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The reset right embedded in an option contract is defined to be the privilege given to the
option holder to reset certain terms in the contract according to specified rules at the moment of
shouting, where the time to shout is chosen optimally by the holder. For example, a shout option
with strike reset right entitles its holder to choose the time to take ownership of an at-the-money
option. This paper develops the theoretical framework of analyzing the optimal shouting policies
to be adopted by the holder of an option with reset right on the strike price. It is observed that the
optimal shouting policy depends on the time dependent behaviors of the expectation of discounted
value of the at-the-money option received upon shouting. During the time period when the theta
of the expectation of discounted value of the new option received is positive, it is never optimal for
the holder to shout at any level of asset value. At those times when the theta is negative, we show
that there exists a threshold value for the asset price above which the holder of a reset put option
should shout optimally. For the shout floor options, we obtain an analytic representation of the
price function. For the reset put option, we derive the integral representation of the shouting right
premium and analyze the asymptotic behaviors of the optimal shouting boundaries at time close to
expiry and infinite time from expiry. We also provide numerical results for the option values and
shouting boundaries using the binomial scheme and recursive integration method. Accuracy and

run time efficiency of these two numerical schemes are compared.
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1. INTRODUCTION

The acute competitions in the markets prompt financial engineers to design option contracts with
more exotic features. One such feature is the right given to the holder to reset certain contract
terms according to specified rules during the life of the option contract. A simple example is the
reset pul option, where the strike price is reset to be the prevailing asset price at the moment
chosen by the holder. The moment to reset is often called the shouting moment. Let X denote
the original strike price set at initiation of the option, S; and St denote the asset price at the
shouting instant ¢ and maturity date 7', respectively. The payoff of the reset put option is given
by max(X — St, 0) if no shouting occurs throughout the option’s life, and the payoff is modified to
max(S; — St,0) if shouting occurs at time ¢ before the maturity date 7. Upon shouting, the reset
put option effectively converts into an at-the-money put option. From the nature of the payoff, it
is obvious that the holder would shout only for Sy > X so that an increase in the terminal payoff

is resulted after shouting.

Another example is the shout floor where the holder can shout at any time ¢ during the life of
the contract to install a floor on the return, with the floor value being set at the prevailing asset
price S; at the shouting moment (Cheuk and Vorst, 1997). The terminal payoff of the shout floor
is seen to be max(S; — St,0) if shouting occurs, but assumes zero value if otherwise. The shout
floor can be considered as a special example of a reset put option with the initial strike price set

at the zero value.

There exist a wide range of financial instruments with embedded shout features. Gray and
Whaley (1999) analyzed the reset feature in the Geared Equity Investment offered by Macquarie
Bank. Brenner et al. (2000) examined the impact of resetting the terms of previously issued
executive stock options on firm performance. Windcliff et al. (2001a,b) analyzed the Canadian
segregated funds with multiple reset rights on guaranteed level and maturity date. Jaillet et al.
(2001) studied a special form of shout feature (swing option) that appears in some energy derivative

contracts.

In this paper, we develop the linear complimentarity formulation to analyze the optimal shout-
ing policies for options with single shouting right to reset the strike price. Similar to American
options with the early exercise right, the pricing of options with the shouting right leads to free
boundary value problems. The reward function upon shouting in a reset put option is different from
its terminal payoff, a distinctive feature that distinguishes a reset put option from an American
option. The optimal shouting policy of a reset put option or a shout floor depends on whether the
riskless interest rate r is greater than, equal to or less than the dividend yield g. When r > g¢,

it is never optimal for the holder to shout at any asset value at times before some critical time.
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This distinctive property of optimal shouting is closely related to the behavior of the theta of the
value of an at-the-money put option. Within the time period when the theta of the expectation of
the discounted value of the at-the-money put option received upon shouting is positive, it is never
optimal for the reset put option holder to shout at any level of asset value. This agrees well with
the financial intuition that when the theta assumes positive value, shouting would result in double
losses — loss in the value associated with the right to reset and loss in the temporal growth of the
value of the at-the-money put to be received. When r < ¢, the expectation of discounted value of
the at-the-money put option always decays in value as time proceeds. We prove rigorously that
there always exists a threshold value for the asset price above which the holder of the reset put

should shout optimally.

Cheuk and Vorst (1997) formulated the pricing model of the shout floor as an optimal stopping
problem and developed the lattice schemes for the numerical valuation of single-shout and multi-
shout shout floors. No closed form price formulas have been derived in their paper. Windcliff et
al. (2002a) examined the reset features in Canadian segregated funds through refined numerical
procedures. These authors have not performed the theoretical analysis of the characterization of
the shouting boundary. In this paper, we provide rigorous analysis of the optimal shouting policies
of the shout floors and reset put options. We develop the analytic price formulas and analyze the
optimal shouting policies for the shout floors. For the reset put options, we derive the integral
representation of the shouting premium and examine the asymptotic behaviors of the optimal
shouting boundaries at time close to expiry and infinite time from expiry. We obtain explicitly
the limiting critical asset value at infinite time to expiry (for r» < ¢) and the threshold time before
which it is never optimal to shout (for » > ¢). For the determination of the optimal shouting
boundaries, we derive the integral equation for the critical asset value and solve the equation using
the recursive integration method. The accuracy and efficiency of the recursive integration method

are compared with those of the binomial method.

