, b0, and b1, the following Lax–
Wendroff scheme (Lax & Wendroff, 1960) is obtained:

(5)

Kamrad–Ritchken Scheme

Kamrad and Ritchken (1991) dropped the �t2 term in eq. (4b) as an
approximation, so their trinomial scheme can never achieve O(�t2) accu-
racy with any choice of l. The Kamrad–Ritchken scheme can be
expressed as

(6)

Finite Difference Methods

In the Black–Scholes model, the lognormal diffusion process is assumed
for the asset price movement. This dictates x � ln S to be the better
choice of the independent variable in the model, which then leads natu-
rally to a constant coefficient equation governing the option value. More
importantly, the logarithmic transformation leads to better numerical
stability in the calculations [the transformation results in flattening of
the eigenvalues in the discretization matrix, see Tavella (2000) for more
details]. Also, the use of S as the independent variable may lead to
numerical oscillations [see Spurious Oscillations of Computed Solutions
and eq. (26)]. We let v(x, t) � ertV(S, t), where V(S, t) denotes the
option price and t is the time to expiry. The Black–Scholes equation for
an one-asset option model becomes

(7)

Let the domain of interest be (L, U) � (0, T], and write vn
j as the numer-

ical approximation of v(x, t) at the ( j, n)th node in the computational
mesh. In the finite difference mesh, the ( j, n)th node refers to the point
(L � j�x, n�t) in the x–t plane, where �x and �t are the stepwidth and
the time step, respectively.

0v
0t

�
s2

2
  
02v

0x2 � ar �
s2

2
b 0v
0x

.

Vn�1
j � c m � c

2
 Vn

j�1 � (1 � m)Vn
j �
m � c

2
 Vn

j�1 d  e�r¢t.

V 
n�1
j � c c2 � m � c

2
 V 

n
j�1 � (1 � c2 � m)V 

n
j �

c2 � m � c

2
 Vn

j�1 d  e�r¢t.

b0 � 1 � (b1 � b�1).
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The most straightforward approach to derive finite difference
schemes is the use of finite difference operators to approximate the dif-
ferential operators in eq. (7). Suppose the following differential opera-
tors are used

(8a)

(8b)

(8c)

the corresponding finite difference scheme is called the Forward-Time
Centered-Difference Scheme. Interestingly, this numerical scheme takes
exactly the same form as the Kamrad–Ritchken trinomial scheme.

Crank–Nicolson Scheme

Crank and Nicolson (1947) approximated the spatial-differential opera-
tors in eq. (7) by the average of the centered-difference operators in
eqs. (8b,c) evaluated at the middle of the nth and (n � 1)th time levels.
This results the following two-level six-point implicit scheme

(9)

Order of Accuracy

All the above trinomial schemes and finite difference schemes can be
recast into the following two-level six-point form:

(10)

where a�1, a0, a1, b�1, b0, and b1 are coefficients in the numerical
scheme. Since only derivative terms appear in eq. (7), a trivial solution
for v(x, t) is the constant solution, so the minimal condition for consis-
tency is given by

(11)a�1 � a0 � a1 � b�1 � b0 � b1 � 1.

a�1vn�1
j�1 � a0vn�1

j � a1vn�1
j�1 � b�1vn
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4
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m

2
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m � c

4
 v 

n
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4
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m

2
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4
 v 
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j�1
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0x2
 (L � j¢x, n¢t) �
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 (L � j¢x, n¢t) �
vn�1
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Note that there are only four independent parameters in the numerical
scheme (10). For convenience, it is defined

(12)

When both a�1 and a1 are non-zero, the solution of the numerical
scheme eq. (12) requires the inversion of a tridiagonal system of equa-
tions in every time step. In this case, the scheme is termed implicit since

cannot be obtained explicitly. On the other hand, the scheme
becomes explicit when both With the use of the efficient
Thomas algorithm (Thomas, 1995), the operational counts for solving an
implicit two-level six-point scheme are less than double those for an
explicit two-level four-point scheme.

Modified Equivalent Partial
Differential Equation

Since the numerical scheme is a discretization of the governing differen-
tial equation, the solution to the two-level six-point scheme (10) does
not satisfy exactly the differential equation, but rather only to some order
of accuracy (precise definition of order of accuracy to be given later).
The modified equivalent partial differential equation (MEPDE) of a
given numerical scheme is defined to be the differential equation whose
solution is the same as that of the numerical scheme.

The MEPDE provides an effective tool to assess the order of accu-
racy of scheme (10) for solving eq. (7). The MEPDE is derived by per-
forming the Taylor-series expansion of each term in the numerical
scheme (10) about the ( j, n)th grid point, and then eliminating the time
derivatives higher than the first order, and all mixed time and space
derivatives. The MEPDE of the numerical scheme (10) is known to be
(Kwok, 1992).

