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Abstract

We develop the real option signaling game models of equity financing of a risky project un-
der asymmetric information, where the firm quality is known to the firm management but not
outside investors. Unlike the usual assumption of perpetuity of investment, we assume that
the time window of the investment opportunity has a finite time horizon. The firm chooses
the optimal time to issue equity to raise capital for the investment project. The number of
shares of equity issued to fund the project depends on the outside investors’ belief on the firm
quality. The low-type firm has the incentive to sell overpriced securities through mimicking the
investment strategy of the high-type firm in terms of investment timing and number of equity
shares. On the other hand, the high-type firm may adopt the separating strategy by imposing
mimicking costs on the low-type firm. We examine the incentive compatibility constraints faced
by the firm under different quality types and discuss characterization of the separating and pool-
ing equilibriums. We also explore how the separating and pooling equilibriums evolve over the
time span of the investment opportunity. The information costs and abnormal returns exhibit
interesting time dependent behaviors, in particular, at time close to expiry of the investment
opportunity.

Keywords: equity financing, signaling games, separating and pooling equilibriums, real op-
tions

JEL classification: G31, G32

1 Introduction

A firm can finance an investment project using three common sources: internal funds, is-
suance of new debt or equity. The well-known pecking order theory in corporate finance
(Myers and Majluf, 1984) postulates that internal financing is first adopted. When inter-
nal financing becomes exhausted, the firm may issue debt. Issuance of equity is used only
when debt issuance becomes non-viable. Equity financing is less preferred since investors
believe that the firm manager may take advantage of the over-valuation of the firm when
new shares are issued. In response, investors place a lower value on the new equity issuance
since investors have less knowledge of the firm’s prospect. Adverse selection problems may
arise since outside investors may not distinguish whether the firm is high-type or low-type,
and the adverse selection cost of financing increases when investors are faced with a higher
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level of information asymmetry. Since debt is less sensitive to private information, the peck-
ing order theory concludes that debt is preferred over equity under information asymmetry.
Besides, the additional shares issued under equity financing would mean diluting ownership
of existing shareholders.

Many of the earlier works on financing investment opportunities are static models, and
the firm may not have the option of waiting. Indeed, in the classical paper of pecking
order theory, Myers and Majluf (1984) assume that the investment opportunity evaporates
soon. Some of the findings of the classical pecking order theory are reversed when the static
models are extended to the dynamic real option signaling game models. Strebulaev et al.
(2014) show that the tradeoff between debt and equity relies on asymmetric information
regarding the firm’s quality and riskiness of the project. In general, a project with a lower
success probability is financed by equity, while less risky project is financed by debt. Unlike
the static models, dynamic real option investment models (Dixit and Pindyck, 1994) allow
option value of waiting, where the firm manager may choose the optimal investment time
until the stochastic revenue flow rate reaches some optimal threshold. The real option value
of waiting is similar to the option value of an American call option with an embedded optimal
stopping right. Grenadier and Wang (2005) argue that the standard real options approach
fails to account for the presence of information asymmetry between firm manager and outside
investors in financing investment opportunities. The timing of investment and amount of
capital raised are dependent on the interaction of option value of waiting and revelation
of information on the firm quality. Using four corporate finance examples, Grenadier and
Malenko (2011) illustrate that signaling incentives may erode the value of the option of
waiting and speed up early exercise in some models, while option exercise may be delayed in
other models. Xu and Li (2010) analyze equity financing decisions during financial distress
with belief updating under asymmetric information. Bouvard (2014) proposes a signaling
model to reveal the value of an investment project via sequential investments, thus initiating a
learning phase where outside investors can update their beliefs on the probability of holding a
high quality project. Besides capital financing, real options signaling game models have been
adopted to analyze various corporate finance issues, like liquidation timing of a distressed firm
(Nishihara and Shibata, 2017), strategic investment games of incumbent and entrant firms
(Watanabe, 2016), decisions on selling out IPO (Nishihara, 2016), mergers and acquisitions
strategies of bidder and target firms (Leung and Kwok, 2018). A comprehensive and general
review of signaling theory can be found in Connelly et al. (2011).

Morellec and Schürhoff (2011) develop the dynamic real option signaling game models
of corporate investment and financing decisions on raising funds to invest in a risky project.
In their models, the firm management knows more about the project quality than potential
external investors. The investment opportunity is assumed to have perpetual life instead of
immediate evaporation. The firm has the discretion over the choice of equity or debt financ-
ing, and the investment timing. They show that the firm management can signal its quality
type to outside investors using timing of investment and debt-equity mix. With information
asymmetry, the low-type firm has the incentive to issue equity or debt securities that mimic
those offered by the high-type firm, resulting in overvalued securities for the low-type firm
and undervalued securities for the high-type firm. Since asymmetric information raises the
cost of external funding for high-type firm, the high-type firm may choose to separate to
reveal its true quality. These costs are quantified as information costs. Besides, abnormal re-
turns are resulted upon revelation of firm quality at investment time. On the other hand, in
a pooling equilibrium in which firm of either type raises funds in the same form and invest at
the same time, asymmetric information reduces the value of the high-type firm and increases
the cost of investment, while the low-type firm may benefit from information asymmetry.
They show that this would force the high-type firm to speed up investment compared to the
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perfect information benchmark. The dynamic real option signaling game models of financ-
ing and investment with debt-equity mix have been extended by Clausen and Flor (2015)
to include abandonment right and assets-in-place. They show that mature firms with larger
assets-in-place mainly use debt financing, whereas high-growth firms without assets-in-place
use equity financing more frequently and signal their type via early investment.

Most real option models of investment and financing in existing literature assume invest-
ment opportunity to be perpetual. The perpetuity assumption is used to enhance analytical
tractability in determining the optimal investment thresholds and real option value functions.
However, as new technologies become shorter in life span in recent technology environment,
the usual perpetuity assumption in real option models may become questionable. Gryglewicz
et al. (2008) pioneer the study of finite project life in real option investment models, where
they assume the project revenue flow to last for a finite time horizon. They discover scenarios
where investment behaviors under their finite life models may reverse some classical results
under the perpetual models. For example, their finite life models show an acceleration of
investment under increased uncertainty. This is particularly true when the project life is
short and uncertainty level is low.

In this paper, we extend the perpetual real option signaling game model of Morellec and
Schürhoff (2011) to a finite time horizon. Unlike most other earlier papers which consider
tradeoff between equity and debt financing, we focus on information asymmetry between the
firm manager and outside investors in issuance of equity to fund a risky project, where the
investment opportunity has a finite time horizon. We analyze the optimal thresholds under
separating and pooling equilibriums of the real option signaling model in equity financing.
The quality of the firm (high-type or low-type) issuing new equity to finance an investment
project is known only to the firm manager but not outside investors of the new shares. In
our finite time model, the optimal investment thresholds are time dependent. The nature of
separating and pooling equilibriums, information costs and abnormal returns change as the
calendar time approaches the expiration date of the investment opportunity. In most cases,
we manage to establish existence and uniqueness of the binding thresholds under various
incentive compatibility constraints. We also perform characterization of the optimal invest-
ment thresholds under separating and pooling equilibrium. Also, we analyze the asymptotic
behaviors of the optimal investment thresholds at the limits of perpetuity and close to expiry.
Our finite time real option signaling game model provides comprehensive analysis of the time
evolution of the investment strategies of equity financing under information asymmetry.

This paper is organized as follows. In Section 2, we present the finite time real option
signaling game model formulation of equity financing of an investment project under in-
formation asymmetry between the firm manager and outside investors on the firm quality.
The value function of the investment project and optimal investment threshold is formulated
as an optimal stopping model, similar to finite-lived American option models. The budget
constraint on funding the project is analyzed and the issue of adverse selection costs is ex-
plored. Section 3 examines the investment choices of the firm under separating equilibrium.
We consider the incentive compatibility constraints of both high-type and low-type firm.
The existence and uniqueness of the time dependent binding thresholds are established. We
discuss the characterization of the least-cost separating equilibrium and the market value
of the firm when the incentive compatibility constraints of both firm types are satisfied. In
particular, we examine the separating equilibrium thresholds at time close to expiry. Section
4 discusses the optimal investment strategies of the firm and belief system under pooling
equilibrium. The technical conditions for the existence of pooling equilibrium are estab-
lished. We examine the nature of the pooling equilibrium threshold under perpetuity and at
time close to expiry. In Section 5, we present numerical studies of the time evolution of the
binding thresholds under various incentive compatibility constraints and optimal investment
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thresholds under separating and pooling equilibrium. We verify the existence of separat-
ing and pooling equilibrium by observing the relative positions of the optimal investment
thresholds and their relations with the binding thresholds. We analyze how different model
parameters may impact the nature of separating and pooling equilibriums. We examine the
information costs and abnormal returns of both types of the firm under separating and pool-
ing equilibriums when the calendar time approaches the expiration date of the investment
opportunity. Section 6 contains a summary of the major findings and results of the paper.