The paper is organized as follows. In Section 2, we formulate the pricing models for options
with the reset feature and examine the time dependent behaviors of the expectation of discounted
value of at-the-money puts. Section 3 presents the analytic derivation of the price function and
the optimal shouting policies of the shout floor. In Section 4, we explore the characterization of
the optimal shouting boundary S*(7) of the reset put option under different conditions on the
relative values of the riskless interest rate and the dividend yield. We examine the impact on the
shouting policy due to the time dependent behaviors of the expectation of discounted value of
at-the-money put option received upon shouting. In particular, the asymptotic behaviors of S*(7)

at time close to maturity and infinite time to expiry are examined. The integral representation
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of the shouting premium of the reset put option is derived. In Section 5, we give the details on
the numerical procedure to compute S*(7). The integral equation for the determination of the
shouting boundary is developed, which is then solved by the recursive integration method. The
accuracy and run time efficiency of the recursive integration method are compared with those of
the binomial method. Numerical solutions to the shout floor and reset put options are obtained,
which are used to compare with the theoretical results deduced in earlier sections. The paper ends

with conclusive remarks in the last section.

2. FORMULATION OF THE PRICING MODELS

We follow the usual Black-Scholes assumptions in the pricing framework for options with the shout
feature. In the risk neutral world, the stochastic process for the asset price S is assumed to follow
the lognormal diffusion process

(2.1) % =(r—q)dt+odZ,

where r and q are the constant riskless interest rate and dividend yield, respectively, ¢ is the
constant volatility and dZ is the standard Wiener process. We let 7 denote the time to expiry,

where 7 =T —t. Here, T is the option expiration date and ¢ is the current time.

2.1 Formulation as free boundary value problems

For either the reset put option or the shout floor, the option becomes an at-the-money put option
upon shouting. The price function of this at-the-money put option is seen to be linearly homoge-
neous in S and takes the form SP(7). By setting the strike price to be the current asset price in

the Black-Scholes vanilla put option price formula, we obtain
(2.2) P(1) =e¢ ""N(—ds) —e " N(—dy),

where

02

(2.3) N(z) = L\/Q_/ e € 2e, dy = r T and dy =d; —oV/T.
T J—00

The pricing model of the reset put option or the shout floor leads to a free boundary value problem.

The linear complementarity formulation of the pricing function V' (S, 7) is given by

oV o2 0%V oV
S  _(p—g)S— > > SP
5 3 S 552 (r Q)SOS +rV >0, V(S,7)>SP(7),
oV o 0%V oV
. _— — _— — —_— — P )
(2.4) {87- 5 S 552 (r—q)S 59 +rV | [V =SP(1)] =0,

[ max(X — S,0), reset put
V(S,0) = { 0, shout floor ’



The option value becomes the reward function SP(7) upon shouting; otherwise, it always stays
above SP(7). Note that the shout floor corresponds to the reset put option with zero initial strike
price. The critical shouting boundary, denoted by S*(7), separates the domain of the problem into
the continuation region and stopping region. The shouting boundary is not known a priori but
has to be solved in the solution procedure of the free boundary value problem. Since the holder
shouts only when the asset value reaches sufficiently high level, the continuation region and stopping
region are on the left and right hand side of the shouting boundary, respectively. The option price
function V' (S, 7) observes the smooth pasting (or “high contact”) conditions, that is, continuity of
the option value and delta across the optimal shouting boundary S*(7).

In the continuation region, the price function V (.S, 7) satisfies the Black-Scholes equation and
V(S,7) is above SP(7). In the stopping region, the option value becomes the reward function

SP(7). Substituting into the Black-Scholes equation, we obtain

oV o? ,0*V ov
A i A PR Y h A P 7
T2 e 0t
(2.5) 0 if (S, 7) lies in the continuation region
B { Se_qui[eqTP(T)] if (S, 7) lies in the stopping region '
T

Note that either the continuation region or the stopping region (but not both) can be an empty

set.

The tractability of the pricing model for the reset put option and the shout floor stems from the
linear homogeneity in S of the reward function. Later, we show that the existence of a non-empty
continuation region and/or stopping region depends on the terminal payoff and the time dependent

property of the reward function.

2.2 Behaviors of expectation of discounted value of at-the-money puts
Similar to the concept of delayed compensation premium in American option model, the term

d
Se‘qu—[eqTP(T)] gives the rate of cashflow required to compensate the shout option holder if he
T

does not shout in the stopping region. This term is related to the expectation of the discounted

d
value of the at-the-money put received upon shouting. The sign behaviors of d—[eqTP(T)] are
T

summarized in Lemma 2.1.