� higher order spatial derivative terms (13)

�
2(a2

d � b2
d) � (as � bs)[1 � 3(as � bs) � 4(a2

d � adbd � b2
d)]

24
  
¢x4

¢t
  
04v

0x4

�
(bd � ad) � 3(adas � bdbs) � 2(b3

d � a3
d)

6
  
¢x3

¢t
  
03v

0x3

0v
0t

� (bd � ad) 
¢x
¢t

  
0v
0x

�
(bs � as) � (b2

d � a2
d)

2
  
¢x2

¢t
  
02v

0x2

a�1 � a1 � 0.
vn�1

j

 bs � b1 � b�1�and�bd � b1 � b�1.

 as � a1 � a�1,�ad � a1 � a�1,
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A numerical scheme is said to be mth order space accurate if its corre-
sponding MEPDE agrees with the given partial differential equation up
to the mth order spatial derivatives.

The order of accuracy of some of the above schemes then is
assessed by substituting the appropriate parameters into eq. (13). The
corresponding MEPDE’s are found to be:

Lax–Wendroff Scheme

(14)

Kamrad–Ritchken Scheme

(15)

Crank–Nicolson Scheme

(16)

Several observations and conclusions on the order of accuracy of the
numerical schemes can be drawn from the analyses of the above
MEPDE’s. All MEPDE’s tend to the Black–Scholes equation as 
and Unlike the other schemes, the coefficient of in the
MEPDE of the Kamrad–Ritchken scheme is not equal to exactly.
However, the coefficient does tend to as . This is attributed to
the deliberate dropping of O(�t2) term in the derivation procedure of the
Kamrad–Ritchken scheme [see eq. (4b)].

¢tS 0s2

2

s2

2

02v
0x2¢xS 0.
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04v
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Recall that one should choose in order to represent the
Brownian process of ln S appropriately [see eqs. (2a,b)]. If m � O(1) and

is treated, then the coefficients of derivative terms beyond
the second order in the above MEPDE’s are O(�t). Note that for the
Lax–Wendroff scheme, when m is chosen to be 1�3 (equivalently,

the coefficients of the third and higher order derivatives
become O(�t2).

One may be tempted to popularize the use of second-order time-
accurate schemes in option-pricing calculations. However, the overall
order of accuracy of a numerical algorithm also is affected by the conti-
nuity properties of the initial conditions, the order of accuracy in the
approximation of the boundary conditions. In most option-pricing calcu-
lations, second-order temporal accuracy is often degraded to first order
because of the discontinuity in the first-order derivative of the terminal
payoff functions, first-order boundary value approximation, etc. (see
Barrier-Type Option Models and Figs. 2–5).

SPURIOUS OSCILLATIONS
OF COMPUTED SOLUTIONS

A more succinct argument on the relations of the non-negativity of the
coefficients in the numerical schemes and the spurious oscillations of
the computed solutions are revealed as follows. The discussion of oscil-
lation phenomena in the numerical calculations of barrier and Asian
pricing models can be found in Zvan, Vetzal, and Forsyth’s articles
(1998a, 1998b, 2000).

Theorem

Suppose the coefficients in the following explicit scheme

(17)

are non-negative, and the initial values are bounded, that is
for some constant M; then

(18)

Proof

From eq. (7), it is deduced that

(19a)0vn�1
j 0 � 0b�1 0 0vn

j�1 0 � 0b0 0 0vn
j 0 � 0b1 0 0vn

j�1 0 ,

max
j
0vn

j 0 � M,  for all n.

maxj 0v0
j 0 � M

vn�1
j � b�1vn

j�1 � b0vn
j � b1vn

j�1

l � 13),

c � O(1¢t)

¢t � ¢x2
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so

(19b)

because b�1, b0 and b1 are non-negative. Let the above
inequality can be transformed into

(20)

Deductively,

(21)

can be obtained.
What would happen when one or more of the coefficients of the

explicit scheme eq. (7) are negative? If b0 � 0, b�1 � 0 and b1 � 0, and
let and At the next time level, 

where the sign of alternates with j. The alternat-
ing sign property can be shown to persist at all later time steps. Hence, it
can deduced from eq. (7) that 

(22)

Define and sum over all values of j of the above identity.
Now,

(23a)

or

(23b)

Note that 1 � 2b0 � 1 since b0 � 1. Deductively,

(24)

is obtained, and as The above result reveals the oscilla-
tion phenomena where the solution values oscillate in signs at neighbor-
ing nodes, and the magnitudes grow with increasing number of time steps.

Bond Price Calculations

In most equity option calculations, if is used as the state vari-
able, the coefficients in the finite difference schemes or trinomial
schemes normally observe the non-negativity condition. This is because

x � ln S

nS 	, SnS 	.