2 Model formulation of equity financing

The model setup is an extension of the dynamic real option signaling game model of equity
financing by Morellec and Schürhoff (2011) under perpetuity to a finite time horizon. A
firm is supposed to commit the financing decision of choosing the optimal time to issue
equity to raise capital in order to fund the investment of a risky project. The direct cost
of investment is assumed to be the constant value I and the investment is irreversible. The
time window of the investment opportunity is limited to a fixed finite time horizon T . The
project produces a continuous revenue flow rate, where the revenue level depends on the
firm type k. We assume only two types of firm quality, where k can be l (low-type) or h
(high-type). We assume that all agents in the financial markets are risk neutral and cash
flows are discounted at the riskless interest rate r. The revenue flow rate of firm type k is
assumed to be λkXt− f . The multiplier λk may be λh or λl (λh > λl > 0), corresponding to
the high-type firm or low-type firm, respectively. Also, f is the constant rate of operating
expenses of the investment project and Xt is the observable stochastic revenue flow rate that
evolves according to the following Geometric Brownian motion:

dXt = µXt dt+ σXt dZt, X0 > 0. (2.1)

Here, Zt is the standard Brownian motion, µ is the constant drift rate satisfying µ < r
(no bubble condition) and σ is the constant volatility. Let Λ denote the discrete Bernoulli
random variable that assumes the two possible values, {λh, λl} with λh > λl > 0. We assume
that the firm type is the private information held by the firm. The outside investors have
only the probabilistic assessment of the firm type, with P [Λ = λh] = p and P [Λ = λl] = 1−p,
where p is deterministic and p ∈ (0, 1).

To the type-k firm, the present value of the perpetual revenue flow generated by the
investment project at time t is given by

Et

[∫ ∞
t

e−r(s−t)λkXs ds

∣∣∣∣Xt = X

]
=

λkX

r − µ
, k = h or l, (2.2a)

where Et denotes the expectation based on the information at time t. We write Π(X) = X
r−µ

for notational convenience. Let F denote the present value of the future perpetual stream
of operating expenses of the investment project, where

F =

∫ ∞
t

e−r(s−t)f ds =
f

r
. (2.2b)

Let I denote the constant direct upfront cost of investment. The firm management chooses
the optimal timing of investment such that the expectation of the discounted revenue flow
generated by the investment project is maximized.
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Value functions under complete information

The value function of the investment project for the type-k firm, k = h or l, under complete
information prior to investment is given by

V c
k (X, t) = sup

u∈[t,T ]

Et
[
e−r(u−t)(λkΠ(Xu)− F − I)+

∣∣Xt = X
]
, 0 ≤ X ≤ X∗k(t). (2.3)

Here, Ick(X) = λkΠ(X) − F − I, k = h or l, is the intrinsic value of the real option value
function V c

k (X, t). The value function under complete information serves as the benchmark
for comparison of the value function under information asymmetry. We expect that the value
functions of different firm types under separating and pooling equilibriums are less than
the benchmark complete information counterparts. The differences in the value functions
under complete and incomplete information are quantified as the information costs. In our
finite time investment model, the optimal investment time is taken within the finite time
interval [t, T ]. The value function resembles that of a finite life American call option. The
corresponding time dependent optimal threshold is denoted by X∗k(t), where k = h, l. As
λh > λl, we have Ich(X) > Icl (X), so V c

h (X, t) > V c
l (X, t) and X∗h(t) < X∗l (t) (see Table 1).

We assume that the stochastic state variable Xt starts at a sufficiently low level and the firm
has to wait until Xt reaches the optimal investment threshold from below.

Belief systems

The signal sent to the investors is Xinv, where Xinv is the investment threshold of the revenue
flow rate level. The belief on Λ can be categorized into three types:

(i) Λ = λl, the true “low” type of the firm is revealed to the investors;

(ii) Λ = λh, the true “high” type of the firm is revealed to the investors;

(iii) Λ = λp = pλh + (1− p)λl, a probabilistic belief on Λ since the signal fails to reveal the
type of the firm to the investors.

Budget constraints

For simplicity, we let the firm have one share of common equity before issuance of the new
shares of equity for financing the project. We assume that investors would choose to break
even in expectation, and the number of shares n(Xt; Λ) issued would be based on the belief of
the investors on Λ. The number of shares outstanding after financing becomes 1 + n(Xt; Λ),
which indicates dilution of ownership of the incumbent shareholders. The number of shares
to be issued at the time of investment is dictated by the budget constraint, where the value
of new shares equals the direct investment cost I. At Xt = X, the budget constraint gives

n(X; Λ)
ΛΠ(X)− F
1 + n(X; Λ)

= I,

so that the number of new shares to be issued based on the belief on Λ is given by

n(X; Λ) =
I

ΛΠ(X)− F − I
. (2.4)

As n(X; Λ) should be non-negative, ΛΠ(X)−F−I ≥ 0. This is consistent with the intuition
that no share will be issued if the perceived net present value of the project ΛΠ(X)−F − I
is negative. This non-negativity condition dictates that the investment threshold under the
belief system Λ = λk must observe the lower bound X̂0

k , which is given by

λkX̂
0
k

r − µ
− F − I = 0 or X̂0

k =
(F + I)(r − µ)

λk
, k = h, l or p. (2.5)
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Information costs

We would like to characterize the information costs in equity financing under information
asymmetry. Since n(X;λh) < n(X;λl), the incumbent shareholders of the low-type firm can
benefit from a lower ownership dilution when Λ is perceived as λh instead of the true type λl.
This shows why the firm management of the low-type firm has the incentive for pooling. On
the other hand, the high-type firm suffers a loss in option value of waiting when it chooses
to speed up investment by lowering the investment threshold in a separating equilibrium.
When the high-type firm invests under the least-cost separating strategy, the true type is
revealed to the outside investors. This leads to a jump in the firm’s stock price, termed as
abnormal return (Morellec and Schürhoff, 2011). In Section 5, we provide formal definitions
of information costs and abnormal returns.

Since the low-type firm has the incentive to sell overpriced securities through mimicking
the investment strategy of the high-type firm in terms of investment timing and number
of equity shares, this corresponds to a pooling equilibrium where both high-type firm and
low-type firm choose the same investment strategy. This shows how asymmetric information
imposes information costs on the high-type firm.

3 Separating equilibrium of equity financing

The high-type firm may adopt the separating strategy to reveal its true quality. We would
like to examine the characterization of the separating equilibrium of equity financing in
which the two types of firm adopt different investment thresholds and issue fairly priced
equity. The investigation of a separating equilibrium is related to finding the investment
threshold below which the high-type firm remains to be profitable to adopt equity financing
for investment while the low-type firm is non-profitable to mimic the high-type firm through
equity financing. We explore the time dependence of the separating investment thresholds
of two types of the firm, in particular, their behaviors at time close to expiry.

3.1 Incentive compatibility constraint of the low-type firm

First, we consider the incentive compatibility constraint (ICC) of the low-type firm under
separating equilibrium. When deciding on whether to mimic or not, the low-type firm
balances the gain on the overpricing of the equity shares and loss in investment value of the
project due to lowering of investment threshold (speeding up investment time). Suppose the
low-type firm chooses to mimic the investment decision of the high-type firm at Xt = X, the
number of new shares issued equals n(X;λh). The value Hl(X) of the low-type firm held by
the incumbent shareholders right after investment under the belief Λ = λh is given by the
diluted ownership of the low-type firm value, where

Hl(X) =
λlΠ(X)− F
1 + n(X;λh)

=
λlΠ(X)− F
λhΠ(X)− F

[λhΠ(X)− F − I] . (3.1)

To characterize the domain of definition of Hl(X), it is necessary to observe non-negativity
of both n(X;λh) and Hl(X). To ensure non-negativity of n(X;λh), we require X ≥ X̂0

h

[see eq. (2.5)]. On the other hand, λlΠ(X) − F ≥ 0 ⇐⇒ X ≥ F (r−µ)
λl

. Combining

the results, the lower bound of the domain of definition is max
(
X̂0
h,

F (r−µ)
λl

)
; and we write

ˆ̂
X0
l = max

(
X̂0
h,

F (r−µ)
λl

)
for notational convenience. Note that Hl(X) always assumes zero

value at
ˆ̂
X0
l and Hl(X) > 0 when X >

ˆ̂
X0
l . Also, as mimicking requires speeding up
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investment, the investment threshold X under mimicking would not go beyond the optimal
threshold X∗l (t) of the low-type firm under complete information. Hence, the upper bound of
the domain of definition of Hl(X) is X∗l (t). In summary, the domain of definition of Hl(X)

is seen to be [
ˆ̂
X0
l , X

∗
l (t)].

Recall that the low-type firm may follow its first-best strategy under complete information
and chooses equity financing for investment at the trigger threshold X∗l (t). To observe the
incentive compatibility constraint, the low-type firm may prefer mimicking the high-type firm
only if the low-type firm’s value after investment Hl(X) is greater than V c

l (X, t) [defined in
eq. (2.3)]. In other words, the low-type firm may prefer mimicking the high-type and invests
at the threshold X below X∗l (t) only if the following incentive compatibility constraint (ICC)
of the low-type firm

Gs
l (X, t) = Hl(X)− V c

l (X, t) > 0,
ˆ̂
X0
l ≤ X ≤ X∗l (t) (3.2)

is observed.
In order that the firm of high-type can separate from low-type, the high-type firm should

not delay its investment to allow Xt to reach above the low-type firm’s binding threshold
X
s

l (t), where X
s

l (t) solves Gs
l (X, t) = 0. When X ≤ X

s

l (t), we have Hl(X) ≤ V c
l (X, t), so the

low-type firm is non-profitable to mimic as high-type since the ICC of the low-type firm is
violated [see ineq. (3.2)]. We manage to establish existence and uniqueness of the threshold
X
s

l (t) such that the binding condition for separating based on the ICC of the low-type firm
is satisfied when Xt ≤ X

s

l (t), the details of which are summarized in Lemma 1.