Lemma 2.1 The function e4” P(7) observes the following properties.
(i) If r < g, then it is strictly increasing for 7 € (0, o).
(ii) If » > ¢, there exists a unique critical value 7* € (0,00) such that it is strictly increasing for

7 € (0,7*) and strictly decreasing for 7 € (7%, 00).
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The proof of Lemma 2.1 is given in Appendix A.

When % [e?” P(T)] > 0, the theta (derivative with respect to t) of the expectation of discounted
value of the at-the-money put becomes negative. From financial intuition, it is expected that
negative theta value is a necessary condition for the commencement of optimal shouting. In other
words, the holder should never shout when the theta is positive. The necessary and sufficient
conditions for the optimal shouting policies of shout floors and reset put options are explored in

the coming sections.

3. ANALYTIC PRICE FORMULA OF THE SHOUT FLOOR

Let R(S,7) be the price function of the shout floor. Since there is no strike price X appearing
in the terminal payoff function and the obstacle function SP(7) observes linear homogeneity in S,
one would expect that R(S,7) is linearly homogeneous in S. Suppose we write R(S,7) = Sg(7),
and substitute the assumed form of R(S,7) into the linear complimentarity formulation (2.4), we

obtain the following formulation for g(7).

D1 g(m)] >0, g(r) > P(r),

dr
3.) {aieramn}latn) - Pl o
g(0) = 0.

The well-posedness of the above formulation for g(7) justifies the assumption of linear homogeneity

of R(S, 7). We solve for ¢g(7) under the following two separate cases:

d
(i) When r < ¢, d—[eqTP(T)] is strictly positive for all 7 > 0 and P(0) = 0; therefore, we can
T
deduce that g(r) = P(7), 7 € (0,00).
(ii)) When r > ¢, we deduce similarly that g(7) = P(r) for 7 € (0,7*]. When 7 > 7%, we

d d
cannot have g(7) = P(7). If otherwise, this would lead to E[eng(T)] = E[eqTP(T)] <

d

0, a contradiction. Hence, we must have d—[eng(T)] = 0 for 7 € (7%,00). Solving this
T

differential equation and applying the auxiliary condition: g(7*) = P(7*), we obtain g(7) =

e~ P(r*) for T € (7*,00). The above results are summarized in Theorem 3.1.

Theorem 3.1 The price function of the shout floor R(S,7) has the following analytic representa-

tion.
(i) Ifr <gq R(S,7) = SP(7), 7 € (0,00) and S > 0.
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(ii) If r > g,

[ SP(r), 7€ (0,7*] and S >0
R(S,T) = {e—q(r—‘r*)gp(q—*), T € (1*,00) and S > 0,

d
where 7* is the unique positive root of d—[eqTP(T)].
T

Next, we illustrate that the optimal shouting policy of the shout floor also depends on the

d
sign of d—[eqTP(T)]. When the sign is non-negative, we have R(S,7) = SP(7), inferring that the
T
holder should shout at once. This occurs either when (i) r < ¢, 7 € (0,00), or (ii) » > ¢, 7 < 7*.
Conversely, when r > ¢q and 7 > 7*, Theorem 3.1 indicates that R(S,7) > SP(7), so the holder

should not shout under such scenario. In summary:
(i) When r < ¢, 5*(7) = 0 and the continuation region is an empty set for all 7 € (0, c0).
(ii)) When r > ¢, (a) S*(7) = 0 and the continuation region is empty when 7 < 7%, (b) S*(7) = oo

d
and the stopping region is empty when 7 > 7%, where 7* is the root of d—[eqTP(T)].
T

. OPTIMAL SHOUTING BOUNDARY AND SHOUTING PREMIUM FOR RESET PUT OPTION

Unlike the shout floor, the analytic price formula for the reset put option cannot be obtained. First,
we examine the characterization of the optimal shouting boundary S*(7) of the reset put option,
in particular, the asymptotic behaviors at 7 — 01 and 7 — co. Since the new strike upon reset
should not be lower than the original strike, we must have S*(7) > X. We show how the behaviors
of S*(7) depend on the relative magnitudes of r and g. We also obtain the integral representation

of the shouting premium.

4.1 Asymptotic behaviors of S*(7)

For American options, it is well known that the critical asset price at 7 — 0" depends on the ratio

of » and g. However, this is not so for the reset put option.

Theorem 4.1 The optimal shouting boundary S*(7) for the reset put option starts from X, namely,
S*(0+) = X.

d
The proof of Theorem 4.1 is presented in Appendix B. Since S e_qu—[eqTP(T)] > 0 for all S
T

as 7 — 01, shouting at any S when 7 — 0" would lead to positive gain to the holder. On the other
hand, $*(0") must not be less than X. The combination of the two conditions gives S*(07) = X.