Sn � (1 � 2b0)n S0 � (1 � 2b0)ne

Sn�1 � (b�1 � b0 � b1)Sn � (1 � 2b0)Sn.

a
j
0vn�1

j 0 � b�1a
j
0vn

j�1 0 � b0a
j
0vn

j 0 � b1a
j
0vn

j�1 0

Sn � �j 0vn
j 0
0vn�1

j 0 � b�1 0vn
j�1 0 � b0 0vn

j 0 � b1 0vn
j�1 0 .

v1
jv1

0 � b0e, v
1
1 � b�1e,

v1
�1 � b1e,v0

j � 0, j 
 0.v0
0 � e 7 0

En � En�1 � p � E0 � max
j
0v0

j 0 � M.

En�1 � b�1E
n � b0E

n � b1E
n � En  since�b�1 � b0 � b1 � 1.

En � maxj 0vn
j 0 ,

 � b�1 max 0
j

vn
j�1 0 � b0 max 0

j
vn

j 0 � b1 max
j
0vn

j�1 0
 max

j
0vn�1

j 0 � 0b�1 0  max 0
j

vn
j�1 0 � 0b0 0  max 0

j
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j 0 � 0b1 0  max
j
0vn
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m � O(1) (with m � 1) and is chosen so that is sat-
isfied. However, if the volatility s is a function of the state variable
having the property that s tends to zero as the value of the state variable
goes to zero, then negative coefficient in the numerical schemes may be
encountered.

As an example, consider the numerical calculation of the price of a
bond B(r, t), where the interest rate r is governed by the CIR interest
rate process

(25)

where a, b, and g are constant parameter values and dZ is the Wiener
process. The volatility of the process is which tends to zero as

Oscillation phenomena occur when calculations are performed
within the range of r such that the coefficients in the numerical schemes
become negative. One may avoid the occurrence of negative coefficients
by restricting a lower bound rmin on the range of r.

In Table I, the numerical bond values at various interest rate values
obtained with different choices of lower bound rmin of the computational
domain [rmin, rmax] � [0, T] are listed, where rmax � 1.2 and t � 1.0. The
interest rate follows the CIR process: dr � 0.48(0.11 � r) dt � 0.01 dZ.
The bond values obtained from the analytical bond-price formula also are
included for reference. When rmin � 0.02, oscillation phenomena at small
values of r is observed.

The terminal payoff function of other interest-rate instruments, like
a bond option, commonly possesses discontinuity in the first-order deriv-
ative. This is unlike a bond whose terminal payoff is a constant function.
It is expected that the above oscillation phenomena would become more
severe when the same numerical scheme is applied to the pricing of

1r

rS 0.
g1r,

dr � a(b � r) dt � g1r dZ,

m � 0c 0c � O(1¢t)
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TABLE I

Comparison of Numerical Bond Values Obtained from Finite-Difference Calculations
with Different Lower Bounds, rmin

r � 0.04 r � 0.045 r � 0.05 r � 0.055 r � 0.06

rmin � 0.03 0.384 0.380 0.376 0.373 0.369
rmin � 0.025 0.385 0.380 0.377 0.373 0.369
rmin � 0.02 0.376 0.383 0.376 0.373 0.369
rmin � 0.015 0.131 0.440 0.366 0.374 0.369

Analytical solution 0.385 0.381 0.377 0.373 0.369

The solution values oscillate at small values of r when rmin � 0.02.



more exotic types of interest-rate instruments. Also, the oscillatory
nature of numerical solutions would become even worse when the hedg-
ing parameters of derivative values are computed.

Suppose S instead of is used as the state variable in the
finite difference scheme, the corresponding diffusion parameter m and
drift parameter c then become

(26)

Consequently, oscillation phenomena is encountered when m� c, which
occur as S assumes small values.

The boundary condition of the bond-price model at zero interest
rate cannot be deduced readily. Büttler (1995) observed that the numer-
ical accuracy of the bond price computed depends sensibly on the choice
of the boundary-approximation scheme applied at r � rmin. The prescrip-
tion of an inaccurate numerical-boundary condition would deteriorate
the overall accuracy of the numerical solutions at interior node points.
Rather than imposing an artificial numerical boundary condition, one
may discretize the governing equation at the boundary nodes using one-
sided difference operators to approximate the differential operators [see
Vetzal, 1998, and eqs. (28a,b)].

APPROXIMATION OF THE
AUXILIARY CONDITIONS

The individual contractual specifications of different types of path-
dependent options are distinguished by the auxiliary conditions imposed
on the pricing models. It is well known in the literature that the naïve
implementation of the auxiliary conditions into the algorithms invariably
lead to erratic behaviors of the computed solutions. Even the numerical
results converge to the desired solutions, the convergence rate may be
painfully slow.