Lemma 1. There exists a unique threshold value X
s

l (t), where X
s

l (t) ∈ [
ˆ̂
X0
l , X

∗
l (t)], such

that the firm of low-type has no incentive to mimic high-type through equity financing when
X ≤ X

s

l (t). That is, the following binding condition for separating equilibrium based on the
ICC of the low-type firm holds, where

Hl(X) ≤ V c
l (X, t) (3.3)

when X ≤ X
s

l (t).

The proof of Lemma 1 is presented in Appendix A. As a remark, though there is no closed
form solution for V c

l (X, t), the time dependent threshold X
s

l (t) can be found using numerical
methods. In Figure 1, we illustrate the relative positions of the binding threshold and
optimal investment threshold, and indicate their significance in characterizing the incentive
compatibility constraint and first-best investment strategy of the low-type firm.

ˆ̂
X0
l

X
s

l (t) X∗l (t)

Hl(X) < 0
or

n(X;λh) < 0

Gs
l (X, t) < 0

ICC of low-type
firm is violated

Gs
l (X, t) > 0

ICC of low-type
firm is satisfied

low-type firm invests
at its first-best
strategy under

complete information

Figure 1: Financial significance of the relative positions of the binding threshold and optimal investment
threshold on the incentive compatibility constraint and the investment strategy of the low-type firm.
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3.2 Incentive compatibility constraint of the high-type firm

Next, we consider the incentive compatibility constraint (ICC) from the perspective of the
high-type firm under separating equilibrium. The ICC of the high-type firm is dictated by
the value of separating from the low-type at investment threshold X to be greater than
or equal to the value of not separating. Under the belief Λ = λl, which dictates that the
high-type firm cannot separate as it is perceived as low-type, the value of the incumbent
shareholders of the high-type firm is given by

λhΠ(X)− F
1 + n(X;λl)

=
λhΠ(X)− F
λlΠ(X)− F

[λlΠ(X)− F − I].

This is because the number of shares that has to be issued is n(X;λl) in order to meet
the investment cost I when the high-type firm is perceived as low-type. Since n(X;λl) >
n(X;λh), the firm value is more diluted due to unfavorable belief on the firm type. Let
V m
h (X, t) denote the value of the high-type firm that follows this strategy of not separating

from the low-type firm and X∗mh (t) be the corresponding time dependent optimal threshold
of investment under Λ = λl. The optimal stopping rule dictates that

V m
h (X, t) = sup

u∈[t,T ]

Et

[
e−r(u−t)

λhΠ(Xu)− F
λlΠ(Xu)− F

[λlΠ(Xu)− F − I]

∣∣∣∣Xt = X

]
. (3.4)

For convenience, we denote the intrinsic value of the high-type firm perceived as low-type by

Hh(X) =
λhΠ(X)− F
λlΠ(X)− F

[λlΠ(X)− F − I].

We can deduce that X∗h(t) < X∗mh (t) < X∗l (t) since Ich(X) > Hh(X) > Icl (X). In Table 1, we
summarize the real option value functions with differing intrinsic values, and deduce their
relative magnitudes and relative positions of their optimal thresholds.

Table 1: Real option value functions and optimal thresholds with differing intrinsic values.

real option value functions intrinsic values optimal threshold

V c
h (X, t) Ich(X) = λhX

r−µ − F − I X∗h(t)

V m
h (X, t) Hh(X) =

λhX

r−µ −F
λlX

r−µ−F

(
λlX
r−µ − F − I

)
X∗mh (t)

V c
l (X, t) Icl (X) = λlX

r−µ − F − I X∗l (t)

V c
h > V m

h > V c
l Ich(X) > Hh(X) > Icl (X) X∗h(t) < X∗mh (t) < X∗l (t)

At a given level X, the value upon immediate investment of the high-type firm is
λhΠ(X)− F − I. A necessary condition for the high-type firm to separate from low-type is
given by

Gs
h(X, t) = λhΠ(X)− F − I − V m

h (X, t) ≥ 0, X̂0
h ≤ X ≤ X∗mh (t). (3.5)

The above condition is characterized as the ICC of the high-type firm. The domain of
definition of Gs

h(X, t) is the intersection of the domains of definition of the two constituent
functions: λhΠ(X)− F − I and V m

h (X, t).
The next step is to analyze the mathematical properties of Gs

h(X, t). We manage to show
that there exists a unique root X

s

h(t) of Gs
h(X, t) within (X̂0

h, X
∗m
h (t)), where Gs

h(X, t) ≥ 0
when X ≥ X

s

h(t). These results are summarized in Lemma 2, the proof of which is presented
in Appendix B.
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Lemma 2. There exists a unique root of Gs
h(X, t) that lies within (X̂0

h, X
∗m
h (t)). Also, the

ICC of the high-type firm of separating is satisfied where

λhΠ(X)− F − I ≥ V m
h (X, t) (3.6)

when X ≥ X
s

h(t). In other words, the high-type firm prefers not to separate from low-type
when X has not reached the level X

s

h(t).

Based on the results in Lemmas 1 and 2, in order to satisfy the ICC of both firm types,
the relative magnitudes of the two binding thresholds are required to observe X

s

h(t) ≤
X
s

l (t), where X
s

h(t) and X
s

l (t) are the respective root of Gs
h(X, t) and Gs

l (X, t). When
X ∈ [X

s

h(t), X
s

l (t)], the high-type firm remains profitable to separate while the low-type firm
has no incentive to mimic high-type (see Figure 2).

By virtue of uniqueness of root of Gs
h(X, t) and Gs

h(X, t) ≥ 0 when X ≥ X
s

h(t) (see
Figure B2), we can deduce that X

s

h(t) ≤ X
s

l (t) if and only if Gs
h(X

s

l (t), t) ≥ 0. In subsequent
discussion, we assume Gs

h(X
s

l (t), t) ≥ 0 in our analysis of separating equilibrium; if otherwise,
separating equilibrium does not prevail since there does not exist X such that the ICC
of both firm types are satisfied. By examining the definitions of Gs

h(X, t) and Gs
l (X, t),

it is straightforward to establish (i) X
s

h(t) is increasing with respect to λl; (ii) X
s

l (t) −
X
s

h(t) is sufficiently large when λl � λh, and (iii) X
s

l (t) = X
s

h(t) when λl = λh. These
mathematical properties are sufficient to allow us to postulate that X

s

h(t) ≤ X
s

l (t). The
rigorous mathematical proof is not straightforward to establish since Gs

h(X, t) and Gs
l (X, t)

involve real option value functions with embedded optimal stopping right. On the other hand,
depending on the relative magnitudes of λh and λl, it is possible to have either X∗h(t) < X

s

l (t)
orX∗h(t) ≥ X

s

l (t). The financial significance related to the relative positions of the thresholds,
X
s

h(t), X
s

l (t) and X∗h(t), is illustrated in the numerical plots presented in Section 5.

X
s

h(t) X
s

l (t)

high-type firm
remains profitable

to separate

low-type firm has
no incentive to mimic

high-type firm
within this range of X,

high-type firm can
separate from the low-type

Figure 2: Financial significance related to the relative positions of the binding thresholds X
s

l (t) and X
s

h(t)
derived from the incentive compatibility constraints of both types of the firm.

3.3 Least-cost separating equilibrium

To examine the nature of the least-cost separating equilibrium, we start with the high-type
firm and consider the two scenarios: (i)X∗h(t) < X

s

l (t), (ii)X∗h(t) ≥ X
s

l (t). In scenario (i),
the high-type firm invests optimally at the first-best optimal threshold X∗h(t) since its real
option value function is maximized at X∗h(t). Given that X∗h(t) < X

s

l (t), the low-type firm
has no incentive to mimic the high-type firm to invest at X∗h(t) since the ICC of the low-type
firm is violated. Therefore, the high-type firm can separate from low-type and invests at
X∗h(t). For the second scenario where X∗h(t) ≥ X

s

l (t), though the ICC for the high-type firm
is satisfied when X ∈ [X

s

h(t), X
s

l (t)], the high-type firm would not invest at X < X
s

l (t) since
the cost of separating is lower at X

s

l (t). This is because the strategy of investing at a lower
threshold means higher dilution due to more shares to be issued. On the other hand, in
order that the separating strategy constitutes a Perfect Bayesian Equilibrium (PBE), the

9



high-type firm should not invest at a threshold that is above X
s

l (t). The proof of the strategy
of investing at X

s

l (t) that constitutes a PBE is presented in Appendix C.
The signal sent by the firm management to outside investors is the threshold Xinv at

which investment takes place. Combining these results, since X∗h(t) and X
s

l (t) are unique,
we conclude that the unique least-cost separating equilibrium of the high-type firm under
Gs
h(X

s

l (t), t) ≥ 0 is to invest at Xinv = min(X∗h(t), X
s

l (t)). The separating equilibrium
prevails under the belief system that the firm is perceived as low-type when it invests at
Xinv higher than min(X∗h(t), X

s

l (t)).
Once the separating equilibrium strategy is identified, the real option value V s

h (X, t)
of the high-type firm under separating can be computed by respecting the corresponding
strategy of investing at min(X∗h(t), X

s

l (t)) at all times. In other words, the real option value
function V s

h (X, t) is not dictated by the optimal stopping rule. Indeed, V s
h (X, t) resembles

the up-barrier call option defined on the domain of definition [0,min(X∗h(t), X
s

l (t))], where
both boundaries X∗h(t) and X

s

l (t) can be found earlier in separate calculations. The rebate
and terminal payoff of V s

h (X, t) are both equal to λhΠ(X)− F − I. The full formulation of
V s
h (X, t) is presented in Section 5 [see eq. (5.2)].