Next, we examine the asymptotic behaviors of the shouting boundary of the reset put option
S*(7) at infinite time to expiry. Let ST, denote the limit of S*(7) as 7 — oo. We would like to

show that ST ., exists when r < ¢, and subsequently determine its corresponding value. This is
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linked with the existence of the following limit

(4.1) lim e""P(r) = lim [N(—dy) — e 9" N(—=dy)] =1 for r<gq.

T—00 T—00

Let V(S,7) be the price function of the reset put option and let W°(S) denote the limit of

"V (S,7) as T — oo. The corresponding set of governing equations for We°(S) are given by

2 2 o) o)

0° o d°W dw .

5 S 72 +(r—q)S 75 0, <S<SL,
(42) W) = X, WR(Sh) =St T (55) < 1

This formulation for W(.S) implicitly requires the existence of lim e"” P(7), so it is applicable
only for r < g [see Dewynne et al. (1989)]. The solution to W°(S) is found to be

(4.3) W (S):X+WX BB 0< 8 <8t

where S = (1 + %) X and 8 =2(¢g —r)/0>.

1
Hence, when r < q, S*(7) is defined for 7 € (0, co) with the asymptotic limit S%, = (1 + B)X

Note that when r = ¢, S%, becomes infinite.

When r > ¢, we recall that it is never optimal to shout the shout floor at 7 > 7*; that is,
R(S,7) > SP(7) at 7 > 7* when r > ¢q. Since V(S,7) > R(S,7) for all S and 7, so when r > ¢,
it is never optimal to shout at 7 > 7* by virtue of the property: V(S,7) > SP(7) at 7 > 7*. We
write the critical asset value as S*(7; X) to show its dependence on the strike price X. When r > ¢
and 7 < 7%, we have shown in Sec. 3.2 that S*(7;0) = 0. On the other hand, S*(7;00) = oo since
it is never optimal to shout at any asset value when the strike price is infinite. One may expect
that S*(7; X) assumes finite value when X is finite, when r > ¢ and 7 < 7*. The precise statement

of the result is stated in Lemma 4.2, and the rigorous proof of which is given in Appendix C.

Lemma 4.2 For r > ¢ and 7 < 7*, there exists a critical asset price S*(7) such that V(S,7) =
SP(t) for S > S*(7).

Note that the compact support property of the terminal payoff of the put and the increasing
property of 9" P(7) for 7 < 7* give the sufficiency for the existence of S*(7). With the finiteness
property of S*(7; X) for X > 0, we then have the continuous dependence property of S*(7;X) on
X for X € [0,00). Further, we observe that S*(7;kX) = kS*(7; X), where k is a positive constant,
thus we can deduce that S*(7; X) is linear homogeneous in X. We now summarize all of the above

results as follows:



Theorem 4.3 The behavior of the optimal shouting boundary S*(7) of the reset put option depends

on the relative values of r and gq.

1
(i) If r < g, then S*(7) is finite for 7 € (0,00) and S5 = (1 + B) X. In particular, when

r = q,S%, becomes infinite value.

(ii) If r > g, then S*(7) is finite for 7 € (0,7%).

4.2 Integral representation of the shouting premium

Let e(S,7) denote the shouting premium of the reset put option, and let 1(Sg;.S) denote the
transition density function for the future asset value S¢ at & periods from now, given the current
asset value S. Over the time period [£,& -+ d€], the present value of the amount of compensation
paid to the holder for delayed shouting is given by

d
B[SO e P Liszsnirey]

u=1—¢&

(4.4a) —e7 "¢ / See™1(r=9) 4 [e?“ P(u)]
§*(r—£) du

YP(Se; S) dSe

u=1—&
where F is the expectation under the risk neutral measure and 1{.} is the indicator function, and

- r-0-5)¢]

1
- Seo/27E P 202¢

(4.40) P(S¢; 5)

The shouting premium e(,S, 7) is obtained by summing all these compensations over the whole time

interval [0, 7|, and it can be expressed as

Y(S¢; S) dSed§

u=1—&

e(S,7) — / e / See=a=9 L [ py]
0 “(r—g) du

(4.50) _ e / ’ N(dl,T_u)%[eq“P(u)] du,

where

lns%(er(r—qu";) (1 —u)

4.5b Al rey —
(4.50) L o —a

Since S*(7) becomes infinite when 7 > 7* for r > ¢, one should change the upper integration limit

in Eq. (4.5a) from 7 to 7* when r > g.