Erratic Pattern of Convergence

It is well reported in the literature that the numerical option values
obtained from the trinomial or finite difference calculations commonly
exhibit wavy or erratic pattern of convergence to the analytical solutions.
Heston and Zhou (2000) demonstrated that the rate of convergence of
binomial/trinomial calculations fluctuate between and O(�t)
[equivalent to and where N is the total number of timeO(1

N),O( 1
1N)

O(1¢t)

m � s2S2 
¢t
¢S2�and�c � rS 

¢t
¢S

.

x � ln S

Option Pricing Algorithms 887



steps]. The common extrapolation technique for the enhancement of the
rate of convergence cannot be applied to numerical option values due to
the lack of smooth convergence.

The non-smoothness of convergence is attributed to the non-
differentiability of the terminal payoff function and improper treatment
of numerical boundary conditions with reference to the path-dependent
feature. Figlewski and Gao (1999) presented the adaptive-mesh trinomial
model in which most part of the tree is set up with relatively coarse steps,
but sections of higher-resolution lattice are grafted on in areas close to
maturity and barriers. Tian (1999) proposed a simple technique of posi-
tioning nodes exactly on the strike price and the barrier. Heston and Zhou
(2000) proposed two simple smoothness-enhancement techniques,
namely, an adjustment of the discrete-time solution prior to maturity and
smoothness of the payoff function.

In the following sample calculations on a continuous-barrier option,
it is demonstrated that the proper treatment of the boundary condition
(at the barrier and the far field) may increase the rate of convergence of
the numerical scheme beyond the first order.

Barrier-Type Option Models

There are two major factors that lead to the deterioration of accuracy of
barrier-option calculations; one is the positioning of the nodes relative to
the barrier, and the other is the proximity of the initial asset price to the
barrier.

Positioning of the Nodes Relative to the Barrier

Several studies have reported that the best numerical solutions are
obtained if the barrier is placed to pass through a layer of nodes for the
continuously monitored barrier options, and is located halfway between
two layers of nodes for the discretely monitored barrier options (Boyle &
Tian, 1998; Cheuk & Vorst, 1996; Tian, 1997). The reasons why these
two different methods of placing the barriers are needed are due to the
different formulations of the barrier conditions regarding the nature of
monitoring.

When the barrier is monitored discretely, the barrier option resem-
bles a vanilla option at times not at a monitoring instant. At the monitor-
ing instants, the option value becomes zero when the asset price falls
within the knock-out region. On the other hand, when the barrier is
monitored continuously, the effect of the barrier is enforced at all times.
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By applying analytic continuation of the option-price function into the
knock-out region, the option-price function of a continuously monitored
barrier option almost observes the odd extension property when S stays
close to B, that is, where B is the constant barrier
level and V is the barrier option value.

Suppose the approach of finite volume discretization is employed to
interpret the finite difference scheme; one visualizes the nodal value vn

j

as representing the average of the option value within the interval
at t � n�t. Let which is the position of the

down-and-out barrier in terms of the transformed variable An
explanation is provided for the different methods of positioning the bar-
rier under the two forms of monitoring of the barrier.

First, the discretely monitored barrier options are considered.
Suppose the node x0 is placed exactly on xb, then vn

0 should approximate
the average of the option value within at t � n�t. The
option value is zero in but assumes positive value in

Suppose vn
0 is set to be zero as the barrier condition in the

numerical algorithm, while in fact vn
0 is positive because its actual value

is . Therefore, the setting of vn
0 to be zero leads to an

approximation error of the barrier condition. Indeed, this would lead to
under valuation of the barrier option value because a positive quantity
has been set artificially to be zero (the same observation is reported in
Cheuk & Vorst, 1996). The simple remedy is to place xb between the
nodes x0 and x1 [see the configuration in Fig. 1(a)]. Now, the interval

lies completely inside the knockout region, so the set-
ting of vn

0 � 0 in the numerical scheme accurately reflects the discretely
monitored barrier condition.

For the continuously monitored case, the best method of placing the
boundary node is to set x0 � xb [see the configuration in Fig. 1(b)]. By
virtue of the odd extension property of the solution, the average value of
v(x, t) over the interval is close to zero. Hence, with
this method of placement of boundary node, vn

0 � 0 would be a good
approximation of the continuously monitored barrier condition.

Initial Asset Price Close to the Barrier

It is widely reported in the literature that poor accuracy of barrier-option
calculations is observed when the initial asset price is close to the barrier.
Rogers and Stapleton (1998) proposed to modify the probability values at
nodes next to the barrier. Figlewski and Gao (1999) suggested to con-
struct finer meshes near the barrier to improve the level of accuracy.

[x0 � ¢x
2 , x0 � ¢x

2 ]

[x0 � ¢x
2 , x0 � ¢x

2 ]

�xb�¢x
2

xb   
v(x, n¢t) dx

[xb, xb � ¢x
2 ].