Under the assumption of Gs
h(X

s

l (t), t) ≥ 0, the low-type firm invests optimally at X∗l (t)
as its first-best strategy. As a result, the real option value of the low-type firm before
investment equals V c

l (X, t) for X < X∗l (t), where V c
l (X, t) is defined in eq. (2.3).

For X < min(X∗h(t), X
s

l (t)), the firm type has not been identified, so the market value of
the firm is the expectation of the real option value under the two possible types according
to the belief system: P[Λ = λh] = p and P[Λ = λl] = 1 − p. Given that X

s

h(t) ≤ X
s

l (t),
the characterization of the separating equilibrium, belief system and the market value of the
firm before investment are summarized in Proposition 3.

Proposition 3. For X ∈ [X
s

h(t), X
s

l (t)], the incentive compatibility constraint for the high-
type firm is satisfied, but that of the low-type firm is not satisfied. Suppose the firm is of high-
type, then it invests more aggressively than its first-best threshold X∗h(t) when X

s

l (t) < X∗h(t);
otherwise, the high-type firm chooses to invest optimally at X∗h(t) at zero separating cost.
There exists a unique least-cost separating equilibrium in which the high-type firm invests
at min(X∗h(t), X

s

l (t)). The low-type firm invests optimally at X∗l (t) as its first-best strategy.
These equilibrium strategies of the high-type firm and low-type firm can be sustained under
the belief system:

Λ(Xinv) =

{
λl if Xinv > min(X

s

l (t), X
∗
h(t)),

λh otherwise,
(3.7a)

where Xinv is the investment threshold. The market value of the firm before investment is
given by

V s
m(X, t) = pV s

h (X, t) + (1− p)V c
l (X, t), (3.7b)

where p = P[Λ = λh].

3.4 Separating equilibrium strategies at time close to expiry

It is instructive to examine the asymptotic limits of the separating equilibrium strategies of
both types of firm at time close to expiry. The real option value function V c

k (X, t), k = l or
h, resembles an American call option on an underlying asset with continuous dividend yield
q and strike K. The exercise payoff of the American call option is S − K, where S is the
price of the underlying asset. Note that q is equivalent to r − µ and strike K is equivalent
to (F+I)(r−µ)

λk
in V c

k (X, t). Let S∗(τ) denote the early exercise boundary of the American call
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option, where τ is the time to expiry. It is known that (Kwok, 2008)

lim
τ→0+

S∗(τ) = K max

(
1,
r

q

)
,

where r is the interest rate. Referring back to V c
k (t) andX∗k(t), we deduce that the asymptotic

limit at t→ T− of the first-best investment threshold of firm of type k is given by

lim
t→T−

X∗k(t) =
r(F + I)

λk
, k = l or h. (3.8)

To examine X
s

l (t) as t → T−, we recall that Hl(X) = 0 at X =
ˆ̂
X0
l , which is the

lower bound of the domain of definition of Hl(X). On the other hand, the strike of

the low-type firm’s option V c
l (X, t) is (F+I)(r−µ)

λl
, which is seen to be greater than

ˆ̂
X0
l =

max
(

(F+I)(r−µ)
λh

, F (r−µ)
λl

)
. Therefore, V c

l (X,T−) is close to zero at X =
ˆ̂
X0
l since it is likely

to expire out-of-the-money at T . Hence, the root of Gs
l (X,T

−) tends to
ˆ̂
X0
l at time close to

expiry, giving

lim
t→T−

X
s

l (t) =
ˆ̂
X0
l . (3.9)

Combining the results in eqs. (3.8, 3.9) and inferring from Proposition 3, we deduce that
at t→ T−, the high-type firm invests at

min(X∗h(T−), X
s

l (T
−)) = min

(
r(F + I)

λh
,

ˆ̂
X0
l

)
and the low-type firm invests at r(F+I)

λl
under the least-cost separating equilibrium.

4 Pooling equilibrium of equity financing

In a pooling equilibrium of equity financing, regardless of its firm type, the firm invests at
the same threshold and issues the same number of equity shares to finance the capital outlay.
The outside investors are not able to distinguish the firm type, so the belief on Λ is

Λ = λp = pλh + (1− p)λl. (4.1)

The number of shares to be issued is determined by the budget constraint, where

n(X;λp)
λpΠ(X)− F
1 + n(X;λp)

= I,

so that

n(X;λp) =
I

λpΠ(X)− F − I
.

To ensure non-negativity of n(X;λp), we require X ≥ X̂0
p , where X̂0

p = (F+I)(r−µ)
λp

.

4.1 Incentive compatibility constraints

Similar to the separating equilibrium discussed in Section 3, we consider the ICC of both
types of firm. For the low-type firm, in order that pooling equilibrium exists, pooling with
high-type should dominate its first-best strategy. Let Hp

l (X) be the value of the low-type
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firm right after investment under the belief Λ = λp. The ICC of the low-type firm under
pooling equilibrium is given by

Hp
l (X) =

λlΠ(X)− F
1 + n(X;λp)

=
λlΠ(X)− F
λpΠ(X)− F

[λpΠ(X)− F − I] > V c
l (X, t). (4.2)

The domain of definition of Hp
l (X) is found to be [

ˆ̂
X0
p , X

∗
l (t)], where

ˆ̂
X0
p = max

(
X̂0
p ,

F (r−µ)
λl

)
.

Let X
p

l be the binding threshold of the low-type firm under pooling such that X
p

l (t) solves

Gp
l (X, t) = Hp

l (X)− V c
l (X, t) = 0.

By following a similar proof as in Lemma 1, we can establish that there exists a unique

threshold value X
p

l (t), where
ˆ̂
X0
p < X

p

l (t) < X∗l (t), such that low-type firm has no incentive

to pool with high-type through equity financing when X ≤ X
p

l (t). Furthermore, since
λp < λh, X

p

l (t) lies between X
s

l (t) and X∗l (t).
Recall from Proposition 3 that the separating equilibrium strategy of the high-type firm

is to invest at Xinv = min(X∗h(t), X
s

l (t)). Since the high-type firm cannot do better in pooling
with low-type firm than its first-best value V c

h (X, t), so pooling equilibrium of the high-type
firm exists only if X

s

l (t) < X∗h(t). Using the geometric properties of Gs
l (X, t) [see Figures

A2(a, b)], we deduce that

X
s

l (t) < X∗h(t) ⇐⇒ Gs
l (X

∗
h(t), t) > 0. (4.3)

Let X∗ph (t) denote the critical threshold that the high-type firm chooses to pool with low-type
and V p

h (X, t) denote the corresponding value function of the high-type firm under pooling.
Since the high-type firm chooses to pool with low-type only if the value at X

s

l (t) under
pooling is higher than that under separating equilibrium. Mathematically, this technical
condition can be expressed as

V p
h (X

s

l (t), t) > V s
h (X

s

l (t), t). (4.4)

In summary, the conditions specified in eqs. (4.3) and (4.4) represent the necessary conditions
for the existence of pooling equilibrium.

4.2 Determination of threshold and belief system of pooling equi-
librium

Under pooling, the firm value upon investment at threshold X for firm type k, k = l or h, is

λkΠ(X)− F
λpΠ(X)− F

[λpΠ(X)− F − I].

The firm of type k can choose the optimal investment threshold X∗pk and the associated real
option value V p

k (X, t) is given by

V p
k (X, t) = sup

u∈[t,T ]

Et

[
e−r(u−t)

λkΠ(Xu)− F
λpΠ(Xu)− F

[λpΠ(Xu)− F − I]

∣∣∣∣Xt = X

]
, k = h or l. (4.5)

By comparing the respective investment payoffs, it is seen that

X∗h(t) < X∗ph (t) < X∗pl (t) < X∗l (t). (4.6)
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Pooling equilibrium exists only if X
s

l (t) < X∗h(t) and the ICC of high-type firm as specified
in eq. (4.4) is satisfied. It is necessary to consider the different scenarios corresponding to
different relative positions of X

p

l (t), X
∗p
h (t) and X∗pl (t). Since the ICC of low-type firm has

to be satisfied, it is irrelevant to consider the scenario where X
p

l (t) > X∗pl (t). On the other
hand, while X∗ph (t) < X∗pl (t), X

p

l (t) may lie below X∗ph (t) or between X∗ph (t) and X∗pl (t). We
explore the existence of pooling equilibrium under two possible belief systems and two cases
of relative positions (i) X

p

l (t) ≤ X∗ph (t), (ii) X
p

l (t) > X∗ph (t). We consider the following belief
systems:

1. Belief system I

Λ(Xinv) =


λh, if Xinv ≤ X

s

l (t),

λp, if X
s

l (t) < Xinv ≤ X∗ph (t),

λl, otherwise.

The outside investors cannot determine the exact type of the firm if it invests at Xinv,
when X

s

l (t) < Xinv < X∗ph (t).

(a) X
p

l (t) ≤ X∗ph (t)
The high-type firm would choose to invest at the optimal threshold X∗ph (t) under
pooling equilibrium. Also, the low-type firm would also choose to invest at X∗ph (t)
since the ICC of the low-type firm is satisfied at X∗ph (t) since X

p

l (t) ≤ X∗ph (t).
Under the belief system, the low-type firm would not deviate to the optimal pool-
ing threshold X∗pl (t) since it would be perceived as low-type. Therefore, pooling
equilibrium exists where the firm invests at X∗ph (t), regardless of its type.