5. NUMERICAL SCHEMES: RECURSIVE INTEGRATION METHOD AND BINOMIAL METHOD

In this section, we derive the integral equation for the determination of the critical asset value S*(7)
for the reset put option and illustrate how to use the recursive integration method to solve for the
shouting boundary. We then compute the reset put option value by evaluating directly the shouting
premium integral. We also evaluate the option value using the binomial method by incorporating
the usual dynamic programming procedure of taking the maximum among the continuation value
and the reward value upon shouting. The accuracy and run time efficiency of these two methods
are illustrated. We also plot the reset put option value and shouting boundaries under different

cases of relative magnitudes of r and q.

5.1 Integral equation for S*(7) and recursive integration method

At the critical asset value S = S*(7), V(S,7) = SP(7). Substituting this relation into Eq. (4.5a),

we obtain the following integral equation for S*(7):
(5.1a) S*(T)P(1) = pr(S*(7),7) + S*(1)e qT/ N(d [eq“P( )] du, for T <7T%,

where 7* is taken to be infinite value for » < ¢. Here, pg(S,7) is the value of the corresponding

vanilla put option and

In *(( ))+<T—q+ )f
V3

We apply the recursive integration method (Huang et al., 1996) to solve for S*(7) from the

(5.1b) T,g —

above integral equation. This is done by integrating the integral premium term using numerical
quadrature and determining the optimal shouting boundary S*(7) at discrete instants recursively.
Since the integrand function inside the integral term has an integrable square root singularity at

u = 0, it is necessary to transform the integral into the following form:

/ N, d—[eq“P(u)] du

(5.20) - / =0 N )on(dye) — 2u(r — N (~dy2)] du,
0
where
S, o2
In ¢ + <r —q—%
oVE

First, the interval [0,+/7] is divided into N equally spaced subintervals, with end points u; =
iAu,i=0,1,---, N, where Au = \/7/N. We define the function

(5.3) F(S*(), 8 (n); 7o) = e CTVIN( ) [on(de,g) — 2(r — q)/IN (—d2,p)),
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(5.20) doe = ) and dy e =dog +0VE.




and write 7; = u? and SF = S*(&;), then the recursive scheme for the determination of S¥ is given
by

Au )
STP(ST) = p(ST, ) + S (e

i—1

(5.4) £S5, S8 mimo) + (ST SEsmiam) +2> (S5 Sgsmome) |, i=1,2,-, N,
k=1

5.2 Numerical calculations and comparison of performance of numerical schemes

First, we would like to use the binomial method to price the shout floor and compare the numerical
results with those obtained from the analytic price formula given in Theorem 3.1. Let At be the

time step, 4 and d be the upward and downward jump ratios, respectively, in the binomial tree,

6(7"—q)At —d
where u = 1/d = eoVAL Leg p be the probability of the upward jump, where p = —w_d Let
V7* denote the numerical approximation to the shout floor value R(Sw/,T — nAt). The binomial

scheme for pricing the shout floor is given by the following dynamic programming procedure:

VI = max(Su P(T — nAL).e S VI 4 (1 - p) V)

(5.5) j=-n,-n+2---,n andn=0,---,N —1,

where N is the total number of time steps. For the shout floor, the terminal payoff is given by
VjN =0,j=—N,—N+2,---,N. The reset put can be priced in exactly the same manner, except
that the terminal payoff is modified to V¥ = max(X — Su/,0),j = —N,N +2,---,N.

In Table 1, we list the values of shout floors with varying values of r and ¢ obtained from the
binomial method and analytic formulas. The other parameter values used in the calculations are:
S =X =100,0 = 0.2 and 7 = 5. We observe that the binomial calculations give highly accurate
results even with small number of time steps, V. The various values of the critical time 7* are
also listed in the table. When r < ¢, 7* does not exist; and for convenience, we take 7* to assume
infinite value. At those times where 7 < 7*, according to the results obtained in Theorem 3.1, the
holder should shout the shout floor at once at any asset value. Hence, the shout floor value is equal
to the value of the at-the-money put. On the other hand, when 7 > 7%, the holder waits until 7
falls to 7* in order that it is optimal to shout. In this case, the shout floor value is higher than the
value of the at-the-money put. The numerical results reported in Table 1 verify all of the above

theoretical predictions.

In Table 2, we demonstrate the comparison of the numerical accuracy and run time efficiency
of the binomial method and the recursive integration method for pricing the reset put option. The

values of the reset put options are obtained with varying values of , ¢, and X. Since there is no
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closed form analytic formula available for the reset put option, we ran the binomial calculations with
50000 time steps and considered the numerical results obtained as the exact solution of the option
value. For the binomial calculations, we accelerated the rate of convergence by using extrapolation
techniques. Assuming linear rate of the convergence, we obtained the extrapolated value with
N = 1000 by adding to the numerical solution the difference of the computed values obtained with
N = 1000 and N = 500. Both the binomial method and the recursive integration method give
highly accurate results. The Root Mean Squared Errors (RMSE) shown in Table 2 are obtained by
taking the square root of the average of the squares of errors of option values computed at varying
asset values and values of time to expiry. The extrapolated binomial method requires 1000 time
steps in order to achieve the same level of numerical accuracy as that acheived by the recursive
integration method with 64 time steps. Though the algorithmic design of the recursive integration
method is more elaborate, the CPU time required for the recursive integration method is only

about 7% that of the binomial calculations for comparable level of numerical accuracy.