[xb � ¢x
2 , xb],

[xb � ¢x
2 , xb � ¢x

2 ]

x � ln S.
xb � ln B,[xj � ¢x

2 , xj � ¢x
2 ]

V(S, t) � �V(B2

S , t),
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However, Boyle and Tian (1998) observed that the method of spline
interpolation of option values at three adjacent nodes is a possible
straightforward method to resolve the problem of dealing with initial
asset price close to the barrier. Zvan et al. (2000) argued that “initial asset
price close to the barrier” is not an issue for implicit schemes because the
effects of an instantaneous change to boundary conditions are felt imme-
diately across the entire solution in implicit scheme calculations.

Far-Field Boundary Conditions

To implement the finite difference calculations of any option-pricing
models, it is necessary to prescribe the boundary conditions along all
boundaries of the computational domain. This is different from trinomial
calculations where only the terminal payoff condition is required. In
barrier option calculations, besides the prescription of the numerical
boundary condition at the barrier, the far-field numerical boundary con-
dition should also be provided. The far-field boundary condition may be
deduced from the nature of the option model.
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FIGURE 1
The different methods of placing the barrier node are shown for (a) discretely
monitored barrier option, and (b) continuously monitored barrier option. To

approximate the discretely monitored barrier condition with better accuracy, it is
optimal to place the whole interval to lie completely in the

knockout region.
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2 , x0 � ¢x
2 ]



Consider a down-and-out barrier call option. As the asset price
the option value V(S, t) satisfies either

(i) asymptotic boundary condition: where
X is the strike price, or

(ii) zero second order derivative: 

Let Vn
M be the right-most node at the nth time level. The first far-field

boundary condition leads to the numerical-boundary condition

(27)

In terms of the second far-field boundary condition becomes
Suppose the following backward difference approxi-

mation formulas for the derivatives are used:

(28a)

(28b)

then the far-field numerical boundary condition is given by

(29)

The order of accuracy of the approximation is O(�x2), or equivalently,
O(�t).

Sample Calculations

In the following sample calculations on a continuously monitored down-
and-out barrier call option, all the “optimal” techniques in the construc-
tion of the numerical scheme are adopted. These include:

1. The lattice nodes are placed on the barrier and at the strike.

2. The Black–Scholes analytic formula is used to compute the option
value at nodes along the first time level (smoothing the terminal payoff).

3. We use the Lax–Wendroff scheme with the choice of the optimal
parameter 

4. We use either scheme (27) or scheme (29) for the far-field numerical
boundary condition.

The order of convergence of the numerical option values that can
be achieved is examined. The parameter values in the barrier-option

l � 13.
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model are: S � 100, X � 95, r � 5%, s � 30%, down-and-out barrier
B � 80, and t� 1. In Figure 2, the logarithm of the root mean square
errors (ln RMSE) is plotted against the logarithm of the time step (ln �t)
for the numerical barrier-option values obtained using the two far-field
numerical boundary conditions. The slope of the linear regression line
through the data points corresponding to the use of the asymptotic
boundary condition [scheme (27)] is found to be 1.99, while the slope
corresponding to the use of the zero second-order derivative condition
[scheme (29)] is found to be 1.36. With the use of the asymptotic
boundary condition and the optimal parameter in the Lax–
Wendroff scheme, second-order temporal accuracy as predicted by the
MEPDE analysis [see eq. (16)] is achieved. The O(�t) approximation of
the far-field boundary condition in scheme (29) leads to the degradation
of the temporal order of accuracy to a value between one and two.

l � 13
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FIGURE 2
The figure plots ln RMSE against ln �t, where RMSE denotes the root-mean-

squared errors in the numerical calculations of the option values of a down-and-
out barrier call option. The Lax–Wendroff scheme with the choice of the optimal

parameter is used in the calculations, and two different far-field
boundary conditions are used. From the regression calculations, the slope of the
upper line equals 1.36, while that of the lower line is 1.99. The parameter values

used in the barrier option are: S � 100, X � 95, r � 5%, s � 30%, B � 80,
and t � 1.0.

l � 13



Proportional-Step Option Models

The proportional-step options have the characteristic of proportional
amortization of the payoff depending on the time duration of the under-
lying asset price falling into the knockout region. This class of options
retain the advantage of premium savings in barrier-type options while
avoiding the discontinuity of the delta at the barrier.