(b) X
p

l (t) > X∗ph (t)
Since X

p

l (t) > X∗ph (t), the ICC of the low-type firm is not satisfied if the low-type
firm chooses to invest at X∗ph (t). Also, the low-type firm would not invest at its
optimal pooling threshold X∗pl (t), since it would be perceived as low-type according
to the belief system. Hence, pooling equilibrium does not exist.

2. Belief system II

Λ(Xinv) =


λh, if Xinv ≤ X

s

l (t),

λp, if X
s

l (t) < Xinv ≤ X∗pl (t),

λl, otherwise.

We extend the upper bound of the interval of Xinv within which Λ(Xinv) = λp from
X∗ph (t) to X∗pl (t).

(a) X
p

l (t) ≤ X∗ph (t)
Under this new belief system where Λ(Xinv) remains to be λp until Xinv reaches
to the higher optimal threshold X∗pl (t), the high-type firm would remain to invest
optimally at X∗ph (t) while the low-type firm would deviate from X∗ph (t) to invest at
its optimal pooling threshold X∗pl (t). Pooling equilibrium does not exist since the
low-type firm benefits from deviation of investing at the lower threshold X∗ph (t).

(b) X
p

l (t) > X∗ph (t)
Pooling equilibrium does not exist since the high-type firm would invest optimally
at X∗ph (t) while the low-type firm would not invest at X∗pl (t) when the ICC of the
low-type firm is not satisfied.
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In summary, provided that the following three conditions: X
s

l (t) < X∗h(t), V p
h (X

s

l (t), t) >
V s
h (X

s

l (t), t) and X
p

l (t) ≤ X∗ph (t) are satisfied, pooling equilibrium exists under belief sys-
tem I. In addition, the following technical conditions on the binding thresholds, first-best
threshold and pooling threshold have to be satisfied.

1. Two technical conditions on X
s

l (t) and X∗h(t), namely,

(i) X
s

l (t) < X∗h(t) since the high-type firm cannot do better in pooling than its
first-best value;

(ii) V p
h (X

s

l (t), t) > V s
h (X

s

l (t), t) since the high-type firm value at X
s

l (t) under pooling
equilibrium should be higher than that under separating equilibrium.

2. The binding threshold X
p

l (t) derived from the ICC of the low-type firm has to be less
than or equal to the optimal investment threshold X∗ph (t) of the high-type firm under
pooling equilibrium, namely, X

p

l (t) ≤ X∗ph (t).

The characterization of pooling equilibrium and the associated belief system is summarized
in Proposition 4.

Proposition 4. Suppose X
s

l (t) < X∗h(t), V p
h (X

s

l (t), t) > V s
h (X

s

l (t), t) and X
p

l (t) ≤ X∗ph (t),
then there exists a Pareto-dominant pooling equilibrium where firm of either type would op-
timally invest at X∗ph (t). The pooling equilibrium can be sustained under the belief system

Λ(Xinv) =


λh, if Xinv ≤ X

s

l (t),

λp, if X
s

l (t) < Xinv ≤ X∗ph (t),

λl, otherwise,

where Xinv is the investment threshold. Since X∗ph (t) < X∗l (t), the low-type firm invests more
aggressively at X∗ph (t) than its first-best strategy X∗l (t) under pooling equilibrium.

4.3 Pooling equilibrium threshold of the high-type firm at time
close expiry and perpetuity

The pooling equilibrium threshold of the high-type firm is given by X∗ph (t), which is the opti-
mal stopping threshold governed by V p

h (X, t) [see eq. (4.5)]. The exercise payoff of V p
h (X, t)

involves the rational function λhΠ(X)−F
λpΠ(X)−F [λpΠ(X)− F − I], which exhibits non-standard pay-

off among usual contingent claims. The corresponding asymptotic values of the pooling
equilibrium threshold X∗h(t) at t → T− and perpetuity have to be determined with special
considerations. We write the exercise payoff of V p

h (X, t) as

Hp
h(X) =

λhΠ(X)− F
λpΠ(X)− F

[λpΠ(X)− F − I], X̂p
h ≤ X <∞, (4.7)

where X̂p
h = max

(
F (r−µ)
λh

, X̂0
p

)
is the lower bound of the domain of definition of Hp

h(X). The

lower bound is imposed in order to ensure non-negativity of Hp
h(X) and n(X;λp).

Pooling equilibrium threshold at time close to expiry

Suppose the real option of pooling V p
h (X, t) survives at t→ T−, the value function remains

to satisfy the governing equation:

∂V p
h

∂t
+
σ2

2
X2∂

2V p
h

∂X2
+ µX

∂V p
h

∂X
− rV p

h = 0.
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By continuity of the option value, we expect that lim
t→T−

V p
h (X, t) = Hp

h(X) at X > X̂p
h. We

then deduce that

∂V p
h

∂t

∣∣∣∣
t=T−

= −σ
2

2
X2∂

2Hp
h

∂X2
− µX∂Hp

h

∂X
+ rHp

h

=
σ2

2
X2[2λp(λh − λp)]

IF (r − µ)

[λpX − F (r − µ)]3

− µX
{

λh
r − µ

+ (λh − λp)
IF (r − µ)

[λpX − F (r − µ)]2

}
+ r

λhX − F (r − µ)

λpX − F (r − µ)

(
λpX

r − µ
− F − I

)
.

According to the theory of optimal stopping in American option models (Kwok, 2008), the

optimal stopping threshold at t → T− is determined by the threshold at which
∂V ph
∂t

∣∣∣
t=T−

changes sign. By setting
∂V ph
∂t

∣∣∣
t=T−

= 0, the optimal stopping threshold X∗ph (T−) at time

close to expiry is found by solving the following quartic equation:

X4 + bX3 + cX2 + dX + e = 0, (4.8)

where

b = − 1

λhλp
{[3F (r − µ) + rI]λh + rFλp},

c =
F (r − µ)

λhλ2
p

{[(σ2 − µ+ 2r)I + 3(r − µ)F ]λh + [(µ− σ2 + r)I + 3rF ]λp},

d = −F
2(r − µ)2

λhλ3
p

{(r − µ)(F + I)λh + [3rF + (µ+ 2r)I]λp},

e =
F 3(r − µ)3

λhλ3
p

r(F + I).

Pooling equilibrium threshold at perpetuity

We let V p
∞,h(X) and X∗p∞,h denote the value function and optimal threshold of pooling equi-

librium under perpetuity. It is seen that V p
∞,h(X) is given by (Kwok, 2008)

V p
∞,h(X) = Hp

h(X∗p∞,h)

(
X

X∗p∞,h

)ξ+

, 0 < X ≤ X∗p∞,h, (4.9)

where ξ+ is the positive root of the quadratic equation:

σ2

2
ξ2 + (µ− σ2

2
)ξ − r = 0.

Since optimality of the value function V p
∞,h(X) is observed under the optimal threshold X∗p∞,h,

we determine X∗p∞,h such that V p
∞,h(X) is maximized at X = X∗p∞,h. Use of calculus shows

that the optimal pooling equilibrium threshold X∗p∞,h under perpetuity can be obtained by
solving the following cubic equation:

X3 + b̃X2 + c̃X + d̃ = 0, (4.10)
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where

b̃ = − r − µ
(ξ+ − 1)λhλp

{λh[2(ξ+ − 1)F + ξ+I] + λpξ+F},

c̃ =
F (r − µ)2

(ξ+ − 1)λhλ2
p

{λh(ξ+ − 1)(F + I) + λp[2ξ+F + (ξ+ + 1)I]},

d̃ = −ξ+(F + I)F 2(r − µ)3

(ξ+ − 1)λhλ2
p

.

5 Numerical calculations of value functions, thresholds

and information costs

In this section, we present numerical calculations of the real option value functions, binding
and optimal thresholds of both types of firm under separating and pooling equilibriums. We
also analyze the time evolution of the information costs and abnormal returns of the two
types of firm. In particular, we discuss the asymptotic behaviors of the binding and optimal
thresholds, information costs and abnormal return at time close to expiry of the investment
opportunity.

Most of the real option value functions considered in this paper resemble the Ameri-
can call option model, except in some cases where the intrinsic value may involve rational
function of the state variable X. Let V (X, t) denote the prototype real option value func-
tion with intrinsic value I(X) and X∗(t) be the optimal stopping threshold. The linear
complementarity formulation of V (X, t) is given by(

∂V

∂t
+ µX

∂V

∂X
+
σ2

2
X2 ∂

2V

∂X2
− rV

)
[V − I(X)] = 0, 0 < X <∞, 0 < t < T, (5.1)

with terminal condition: V (X,T ) = I(X) and boundary condition: V (0, t) = 0. The value
matching condition and smooth pasting condition at the optimal stopping threshold X∗(t)
are given by

V (X∗(t), t) = I(X∗(t)) and
∂V (X, t)

∂X

∣∣∣∣
X=X∗(t)

=
d I(X)

dX

∣∣∣∣
X=X∗(t)

,

respectively. Both V (X, t) and X∗(t) can be computed effectively using the fully implicit
finite difference scheme together with the Projected Successive-Over-Relaxation method
(Kwok, 2008).