In Table 3, we show more detailed comparison of accuracy and run time efficiency of the
binomial method and the recursive integration method with varying number of time steps. When
the number of time steps in the binomial scheme is doubled, the RMSK is roughly halved, indicating
an approximate linear rate of convergence of the binomial scheme. The results shown in Table 3
illustrate that the application of the extrapolation procedure to the binomial scheme does improve
the level of accuracy of the binomial scheme. The CPU time required for both numerical methods
increases roughly four-fold when the number of time steps is doubled. For a given level of numerical
accuracy, the run time efficiency of the recursive integration method always wins over that of the

binomial method (even with extrapolation).

5.3 Pricing behaviors and optimal shouting boundaries

We applied the recursive integration method to determine the option value V (S, 7) and the optimal
shouting boundary S*(7) of the reset put option. In all calculations, we take the strike price X = 1.0

and volatility o = 20%.
FIGURES 1la and 1b show the plots of V (S, 7) against S at different values of 7, corresponding

to r < q and r > g, respectively. The price functions V (S, 7) show no monotonic property in 7.
This behavior is in contrast to the American options where American option price functions are
always monotonically increasing in 7. The lack of monotonicity in 7 may be attributed to the
fact that the derivative received upon shouting is an at-the-money European put option, and the
price function of a Kuropean put option does not exhibit monotonicity in 7. For r < ¢, each
price curve touches tangentially the line representing the value of the corresponding at-the-money

put option (see FIGURE 1a). When r > ¢, there exists a critical value of 7 above which it is
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never optimal to shout. When the following set of parameter values are used in the option model:
r = 0.06,9 = 0.02,0 = 0.2 and X = 1, this critical value of 7 is found to be 5.7121. In FIGURE
1b, we observe that when 7 < 5.7121 (say, 7 = 0.5 or 7 = 1.5), the price curve touches the line
representing the value of the at-the-money put. However, when 7 > 5.7121 (say, 7 = 6.0), the price

curve always stays above the at-the-money put value line.

In FIGURES 2a, 2b and 2¢, we plot the critical asset price S*(7) as a function of 7 corre-
sponding to r < ¢, = ¢ and r > ¢, respectively. Firstly, when r < ¢ (see FIGURE 2a), S*(7) is
defined for 7 € (0,00) and TILH;O S*(1) = 1.5. This asymptotic value agrees with S*(7) as given in
Theorem 4.3. Secondly, when r = ¢ (see FIGURE 2b), S*(7) tends to infinity as 7 tends to infinity.
Lastly, when r > ¢ (see FIGURE 2c), S*(7) is defined only for 7 € (0,7*), where 7* is the root of
e9” P(7). Such behavior of S*(7) indicates that it is never optimal to shout when 7 > 7*. In all

cases, S*(7) is a monotonically increasing function of 7.

6. CONCLUSION

The shout feature embedded in a derivative entitles the holder the right to reset certain terms in
the derivative contract. This may be interpreted as the privilege given to the holder to convert the
original derivative to a new derivative. Since the critical asset price at which the holder optimally
shouts is not known a prior but has to be determined in the solution process, the pricing models

are formulated as free boundary value problems.

For both shout floors and reset put options, we show that the optimal shouting policies depend
on the time decay behaviors of the expectation of discounted value of the at-the-money option
received upon shouting. The behaviors of the optimal shouting boundaries of the reset put options
depend crucially on the relative values of the riskless interest rate r and dividend yield ¢. When
r < g, the shouting boundary of the reset put option is defined at all times. This implies that at
any time during the life of the option, the holder should choose to shout optimally when the asset
value rises to some threshold value. On the other hand, when r > ¢, there exist a critical time
before which it is never optimal for the holder to shout the reset put option at any asset value level.
When r < g, the shout floor should be shouted at once at any time and at any asset price level.
When r > ¢, there exists a critical time before which it is never optimal for the holder to shout the

shout floor. Upon reaching the critical time, the shout floor should be shouted at once.

Several analytic formulas have been derived in the paper. We obtain the closed form price
formula of the shout floor and the integral representation of the shouting premium of the reset put
option. From the integral representation of the shouting premium, we derive the integral equation

for the determination of the shouting boundary and compute the value of the reset put option
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using the recursive integration method. We also compute the values of the shout floors and reset
put options using the binomial method. Both the binomial method and the recursive integration
method give highly accurate results for the price functions. The algorithmic design of the binomial
method is simpler than that of the recursive integration method. However, the recursive integration
method requires less CPU time to achieve the same level of accuracy as that obtained from the

binomial method.