The terminal payoff function of the down-and-out proportional-step
call option is defined to be

Here, r is the killing rate and is the occupation time in the knockout
region defined by

(30)

where H(x) is the Heaviside function, t0 is the inception time of the
option, and B is the constant down barrier. Linetsky (1999) obtained the
following partial differential equation formulation for the value V(S, t)
of the continuously monitored proportional-step-call option

(31a)

(31b)

Note that the discount rate equals r when S � B and becomes r � r

when S � B.
The construction of the corresponding Lax–Wendroff scheme for

the approximation of eq. (31a) is quite straightforward. The damping
factor dn

j is introduced, where

(32)

The corresponding Lax–Wendroff scheme then takes the form

(33)

The damping factor is applied to Vn
j when xj lies in the knock-out

region. Since Vn
j represents the average option value over the interval

�
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at t� n�t, best accuracy would be resulted if the inter-
val lies wholly in the knockout region. Correspondingly, the barrier level
xb is chosen to lie between two layers of nodes [see the configuration in
Fig. 1(a)]. Interestingly, this method of placing the nodes for the contin-
uously monitored proportional step option is the same as that for the dis-
cretely monitored barrier options.

The comparison of the numerical accuracy of calculating option val-
ues of a continuously monitored proportional step call option is per-
formed using the two methods of placing the barrier in the grid lattice,
namely, between two layers of nodes and on a layer of nodes. The param-
eter values used in the calculations are: S � 100, X � 95, B � 90,
r � 5%, s � 30%, t � 1.0, and r� 750. The points labelled with ‘�’ in
Figure 3 show the option values obtained with the barrier placed between

[xj � ¢x
2 , xj � ¢x

2 ]
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FIGURE 3
The figure reveals the convergence trend of the numerical option values against

time-step �t for a continuously monitored proportional-step call option. The crosses
(�) and dots (�) show the results obtained by placing the barrier between two layers

of nodes and on a layer of nodes, respectively. The first method apparently gives
linear rate of convergence in �t, while the second method does not give a clear
pattern of convergence. The option value obtained from the analytic formula is

11.16. The parameter values used in the proportional-step call option are: S � 100,
X � 95, r � 5%, s � 30%, r � 750, B � 90, and t � 1.0. 



two layers of nodes. The apparent linear rate of convergence of the
numerical option values to the analytic solution as is revealed.

Lookback Option Models

Numerical algorithms for pricing lookback options have been proposed
by Babbs (2000), Hull and White (1993), Barraquand and Pudet (1999),
Cheuk and Vorst (1997). Comparison of these algorithms can be found in
the studies by Kat (1995) and Broadie et al. (1999). The Hull–White and
Barraquand–Pudet algorithms require an extra dimension to keep track
of the current extremum value achieved at a node, so they require higher
order of complexity. The Babbs scheme and Cheuk–Vorst scheme avoid
the inclusion of an additional statistic that describes the path-dependency
feature by constructing a binomial tree for a new state variable, which is
defined to be the ratio of the current extremum price to the current asset
price. This is equivalent to using the asset price as the numeraire. Broadie
et al. (1999) followed the same technique of dimensionality reduction
but used the trinomial tree. Barraquand and Pudet (1996) reported
square-root rate of convergence of their algorithm, while Babbs and
Broadie et al.’s algorithms demonstrate linear rate of convergence in �t.

Continuously Monitored Floating
Strike Lookback Call Options

Let denote the price of a continuously monitored European
floating strike lookback call option, whose payoff depends on the realized
minimum asset price at expiration. Let the realized minimum asset price
from T0 to t (T0 � t � T) be denoted by

(34)

whereby the definition refers to continuous monitoring of the asset price
process. The terminal payoff of the floating strike lookback call is
defined by

(35)

The boundary condition at is given by (Goldman, Sosin, &
Gatto, 1979)

(36)
0c�
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With the choice of the following similarity variables:

(37)

the governing equation for v becomes

(38)

Here, q is the dividend yield of the underlying asset. The lookback option
model is reduced to a semi-infinite problem with the Neumann boundary
condition at x � 0. Here, x � 0 commonly is called the reflecting bound-
ary. The auxiliary conditions then become

(39)

To approximate the Neumann boundary condition at x � 0, the fol-
lowing discrete-boundary approximation [known to be O(�x2) order of
accuracy] is adopted:

(40)

where vn
�1 is the option value at a fictitious node one step to the left of

the left-end node corresponding to j � 0. For example, suppose the
Lax–Wendroff trinomial scheme is used, the nodal equation at j � 0 is
given by

(41)

The numerical experiments on the European floating strike
lookback call option performed by Cheuk and Vorst (1997) are repeated
here. The parameter values in the lookback option model are

r � 0.04, q � 0.07, and t � 0.5. The comparison of
the accuracy of the option calculations using the Cheuk–Vorst scheme,
Babbs scheme, and Lax–Wendroff scheme is shown in Table II. The
numerical results clearly show the significant improvement on the rate of
convergence of numerical option values when the proper discrete bound-
ary approximation is employed. The Lax–Wendroff scheme is shown to
have linear rate of convergence in �t, and only 50 time steps are required
to achieve a percentage error � 0.5%, whereas the Cheuk–Vorst scheme
requires more than 10,000 time steps to achieve the same level of accu-
racy. The Cheuk–Vorst scheme is seen to have only square-root rate of
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convergence in �t. With this particular set of option parameter values,
where S is chosen to be equal to the reflecting boundary x � 0 hap-
pens to be on a lattice node. Under this scenario, the Babbs scheme also
reveals linear rate of convergence in �t and exhibits similar level of accu-
racy as compared to the Lax–Wendroff scheme.