There is one exception of the real option value function that is not formulated as an
optimal stopping model. The least-cost separating equilibrium strategy of the high-type
firm is dictated by investing at min(X∗h(t), X

s

l (t)). The corresponding real option value
function V s

h (X, t) is governed by

∂V s
h

∂t
+ µX

∂V s
h

∂X
+
σ2

2
X2∂

2V s
h

∂X2
− rV s

h = 0, 0 < X < min(X∗h(t), X
s

l (t)), 0 < t < T, (5.2)

with terminal payoff:
V s
h (X,T ) = (λhX − F − I)+

and boundary conditions:

V s
h (0, t) = 0, V s

h (min(X∗h(t), X
s

l (t)), t) = (λh min(X∗h(t), X
s

l (t))− F − I)+, 0 < t < T.
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Once the time dependent barrier min(X∗h(t), X
s

l (t)) has been found from earlier calculations,
the value function V s

h (X, t) can be solved numerically using the fully implicit finite difference
scheme, with specific treatment of the numerical boundary condition that deals with the time
dependent barrier feature.

5.1 Separating equilibrium

In Section 3, we have analyzed the time dependent properties of the binding thresholds
X
s

h(t) and X
s

l (t), and the investment threshold Xinv of the high-type firm under separating
equilibrium in our finite time real option signalling game model of equity financing. The
characterization of the least-cost separating equilibrium has been summarized in Proposition
3. We performed numerical studies to examine and verify these theoretical results.

Binding thresholds and first-best investment threshold

First, we would like to examine the relative positions among the binding thresholds X
s

l (t)
and X

s

h(t) and the first-best investment threshold X∗h(t) as time evolves. In Figure 3(a, b), we
show the numerical plots of X

s

l (t), X
s

h(t) and X∗h(t) against time t at two levels of λl, namely,
(a) λl = 0.6, (b) λl = 1.1. The other parameter values are chosen as follows: r = 5%, µ = 1%,
σ = 25%, λh = 1.25, F = 200, I = 100, T = 5 and p = 0.5. As revealed in Figure 3(a) with
λl = 0.6 and λh = 1.25, where λl is well below λh, we observe that X

s

h(t) remains well below
X
s

l (t) at all times. Since [X
s

h(t), X
s

l (t)] is a finite interval at all times, the high-type firm can
separate from the low-type firm. In particular, we observe that at time sufficiently close to
expiry, X

s

l (t) may stay above X∗h(t). Let t̂ be the time at which X
s

l (t) = X∗h(t). At t < t̂, the
high-type firm invests aggressively at X

s

l (t) before X∗h(t); while at t ≥ t̂, the high-type firm
can choose to invest optimally at its first-best threshold X∗h(t) at zero separating cost. The
width of the interval [X

s

h(t), X
s

l (t)] decreases with increasing λl and time t. When λl = 0.6

and λh = 1.25, we have F (r−µ)
λh

> (F+I)(r−µ)
λl

. This gives X
s

l (T
−) = 40

3
> X

s

h(T
−) = 9.6.

However, with λl = 1.1 and λh = 1.25, we have F (r−µ)
λl

< (F+I)(r−µ)
λh

. This gives

lim
t→T−

X
s

l (t) = max

(
(F + I)(r − µ)

λh
,
F (r − µ)

λl

)
= 9.6,

lim
t→T−

X
s

h(t) =
(F + I)(r − µ)

λh
= 9.6,

so that the two binding thresholds coincide at t → T− [see Figure 3(b)]. Relative positions
of X

s

l (t) and X∗h(t) also depend on λl. When λl is closer to λh [say, λl = 1.1 and λh = 1.25 as
in Figure 3(b)], X∗h(t) always stays above X

s

l (t). In this case, under the least-cost separating
equilibrium, the high-type firm always chooses to invest aggressively at X

s

l (t) at all times
and never invests at its first-best strategy X∗h(t).

In summary, these numerical plots of the binding thresholds X
s

l (t) and X
s

h(t), and the
first-best investment threshold X∗h(t) at varying values of λl reveal interesting time dependent
features of the separating equilibrium. The plots verify that X

s

h(t) < X
s

l (t) at all time t < T ,
while X

s

h(t) → X
s

l (t) at the limit t → T− when λl ≥ F
F+I

λh. When λl is much lower than

λh so that the mimicking cost of the low-type firm is high, it may occur that X∗h(t) < X
s

l (t)
when the remaining time of investment opportunity is sufficiently short. In this case, the
high-type firm may invest at its first-best investment threshold at zero separating cost.
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Figure 3: The binding thresholds X
s

l (t) and X
s

h(t) and the first-best investment threshold X∗
h(t) are plotted

against time t at two values of λl.

Information cost

Positivity of the cost of separating implies that the high-type firm value function V c
h under

complete information is higher than V s
h under the least-cost separating equilibrium. On the

other hand, under low value of λl, zero cost of separating may occur when the remaining
time of investment opportunity is sufficiently short, corresponding to V c

h = V s
h as t → T−.

We plot V c
h (X, t) and V s

h (X, t) with respect to time t under λl = 0.6 and λl = 1.1 at X = 8
[see Figure 4(a, b)]. The other parameters are chosen to be the same as those in Figure 3.

We define the information cost of the high-type firm to be the difference of the real option
value functions under complete information and separating equilibrium, where

cost(X, t) = V c
h (X, t)− V s

h (X, t) > 0. (5.3)

At time t → T−, the two option value functions V s
h and V c

h always converge to the same
terminal payoff since

lim
t→T−

V c
h (X, t) = lim

t→T−
V s
h (X, t) = [λhΠ(X)− F − I]+

for all revenue flow rate level X. In Figure 4(a, b), we observe that the two option values
coincide at zero value since [λhΠ(X)− F − I]+|X=8 = 0 on the expiry date T .

In Figure 4(c, d), we plot the information cost against t under λl = 0.6 and λl = 1.1
at X = 8. The time evolution of the information cost is driven by two factors: (i) The
gap between the two binding thresholds X

s

h(t) and X
s

l (t) becomes narrower as time moves
closer to expiry. The high-type firm may become more aggressive to invest and attempts to
separate from the low-type firm. This would increase the information cost as time evolves.
(ii) The first-best investment threshold X∗h(t) of the high-type gets closer to the binding
threshold X

s

l (t) with increasing time. As time evolves, the high-type firm may become less
aggressive to adopt the separating strategy due to narrowing of the gap between X∗h(t) and
X
s

l (t).

(i) When λl is sufficiently small [say λl = 0.6 in Figure 4(c)], the gap between X
s

h(t) and
X
s

l (t) is larger than that between X∗h(t) and X
s

l (t). In this case, the second factor
dominates and the information cost of the high-type firm is decreasing as time evolves.
The information cost becomes zero when t goes beyond t̂, where X

s

l (t̂) = X∗h(t̂).
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(ii) When λl is sufficiently large [say λl = 1.1 in Figure 4(d)], the interval [X
s

h(t), X
s

l (t)] is
narrow and the first-best threshold X∗h(t) is quite far from the binding threshold X

s

l (t).
In this case, the first factor dominates at an earlier time and the information cost is
increasing when the time is far from expiry. At time t → T−, the information cost is
pulled to zero since the two option value functions V c

l and V s
h are both equal to the

terminal payoff [λhΠ(X) − F − I]. Subsequently, the second factor dominates when t
is sufficiently close to expiry.
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Figure 4: The option values V s
h and V c

h and information cost are plotted against time t at two values of λl.

Abnormal return

Under separating equilibrium, the information released at the time when the high-type firm
invests at Xs

h(t) = min(X
s

l (t), X
∗
h(t)) triggers a positive (negative) jump on the firm value

of the high-type (low-type) firm. Following Morellec and Schürhoff (2011), we define the
abnormal return of the high-type firm and low-type firm to be
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Ra
h(X

s
h(t), t) =

V s
h (Xs

h(t), t)− V s
m(Xs

h(t), t)

V s
m(Xs

h(t), t)

=
λhΠ(Xs

h(t))− F − I
p[λhΠ(Xs

h(t))− F − I] + (1− p)V c
l (Xs

h(t), t)
− 1 > 0,

Ra
l (X

s
h(t), t) =

V c
l (Xs

h(t), t)− V s
m(Xs

h(t), t)

V s
m(Xs

h(t), t)

=
V c
l (Xs

h(t), t)

p[λhΠ(Xs
h(t))− F − I] + (1− p)V c

l (Xs
h(t), t)

− 1 < 0, (5.4)

respectively. The ratio of the abnormal return of the high-type firm to that of the low-type
firm is seen to be

Ra
h

Ra
l

= −1− p
p

,

which is always negative for 0 < p < 1.
Figure 5 shows the plots of the abnormal returns of both types of the firm with respect

to time t at λl = 0.6. The other parameters are chosen to be the same as those in Figure
3. We observe that the abnormal return of the high-type (low-type) firm is monotonously
increasing (decreasing) with respect to time t. To explain the monotonicity property of the
abnormal return of the high-type firm, we rewrite Ra

h in an alternative analytic form:

Ra
h(X

s
h(t), t) =

1

p+ (1− p) V cl (Xs
h(t),t)

λhΠ(Xs
h(t))−F−I

− 1.