The main contribution of our paper lies on the theoretical analysis of the characterization of
the optimal shouting boundary of the reset put options. Such analyses are made possible, thanks
to the linear homogeneity property of the price functions of at-the-money put options. With the
initial strike price set at zero in a shout floor, we are able to solve for its price function completely.
For future works, we may consider reset put options with multiple shouting rights and rights to

reset on both the strike price and maturity date of the option contract.
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APPENDIX A: PROOF OF LEMMA 2.1
. . . . . d
Since 4" P(T;r,q) = P(T;r — ¢,0), it suffices to consider the sign behavior of d—[P(T; r,0)], where
T

2
o
r—3

P(r;7,0) = ¢ ""N(—ds) — N(—=d1), a=—2, dy=ay7, di =ds+oyT.
g

The derivative of P(1;r,0) is found to be

& Plrin,0) e [~rN(- o) + 5 7=n(—db)

We write f(7) = —rN(—ds2) + Tn( 2).

(a) When r <0, we always have f(7) > 0 so that diP(T;r, 0) > 0.
T

d
(b) When r > 0, we examine the sign behavior of d—P(T; r,0) by considering the property of
T

Un(—dg)
v
1
a(o+ )
at 7 = 7. Together with f(07) — oo and f(co) < 0, we conclude that f(7) has exactly one

F(r) — {Ma+®—l}

T

When « > 0, f'(7) has a unique root 7 = . The function f(7) has its absolute minima

root in (0,00). When o < 0, f'(7) < 0 for 7 € (0,00); so f(7) also has exactly one root in
(0, 00).

APPENDIX B: PROOF OF THEOREM 4.1

Let D(S,7) denote the difference between the values of the reset put option and its corresponding
at-the-money put option. Note that D(S,7) > 0 for all S and 7. In the continuation region, D(.S, 7)

is governed by

oD ¢® ,0°D oD ) .

As T — 0", we observe that —S[P'(7)+¢P(7)] — —oo. Assume the contrary, suppose S*(0"7) > X,
and consider S € (X, 5*(01)), we have D(S,0") = 0 so that

oD

5 ——(5,07) = =S[P'(0") + qP(0")] < 0.

This would imply D(S,0") < 0, a contradiction to D(S,7) > 0 for all 7. Therefore, we must have
S*(0F) < X. On the other hand, since the reset strike must not be lower than the original strike,

we then have $*(07) > X. Combining the results, we obtain S*(07) = X.
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APPENDIX C: PROOF OF LEMMA 4.2

The idea of the proof stems from Brezis and Friedman (1976). Let D(S,7) = V(S,7) — SP(7),
which is monotonically decreasing with S. Therefore, it suffices to show that for r > g and 7 < 7%,
D(S,7) = 0 when § is sufficiently large. We apply the transformation D(S,7) = Se™%" D(x,7) and

S = €% to obtain

oD 0% 02D o2 D ~ d -
— = —(r—q+ )= —q)D>——[e" P D >
87— 2 a$2 (7" Q+ 2 )ax + (7" q) - dT [6 (T)]v (va) - 07
oD 02 9°D o2 oD ~ d
- - - - _ _ qT _
o 2 g2 (r—q+ 5 )833 +(r q)D+dT[e P(7)]| D(z,7) =0,

D(z,0) = max(Xe™® —1,0).
Note that 5(3:, 0) has compact support. We now construct an auxiliary function w(z) as follows:

_ 7(R0 - 'x)zv z < Ry
W(x) N {0, x > Ry,

where the parameters Ry and -y are to be determined. Note that for z < Ry

{g—fa—;—<r—q+°§>%+(r—q)} (Ro — )

ag
= —o*y+2(r—g+ 5 )(Bo — )+ (r — g)(Ro —2)* > -y,

so that

o o2 0? o?\ 8 —oy, @< Ry
T (ot ) g reofen {7 150

d

By Lemma 2.1 (ii), d—[eqTP(T)] is positive over (0,7*). We can always find Ry sufficiently large
T

and v sufficiently small such that

w(nX) > D(In X, 1)

and
—o?y > __j e?" P(T)] for 2z >InX.
T

We then use the comparsion principle to infer that w(z) > D(z,7) for 2 > In X, thus D(z,7) =0

for £ > Ry. This is the desired result.
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value of shout floor critical value of
binomial method analytic | time |at-the-money
r q N=25 N=50 N=100| price 7" put

0.06 0 6.0259 6.0263 6.0264 | 6.0264 2.94 5.6968
0.03 8.9487 89487 89487 | 8.9487 8.91 8.9487

0.06 |[13.1078 13.1078 13.1078 | 13.1078 o 13.1078

0.12 [ 23.4209 23.4209 23.4209 | 23.4209 0 23.4209

0.1 0 3.7737 3.7737 3.7737 | 3.7737 1.20 22684
0.03 45123 45125 45128 | 45128 2.26 3.9464