For the treatment of the Neumann boundary condition, Cheuk and
Vorst used the forward difference to approximate while
here the centered difference was used as the approximation [see
eq. (40)]. The forward difference approximation has only O(�x) accu-
racy. This explains the apparent O(�x) � O convergence rate in
Cheuk–Vorst’s numerical results for the continuously monitored
lookback option models.

In general, the reflecting boundary x � 0 does not fall exactly on a
layer of nodes, except that the lattice layout is specifically designed to do
so. Babbs proposed to modify the lattice tree along the layer of nodes
next to the reflecting boundary. Figure 4 shows the comparison of the
numerical option values obtained using the Babbs scheme and the
Lax–Wendroff scheme for a continuously monitored floating strike-
lookback call option. The parameter values used in the lookback option
model are: � 100e�0.1, r � 4%, q � 2%, s � 10%, t � 1.0.
The numerical results demonstrate that the version of the Babbs scheme
based on the non-alignment of the nodes on x � 0 leads to erratic con-
vergence behavior, although the level of accuracy is comparable to that

S � 100, mt
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0x 0 x�0,
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TABLE II

Comparison of the Numerical Accuracy of the Lookback Option Values Obtained from
the Lax–Wendroff Scheme, Cheuk–Vorst Scheme, and Babbs Scheme

Number of Time Steps

Numerical Analytic
Volatility Schemes 50 100 500 1000 10,000 Solution

LW scheme 4.6691 4.6745 4.6789 4.6794 4.6799
s � 0.1 CV scheme 4.24 4.37 4.54 4.58 4.65 4.6799

Babbs scheme 4.6508 4.6653 4.6770 4.6784 4.6797

LW scheme 9.7415 9.7673 9.7870 9.7891 9.7912
s � 0.2 CV scheme 8.97 9.20 9.52 9.60 9.73 9.7915

Babbs scheme 9.7362 9.7638 9.7859 9.7887 9.7912

LW scheme 14.5964 14.6419 14.6785 14.6826 14.6868
s � 0.3 CV scheme 13.52 13.85 14.31 14.42 14.60 14.6872

Babbs scheme 14.6056 14.6464 14.6790 14.6831 14.6868

The parameter values of the continuously monitored European floating strike lookback call option are: 
r � 0.04, q � 0.07, and t � 0.5.

S � mt
T0

� 100,



of the Lax–Wendroff scheme. If the reflecting boundary x � 0 is placed
exactly on a layer of nodes, then the numerical option values from the
Babbs scheme exhibit linear rate of convergence in �t. In the present
Lax–Wendroff scheme calculations, spline interpolation is used to obtain
the option value at a given value of x if that x does not fall on a node. The
numerical option values from the Lax–Wendroff scheme clearly reveal
the linear rate of the convergence, although the chosen value of x in the
numerical calculations is quite close to the reflecting boundary.

Discretely Monitored Floating
Strike Lookback Call Options

For the discretely monitored floating strike lookback call options, the
realized minimum is updated only on a monitoring instant. Let m�
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FIGURE 4
The figure compares the accuracy of the numerical option values obtained using
the Babbs scheme and the Lax–Wendroff scheme for a continuously monitored

floating strike lookback call option. The lowest plot reveals the linear rate of
convergence of the Lax–Wendroff scheme. The convergence trend of the

numerical option values obtained using the Babbs scheme depends sensibly on the
positioning of the reflecting boundary. Linear rate of convergence is exhibited only
when the reflecting boundary is placed on a layer of nodes. The parameter values

used in the lookback option model are: S � 100, r � 4%,
q � 2%, s � 10%, t � 1.0.

mt
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� 100e�0.1,



denote the realized minimum at the �th monitoring instant. Similarly, let
and which are applicable within the �th

monitoring instants [including the �th instant but excluding the
(� � 1)th instant]. The governing equation for v remains the same as in
eq. (38), except that the domain of x is now instead of 
The initial condition remains to be v(x, 0) � 1 � e�x, but the Neumann
boundary condition is applied only at those time steps cor-
responding to monitoring instants.