The monotonic increasing property of Ra
h stems from the monotonic decreasing property of

V cl (Xs
h(t),t)

λhΠ(Xs
h(t))−F−I . Note that the denominator is a linear function of Xs

h(t) while the numerator is

the option value V c
l (Xs

h(t), t). Both quantities have dependence on Xs
h(t), which is decreasing

in value with increasing time. However, the option value V c
l (Xs

h(t), t) has a higher rate of
decrease with time since there is an additional loss of time value of the option. Therefore,

we expect that
V cl (Xs

h(t))

λhΠ(Xs
h(t))−F−I decreases in value with time, in particular when the remaining

time of investment opportunity becomes shorter.
Next, we consider the asymptotic behavior of the abnormal return at time near expiry

under the two cases: (i) F (r−µ)
λl

> X̂0
h, (ii) F (r−µ)

λl
≤ X̂0

h. At time t→ T−, recall that

lim
t→T−

Xs
h(t) = min

(
max

(
F (r − µ)

λl
, X̂0

h

)
,
r(F + I)

λh

)
.

(i) With λl = 0.6, F (r−µ)
λl

> X̂0
h is observed, so we have

Xs
h(T

−) = min

(
F (r − µ)

λl
,
r(F + I)

λh

)
∈ (X̂0

h, X̂
0
l ).

This implies
V s
h (Xs

h(T
−), T−) = λhΠ(Xs

h(T
−))− F − I > 0

and
V c
l (Xs

h(T
−), T−) = [λlΠ(Xs

h(T
−))− F − I]+ = 0.

The abnormal returns of both types of firm near expiry are found to be

Ra
h(X

s
h(T

−), T−) =
1

p
− 1 and Ra

l (X
s
h(T

−), T−) = 0− 1 = −1.
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These asymptotic results are verified in the plots in Figure 5, where Ra
h tends to 1 as

t→ T− when p = 0.5.

(ii) With λl = 1.1, F (r−µ)
λl
≤ X̂0

h is observed, so we have Xs
h(T

−) = X̂0
h. This implies

V s
h (Xs

h(T
−), T−) = λhΠ(Xs

h(T
−))− F − I = 0

and
V c
l (Xs

h(T
−), T−) = [λlΠ(Xs

h(T
−))− F − I]+ = 0.

Since the investment threshold at time near expiry for the high-type firm is the zero-
NPV threshold X̂0

h under separating equilibrium, the high-type firm would not choose
to invest as t → T−. The outside investors cannot distinguish the firm type when
investment would not occur. It becomes irrelevant to quantify abnormal return under
this scenario.
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Figure 5: The abnormal returns of both types of the firm are plotted against time t.

Real option value against X

We also examine the behavior of the real option values V s
h and V s

m under separating equilib-
rium against revenue flow rate X at a fixed time. Figure 6(a) plots the real option value V s

h

of the high-type firm under separating equilibrium against revenue flow rate X with λl = 1.1
at t = 2.5. The other parameters are chosen to be the same as those in Figure 3. We observe
that V s

h does not exhibit the smooth-pasting property at its investment threshold X
s

l since
it is a binding threshold rather than an optimal stopping threshold.

Figure 6(b) plots the market value V s
m against X under separating equilibrium of the

high-type firm. At the investment threshold X
s

l , the exact firm type is revealed to outside
investors, resulting in an upward jump of real option value of the high-type firm. The
updated firm value is equal to the exercise payoff: λhΠ(X) − F − I. The upward jump is
consistent with the positive jump of the abnormal return of the high-type firm discussed
earlier.
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Figure 6: Plots of V s
h and V s

m against revenue flow rate X at a fixed time. Since investment has occurred

at X ≥ Xs

l , both option values become equal to the exercise payoff: λhΠ(X)− F − I.

5.2 Pooling equilibrium

The mathematical characterization of pooling equilibrium has been summarized in Proposi-
tion 4. We performed numerical studies to verify the theoretical results on the investment
thresholds and value functions under pooling equilibrium, and examine the time evolution
of the information cost.

Optimal threshold and value functions

The firm may choose to invest at the optimal threshold X∗ph (t) of the high-type firm under
pooling equilibrium regardless of its type.
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values: (i) p = 0.8, λl = 0.8, (ii) p = 0.5, λl = 0.8 and (iii) p = 0.8, λl = 0.8, are plotted
against time t [see Figure 7]. The other parameters are chosen to be the same as those in
Figure 3. Figure 7 shows that the firm is accelerating its investment gradually under pooling
equilibrium as time becomes closer to maturity.
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Figure 8: The option values V s
h and V p

h are plotted against time t at various values of λl and p.

We examine the existence of pooling equilibrium at different times and parameter values
of λl and p. The low-type firm always prefers pooling equilibrium to separating equilibrium
since it achieves a higher option value through mimicking the high-type firm, provided that
the conditions required in Proposition 4 for pooling equilibrium are met. We check the
incentive compatibility constraint of the high-type firm by plotting option values V s

h (X, t)
and V p

h (X, t) against time t, where X is evaluated at min(X
s

l (t), X
∗
h(t)). In our numerical

studies, three pairs of parameter values of p and λl are chosen: (i) p = 0.8, λl = 0.8, (ii)
p = 0.5, λl = 0.8 and (iii) p = 0.8, λl = 1.1. The other parameters are chosen to be the
same as those in Figure 3.

(i) With p = 0.8 and λl = 0.8, we observe that V p
h stays above V s

h at an earlier time and
falls below V s

h when the remaining time of investment opportunity is sufficiently short
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[see Figure 8(a)]. This implies that the high-type firm may choose to pool at earlier
time, then chooses to separate when time is approaching closer to expiry.

(ii) With p = 0.5 and λl = 0.8, we observe that V p
h stays below V s

h at all time [see Figure
8(b)]. It implies that the high-type firm always prefers separating to pooling. We
conclude that pooling equilibrium does not exist at any time when probability p is
sufficiently low.

(iii) With p = 0.8 and λl = 1.1, we observe that V p
h stays above V s

h at all time [see Figure
8(c)]. This implies that the high-type firm always prefers pooling to separating. We
conclude that pooling equilibrium may exist at all times when λl is sufficiently close to
λh.

Information cost

We plot V c
h (X, t), V s

h (X, t) and V p
h (X, t) with respect to time t under p = 0.8 and λl = 0.8 at

X = 8 [see Figure 9(a)]. The other parameters are chosen to be the same as those in Figure
3. Since we consider the scenario where the firm chooses between separating and pooling
equilibrium, the information cost of the high-type firm is defined to be

cost(X, t) = V c
h (X, t)−max(V s

h (X, t), V p
h (X, t)). (5.5)

At time t→ T−, the option value function V p
h converges to the terminal payoff

lim
t→T−

V p
h (X, t) = Hp

h(X) =
λhΠ(X)− F
λpΠ(X)− F

[λpΠ(X)− F − I]+

for all revenue flow rate X. In Figure 9(a), we observe that the three option values, namely,
V c
h , V s

h and V p
h , coincide at zero value since [λhΠ(X)− F − I]+|X=8 = Hp

h(X)|X=8 = 0 on
the expiry date T . We plot the information cost against t under p = 0.8 and λl = 0.8
evaluated at X = 8 [see Figure 9(b)]. We observe similar time dependent behavior of the
information cost as that under separating equilibrium. In particular, the high-type firm may
choose to separate from the low-type firm at time close to expiry since the option value V s

h

becomes higher than V p
h at some time between t = 4 and t = 5. This is revealed by the

appearance of a cusp point at the same time in the plot of the information cost against t
[see Figure 9(b)].
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Figure 9: The option values V c
h , V p

h and V s
h and information cost are plotted against time t.
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6 Conclusion

We extend the dynamic real option signaling game models of financing decisions of a firm on
a risky project from perpetuity to a finite time horizon. Asymmetric information is assumed,
where the firm quality is known to the firm management but not outside investors. Under
separating equilibrium, the high-type firm may credibly signal its type to outside investors
through investment timing. However, this would impose an information cost on the high-
type firm. We analyze the incentive compatibility constraints and perform mathematical
characterization of the existence and uniqueness of the time dependent binding thresholds
and optimal investment thresholds of both types of firm. The nature of the least-cost sep-
arating equilibrium and the associated belief system is examined. The low-type firm may
mimic the investment strategy of the high-type firm. We also analyze the nature of pooling
equilibrium of equity financing, where firm of either type invests at the same threshold and
issues the same number of equity shares to finance the risky project.

In addition, our contributions include detailed studies of the time dependent behaviors
of the separating and pooling equilibriums, and the time evolution of the binding thresholds
and investment thresholds of both types of the firm. In particular, we show that when
the mimicking cost of the low-type firm is high, it may occur that the high-type firm can
invest at its first-best optimal threshold at zero information cost when the remaining time
of the investment opportunity is sufficiently short. Our theoretical studies produce various
theoretical results for the information cost, abnormal return and investment thresholds under
separating equilibrium at the time right before the expiry of the investment opportunity.
Interestingly, when the investment opportunity almost evaporates soon, the information
cost is pulled to zero. Also, the abnormal return is dependent only on the probability of
assessment of firm type but independent of the revenue flow rate level. In summary, our finite
time signaling game model encompasses the usual perpetual model and the classical Myers-
Majluf model of short-lived investment opportunity, without imposing the usual unrealistic
assumptions in real options investment models that the investment opportunity either lasts
forever or evaporates soon.
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Appendix A - Proof of Lemma 1

According to ineq. (3.2), the satisfaction of the incentive compatibility constraint (ICC) of
the low-type firm is related to positivity of the following function:

Gs
l (X, t) = Hl(X)− V c

l (X, t),
ˆ̂
X0
l ≤ X ≤ X∗l (t).