0.06 6.3537 6.3537 6.3537 | 6.3537 5.71 6.3537

0.12 [ 13.3571 13.3571 13.3571] 13.3571 0 13.3571

Table 1 The values of the shout floors are computed using the binomial method with varying
number of time steps, V. The parameter values used in the calculations are: S = X =
100,06 = 0.2 and 7 = 5. The accuracy of the binomial calculations are compared with
those obtained using the analytic price formulas (see Theorem 3.1). The various values

of the critical time 7* are also listed. The shout floor value equals the value of the

at-the-money put when 7 < 7*.
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binomial method recursive
g r q X _ _ extrapolated integration
N = 50000 N = 1000 N = 1000 N = 64

0.1 0.06 0.03 95 3.7974 3.7971 3.7972 3.7975

100 45124 45118 45120 45125

105 5.4995 5.4988 5.4990 5.4996

0.1 0.03 0.06 95 15.3583 15.3570 15.3571 15.3605
100 17.1770 17.1760 17.1763 17.1764

105 19.7754 19.7747 19.7749 19.7752

0.2 0.06 0.03 95 12.3779 12.3776 12.3776 12.3782
100 13.5807 13.5799 13.5803 13.5810

105 14.9688 14.9684 14.9687 14.9691

0.2 0.03 0.06 95 24.4384 24.4376 24.4377 24.4382
100 26.4197 26.4187 26.4191 26.4199

105 28.7275 28.7269 28.7272 28.7278

0.3 0.06 0.03 95 21.8264 21.8261 21.8264 21.8270
100 23.3167 23.3156 23.3161 23.3173

105 24.9434 24.9426 24.9426 24.9440

0.3 0.03 0.06 95 34.1756 34.1746 34.1715 34.1762
100 36.2954 36.2940 36.2946 36.2962

105 38.6219 38.6207 38.6209 38.6227

RMSE - 3.7e-3 2.6e-3 2.9e-3

CPU time (sec) - 1.88 2.35 0.17

Table 2 Comparison of accuracy and run time efficiency of the binomial method (with and

without extrapolation) and the recursive integration method for pricing the reset put
otpion. Other parameter values used in the calculations are: S = 100,7 = 5. The
solution obtained with 50000 time steps is considered to be “exact”. The accuracy of
the extrapolated binomial method with 1000 time steps is comparable to that of the
recursive integration method with 64 time steps. However, the CPU time required for

the recursive integration method is only about 7% that of the binomial calculations.
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number of binomial method recursive

time steps without extrapolation | with extrapolation integration method
(binomial; recursive)l RMSE  CPU (sec) | RMSE  CPU (sec) | RMSE  CPU (sec)

1000; 64 3.7e-3 1.88 2.6e-3 2.35 2.9e-3 0.17

2000; 128 1.7e-3 7.6 1.0e-3 9.3 8.5e-4 0.63

4000; 256 7.4e-4 30 4.5e-4 37 3.7e-4 2.7

8000; 512 3.3e4 123 1.9e-4 171 1.6e-4 8.7

Table 3 This table illustrates the effect of increasing number of time steps on the accuracy improve-
ment and run time increment of the binomial method (with and without extrapolation)

and the recursive integration method for pricing the reset put option.
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FIGURE 1a. Plot of the value of the reset put option against the asset value for r < ¢ at
different values of time to expiry, 7. The parameter values used in the calculations are: r =
0.02,qg = 0.06,0 = 0.2 and X = 1.0. Each price curve touches tangentially the line representing

the value of the corresponding at-the-money put option.
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FIGURE 1b. Plot of the value of the reset put option against the asset value for r > ¢ at
different values of time to expiry, 7. The parameter values used in the calculations are: r =
0.06,q = 0.02,0 = 0.2 and X = 1.0. The critical value of time to expiry beyond which it is never
optimal to shout is found to be 5.7121. The price curve corresponding to 7 = 6 (which is greater

than 5.7121) never touches the line representing the value of the at-the-money put option.
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FIGURE 2a. Plot of the shouting boundary of the reset put option as a function of time to
expiry for r < q. The parameter values used in the calculations are: r = 0.02,¢g = 0.06,0 = 0.2
and X = 1.0. The asymptotic value of the critical asset price at infinite time to expiry is found to

be 1.5.
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FIGURE 2b. Plot of the shouting boundary of the reset put option as a function of time to
expiry for r = q. The parameter values used in the calculations are: r = 0.06,q = 0.06,0 = 0.2
and X = 1.0. The critical asset price increases monotonically with increasing time to expiry and

tends to infinity at infinite time to expiry.
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FIGURE 2c. Plot of the shouting boundary of the reset put option as a function of time to
expiry for r > q. The parameter values used in the calculations are: r = 0.06,q = 0.02,0 = 0.2
and X = 1.0. The critical value of the time to expiry beyond which it is never optimal to shout is

found to be 5.7121.
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