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Abstract

Upon the exercise of an employee stock option, the embedded reload provi-
sion entitles the holder to receive additional units of new options from the
employer. The number of units of new options received is equal to the num-
ber of shares tendered as payment of strike and the new strike is set at the
prevailing stock price. The reload provision may be subject to time vest-
ing requirement, that is, after each exercise the employee is prohibited from
exercising the reload until the end of a vesting period. In this paper, we
construct an efficient numerical algorithm that computes the market value
of the employee reload options under time vesting requirement. Also, we
explore the analytic properties of the price functions and optimal exercise
policies of the employee reload options.

1 Introduction

Employee (executive) stock options commonly contain non-traditional fea-
tures that are not found in other conventional options traded in the financial
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markets. Johnson and Tian’s paper (2000) contains an interesting account
of various types of exotic features in employee stock options. The reload
provision in employee stock options has been gaining increasing popularity
since its first launch in late 1980s. Suppose that at the exercise of an em-
ployee stock option prior to expiry, the employee pays the strike of the option
with his owned shares. The embedded reload feature entitles the employee
to receive one new option for each share tendered for the strike payment,
in addition to receiving one share for the option exercised. The new reload
option has the same expiration date as the original option but with a new
strike price set at the prevailing stock price. Let X be the strike of the origi-
nal option and S be the prevailing stock price at the exercise moment. Upon
exercising the empolyee stock option, the employee receives 1 — X/S units
of shares and X/S units of new reload option. Furthermore, the new option
received may continue to have future reload rights, and the number of al-
lowable reloads can be unlimited or finite. In addition, there may be vesting
restrictions on exercising the reload right. The performance vesting requires
a minimum level of stock price appreciation before exercise is allowed. As for
the time vesting requirement, the first reload can be exercised only after an
initial vesting period (say, 6-month period). The new reload options received
after each exercise are subject to the same vesting period. More details of
the product nature of different types of reload options can be found in the
report by Frederic W. Cook & Co. (1998).

It is important for firms to estimate the compensation costs associated
with the granting of such reload options to their employees. The valuation
of the cost to the employer seems to be quite difficult, as noted by the Fi-
nancial Accounting Standards Board (see Statement of Financial Accounting
Standards No. 123, 1995). Since the employee options are non-transferable
and the employees cannot short sell the stocks to hedge the risk, the exercise
decision cannot be preference free. Also, the wealth of the holder depends
highly on the fortune of the firm. Therefore, a risk averse holder would have
higher tendency to exercise the options prematurely in order to guard against
potential acute drop in stock price. Heath et al. (1999) and Core and Guay
(2001) document that early exercise decisions made by employees are strongly
dependent on recent stock returns, where employee exercise activity roughly
doubles when the stock price exceeds the maximum price attained during the
previous year. Since early exercise decisions are influenced by liquidity, risk
aversion and recent stock price trends, it seems impossible to derive a general
preference free pricing method of finding the cost to the issuer of such reload



options. Besides, employee options are essentially warrants, the exercise of
which would lead to dilution of stocks. In addition, since option compensa-
tion has incentive effects on the employees that drive the stock price, so the
stock price process may be affected by the exercise decisions. These features
add to the complexity in the valuation procedure of employee stock options.

When the number of reload rights granted is unlimited, Dybvig and
Loewenstein (2003) prove by dominance argument that there exists a simple
exercise policy - the holder should exercise whenever a new maxima of the
stock price is realized. Such optimal policy is independent of the risk pref-
erence of the holder. Though the utility value of the cashflows at exercise
depends on the utility function adopted by the risk averse holder, the exercise
policy remains the same as that of a risk neutral holder. Since the employee
reload option can be hedged by the issuer, the expected value of the repli-
cating portfolio discounted under the riskless interest rate should represent
the market value of the option. Further, as the employer is aware of such
optimal exercise policy adopted by the holder, and he has no constraint on
hedging, so the market value of the options also represents the cost to the
employer granting such options. These arguments pave the way for the use
of the Black-Scholes risk neutral pricing paradigm for valuation of the cost
to the issuer of employee options with unlimited reload rights.