The binding threshold X
s

l (t) for satisfying the ICC of the low-type firm is given by the
solution to Gs

l (X, t) = 0.

First, we show that solution to Gs
l (X, t) = 0 exists within (

ˆ̂
X0
l , X

∗
l (t)). We consider the

values of Gs
l (X, t) at the end points,

ˆ̂
X0
l and X∗l (t). Since real option value should be positive,

so V c
l (

ˆ̂
X0
l , t) > 0; and by virtue of eqs. (2.5) and (3.1), Hl(

ˆ̂
X0
l ) = 0. We have Gs

l (
ˆ̂
X0
l , t) < 0.

On the other hand, by the value matching condition of V c
l (X, t) at its optimal threshold

X∗l (t), we obtain

V c
l (X∗l (t), t) = λlΠ(X∗l (t))− F − I

= [λlΠ(X∗l (t))− F ]

[
1− I

λlΠ(X∗l (t))− F

]
< [λlΠ(X∗l (t))− F ]

[
1− I

λhΠ(X∗l (t))− F

]
= Hl(X

∗
l (t)).

We then have Gs
l (X

∗
l (t), t) > 0. Since Gs

l (X, t) is continuous in X, by the mean value

theorem, we guarantee the existence of the root of Gs
l (X

∗
l (t), t) within (

ˆ̂
X0
l , X

∗
l (t)).

Next, we use the geometric properties of Gs
l (X, t) to show that the root of Gs

l (X, t) is
unique. The first and second order derivatives of Hl(X) are found to be

∂Hl

∂X
=

λl
r − µ

− (λh − λl)
IF (r − µ)

[λhX − F (r − µ)]2
,

∂2Hl

∂X2
= 2λh(λh − λl)

IF (r − µ)

[λhX − F (r − µ)]3
> 0,

ˆ̂
X0
l ≤ X ≤ X∗l (t).

Note that ∂Hl
∂X

∣∣
X=X∗

l (t)
< λl

r−µ and ∂Hl
∂X
→ λl

r−µ as X →∞. On the other hand, by virtue of the

smooth pasting condition of V c
l (X, t) at the optimal threshold X∗l (t), we have

∂V cl
∂X

∣∣∣
X=X∗

l (t)
=

λl
r−µ . The plots of ∂Hl

∂X
and

∂V cl
∂X

againstX, X ∈ [
ˆ̂
X0
l , X

∗
l (t)] are shown in Figures A1(a, b) under

the two different cases (i) ∂Hl
∂X

∣∣
X=

ˆ̂
X0
l

≥ ∂V cl
∂X

∣∣∣
X=

ˆ̂
X0
l

, (ii) ∂Hl
∂X

∣∣
X=

ˆ̂
X0
l

<
∂V cl
∂X

∣∣∣
X=

ˆ̂
X0
l

, respectively.

By considering the property of
∂Gsl
∂X

= ∂Hl
∂X
− ∂V cl

∂X
over [

ˆ̂
X0
l , X

∗
l (t)], we can deduce the following

behavior of Gs
l (X, t):

(i) When
∂Gsl
∂X

∣∣∣
X=

ˆ̂
X0
l

≥ 0, Gs
l (X, t) achieves its positive maximum value at one maximum

point within [
ˆ̂
X0
l , X

∗
l (t)]. The plot of Gs

l (X, t) against X intersects the X-axis at one
point [see Figure A2(a)].

(ii) When
∂Gsl
∂X

∣∣∣
X=

ˆ̂
X0
l

< 0, as X increases,
∂Gsl
∂X

remains negative for a while, then becomes

positive and finally stays negative as X approaches X∗l (t). Consequently, Gs
l (X, t)

decreases from a negative value at
ˆ̂
X0
l , reaches the unique minimum point below the
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X-axis, then increases and intersects the X-axis once, reaches the unique maximum
point above the X-axis, and finally decreases to reach a positive value at X = X∗l (t)
[see Figure A2(b)].

In conclusion, when X ≤ X
s

l (t), the ICC of the low-type firm is violated since Hl(X) ≤
V c
l (X, t). The low-type firm has no incentive to mimic the investment decision of the high-

type firm.
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To generate the plots in Figures A1(a) and A2(a), we choose the following parameter
values: risk-free rate r = 5%, volatility and growth rate of the revenue flow rate σ = 25%
and µ = 1%, respectively, present value of total operating expenses F = 10/r, fixed cost
I = 100, probability of being high-type p = 0.5, maturity T = 20, λh = 1.25 and λl = 0.9,
current time t = 19 (close to maturity). To generate the plots in Figures A1(b) and A2(b),
the parameter values are the same as those for Figures A1(a) and A2(a) except that the
current time is changed to t = 0.

28



Appendix B - Proof of Lemma 2

For the proof of existence of root of Gs
h(X, t) within (X̂0

h, X
∗m
h (t)), it suffices to show

Gs
h(X̂

0
h, t) = −V m

h (X̂0
h, t) < 0 (B1(a))

and

Gs
h(X

∗m
h (t), t) = λhΠ(X∗mh (t), t)− F − I − [λhΠ(X∗mh (t), t)− F ]

[
1− I

λlΠ(X∗mh (t), t)− F

]
> (

λh
λl
− 1)I > 0. (B1(b))

To show the validity of ineq. B1(b), we consider Gs
h(X, t) evaluated at X = X∗mh (t) and

write X∗mh (t) as X̂ for notional convenience, then

Gs
h(X̂) = λhΠ(X̂)− F − I − λhΠ(X̂)− F

λlΠ(X̂)− F
[λlΠ(X̂)− F − I]

=

(
λhX̂

r − µ
− F

) 1
λlX̂
r−µ − F

− 1

 I.

It is observed that Gs
h(X̂) is a monotonically decreasing function of X̂ and has the asymptotic

limit (λh
λl
− 1)I as X̂ →∞. By virtue of ineqs. B1(a, b), and since Gs

h(X, t) is continuous in

X, the mean value theorem dictates existence of root of Gs
h(X, t).

Again, we use the geometric properties of Gs
h(X, t) to establish uniqueness of root of

Gs
h(X, t) within (X̂0

h, X
∗m
h (t)). We consider

∂Gs
h(X, t)

∂X
=

λh
r − µ

− ∂V m
h (X, t)

∂X
, X̂0

h ≤ X ≤ X∗mh (t).

The real option value V m
h (X, t) of the high-type firm at its optimal threshold X = X∗mh (t)

under pooling equals its intrinsic value Hh(X), where

Hh(X) =
λhΠ(X)− F
λlΠ(X)− F

[λlΠ(X)− F − I].

By the smooth pasting condition at the optimal threshold X∗mh (t), we obtain

∂V m
h (X, t)

∂X

∣∣∣∣
X=X∗m

h (t)

=
∂Hh(X)

∂X

∣∣∣∣
X=X∗m

h (t)

=
λh
r − µ

+ (λh − λl)
IF (r − µ)

[λlX∗mh (t)− F (r − µ)]2
>

λh
r − µ

.

We can deduce that
∂Vmh (X,t)

∂X
starts at value below λh

r−µ at X = X̂0
h, increases as X in-

creases and goes above λh
r−µ as X increases up to X∗mh (t) [see Figure B1(b)]. Correspondingly,

Gs
h(X, t) starts at negative value at X = X̂0

h, increases monotonically as X increases, reaches
unique maximum value above zero, then decreases monotonically but remains staying above
(λh
λl
− 1)I as X increases up to X∗mh (t). As a result, the plot of Gs

h(X, t) against X intersects

the X-axis only once within [X̂0
h, X

∗m
h (t)] [see Figure B2].

To generate the plots in Figures B1(a, b) and B2, the parameter values are the same as
those for the figures in Appendix A, except that the maturity date T is changed to T = 2.5,
the current time is t = 0 and λl = 0.7.
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Appendix C - Perfect Bayesian Equilibrium

A sufficient condition for a feasible strategy to constitute a Perfect Bayesian Equilibrium
is that the high-type firm has no incentive to defect to other strategies given a set of out-
of-equilibrium belief. In the current context, we would like to establish that the high-type
firm has no incentive to defect from the separating strategy Xs(t) = X

s

l (t) to choose some
other strategy X̂s(t) > X

s

l (t) when X
s

l (t) < X∗h(t) under the pessimistic belief: Λ = λl.
Let V̂h(X, t; X̂) denote the value function of the high-type firm that follows the alternative
strategy X̂ while the firm is perceived as low-type. Given the belief Λ = λl, it suffices to
show that the high-type firm’s value of investment at X

s

l (t) is higher than its value function
at X

s

l (t) using an alternative strategy X̂; that is,

λhΠ(X
s

l (t))− F − I > V̂h(X
s

l (t), t; X̂). (C1)

Comparing V̂h(X, t; X̂) with V m
h (X, t) [see eq. (3.4)], where both value functions share the

same payoff upon investment, we argue that V̂h(X, t; X̂) < V m
h (X, t) for any alternative

strategy X̂ since the optimal stopping rule is applied in valuation of the real option value
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function V m
h (X, t). If we define

Ĝh(X, t) = λhΠ(X)− F − I − V̂h(X, t; X̂),

we deduce that

Ĝh(X, t) > Gs
h(X, t) = λhΠ(X)− F − I − V m

h (X, t).

Since Gs
h(X

s

l (t), t) > 0, we have Ĝh(X
s

l (t), t) > 0; so ineq. (C1) is established.
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