For numerical calculations, the usual trinomial calculations are
performed as that of a vanilla option at time levels not corresponding to
a monitoring instant. However, when the nth time level happens to be
on a monitoring instant, the boundary condition is
implemented by setting the numerical option values to the left of x � 0
to be

(42)

Recall that there are two choices of positioning the nodes relative to
x � 0, either placing x � 0 at x0 or between x0 and x1. In either case,

The Lax–Wendroff scheme at j � 0 on a moni-
toring instant is given by

(43)

for both positioning methods. Due to the zero-derivative condition
applied at x � 0, the lookback-option value is expected to level off when
x is close to x0. Therefore, the numerical accuracy of the approximation
of the auxiliary condition becomes almost insensitive to the positioning
of the nodes relative to x � 0. Both positioning methods are expected to
give the same rate of convergence of the numerical option values for the
discretely monitored lookback options.

Figure 5 shows the plots of numerical option value against time-
step �t obtained from the Lax–Wendroff scheme. The parameter
values in the discretely monitored floating strike lookback call option
are: r � 5%, q � 0, s � 25%, t � 0.5, and the
number of monitoring instants is 20. For both positioning methods,
the numerical option values exhibit linear rate of convergence in �t.
Among barrier-type options and lookback options, the discretely
monitored lookback options are the only class where the rate of con-
vergence of numerical option values is insensitive to the method of
positioning the nodes.
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SUMMARY AND CONCLUSION

The trinomial schemes and the explicit finite difference schemes are
seen to belong to the same class of numerical schemes, although they
are derived by quite different approaches. For example, the Kamrad–
Ritchken trinomial scheme and the Forward-Time-Centered-Space dif-
ference scheme are essentially equivalent. All numerical schemes are
shown to depend on the diffusion parameter m and the drift parameter c.
The class of two-level explicit and implicit schemes can be analyzed
within a unified framework. The order of truncation error of a numerical
scheme can be revealed explicitly by analyzing its modified equivalent
partial differential equation. Most common numerical schemes are
shown to be first-order time accurate, except that the Lax–Wendroff
scheme becomes second-order time accurate with the choice of the opti-
mal parameter l � 13.
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FIGURE 5
The figure shows the plots of numerical option value against time step

�t for a discretely monitored floating strike lookback call option.
The numerical scheme used is the Lax–Wendroff scheme. The

upper (lower) plot shows the numerical option values obtained by
positioning x � 0 between two layers (on a layer) of nodes. Both plots
reveal the linear rate of convergence in �t. The parameter values used

in the lookback option model are: S � 100, r � 5%,
s� 25%, t � 0.5, and the number of monitoring instants is 20.

The extrapolated option value at �t � 0 is 12.41 for both methods
of positioning. 
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The order of convergence of numerical option values may be
degraded due to the non-differentiability of the terminal payoff function
and inaccurate prescription of numerical boundary conditions. By care-
fully choosing the near-field and far-field numerical boundary conditions
and positioning the strike price at a node, it is demonstrated that the
optimal Lax–Wendroff scheme does exhibit second-order temporal
accuracy.

The linkage is established between the non-negativity of the coeffi-
cients in the numerical scheme and the oscillation phenomena of the
numerical option values. In the CIR interest-rate process, the volatility of
interest rate becomes vanishingly small when the interest rate tends to
zero. This may cause the diffusion parameter to be smaller than the drift
parameter. To avoid the occurrence of oscillations, the lower bound on
the interest rate value in the bond price calculations have to be restricted
such that no negative coefficients in the numerical scheme appear.

The positioning of the nodes relative to the barrier (absorbing or
reflecting) has profound influence on the order of convergence of
numerical option values (see Table III for a summary). The reason why
one should place the barrier between two layers of nodes for the
discretely monitored barrier options but on a layer of nodes for the
continuously monitored counterparts is explained. However, it is demon-
strated that the barrier should be positioned between two layers of nodes
for the continuously monitored proportional-step options in order to
achieve better rate of convergence.

For continuously monitored lookback options, the reflecting bound-
ary should be positioned on a layer of nodes in order to achieve O(�t)
accuracy. If the Neumann boundary condition is approximated only to
O(�x) accuracy, the order of accuracy of the numerical option values
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TABLE III

A Summary of the Optimal Choices of the Positioning of the Nodes Relative to the
Barrier (Absorbing or Reflecting) to Achieve the Linear Rate of Convergence for

Different Types of the Path-Dependent Options and Monitoring Frequencies

Barrier Between Two Barrier on a Layer
Layers of Nodes of Nodes

Barrier options Continuously monitored ✔

Discretely monitored ✔

Lookback options Continuously monitored ✔

Discretely monitored ✔ ✔

Proportional-step options Continuously monitored ✔



reduces to This is because the relative order of magnitude
O(�x) � is observed in the option pricing calculations.
Interestingly, for the discretely monitored lookback options, the order of
accuracy of numerical option values is insensitive to the method of posi-
tioning the reflecting boundary relative to the layers of nodes.
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