Analytic properties of the pricing models for finding the market value of
reload options without vesting requirements have been analyzed in our other
paper (Dai and Kwok, 2004). Dybvig and Loewenstein (2003) argue that
since the valuation problem with time vesting exhibits close proximity to
that without time vesting, therefore as an approximation, the market value
of the option computed by the Black-Scholes model is taken to be the cost
to the employer. In this paper, we use the Black-Scholes pricing paradigm
to construct the pricing models of time vesting reload options. We also
develop an efficient valuation algorithm for computing the market value of
reload option and examine the behaviors of the price functions. Several ear-
lier papers have attempted to solve similar valuation problems of reload op-
tions. Hemmer et al. (1998) bypass the complexity of valuing a time vesting
infinite-reload option through approximating the time vesting requirement
by an alternative restriction where exercise is allowed only at preset times.
If the time interval between these allowable exercise instants is the same as
the time vesting period, then the value of the option under the alternative
restriction is always less than that under time vesting since the exercise at
preset instants can only be sub-optimal. Saly et al. (1999) develop binomial
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algorithms for finite-reload options and consider the impact of various types
of exercise payoff functions. In the trinomial scheme developed by Dybvig
and Loewenstein (2003) for valuation of time vesting infinite-reload options,
they append an extra index for tracking the vesting time lapsed from the last
exercise instant.

The paper is organized as follows. In the next section, we explore some
analytic properties of the price functions of reload options. Once the pricing
models are well formulated, it becomes quite straightforward to construct
efficient binomial scheme for numerical valuation of the option value. In
Section 3, we present the results of the numerical experiments that were
designed to reveal some of the behaviors of the pricing functions. In partic-
ular, we explore the characterization of the optimal exercise policies of the
reload options and the impact of the length of the vesting period on the price
functions. Conclusive remarks are presented in the last section.

2 Formulation of pricing models

First, we formulate the pricing model that computes the market value of a
reload option subject to time vesting requirement. We adopt the risk neutral
pricing approach under the Black-Scholes framework. In our pricing model,
we suppress the warrant’s dilution effects and employees’ incentive effects
on the stock price. Also, we asume the stock to be non-dividend paying.
Under the risk neutral measure, the stochastic process of the stock price S is
assumed to follow the Geometric Brownian process with constant volatility
o and drift rate same as the riskless interest rate r.

Let V. (S, t,u; X) denote the price function of the employee option granted
with 7 reload rights (n can be infinite), where t is the calendar time, w
denotes the remaining time required to satisfy the time vesting requirement
and X is the strike price. For convenience, we take the original strike price
X of the reload option to be unity. Also, we let § denote the length of the
time vesting period. Obviously, we have 0 < u < §; and the (weak) path
dependence nature of the time vesting feature is exhibited by the additional
state variable u. Note that once u decreases to the value 0, the holder can
exercise the reload at any time he wishes. Right after an exercise of the
reload right, u is reassigned the value 6. For the new reload option, its strike
price is set to be the prevailing stock price, the maturity date is the same as
that of the original option and the number of reload rights is reduced by one.



The price function V,,(5,t,u; X) observes the linear homogeneity property
when the strike price equals the stock price, that is

V(S s §) = SVa(1tu; 1), (1)

Suppose there are n reload rights outstanding, n > 1, the payoff to the holder
upon the exercise of the reload right is given by the sum of the call payoff

1
S — 1 and g units of new options reloaded (the strike price X is set to

be unity). By observing the linear homogeneity property [see Eq. (1)], the
payofl upon exercise can be expressed as

1
S=1+ GVar(S,4,6:9) =8 =1+ Vaa(Lt,61). (2)

In our subsequent exposition, for the sake of simplicity, we suppress the strike
price X in the price function V,,. Unless otherwise specified, the value of the
strike price is taken to be unity.

For the complete specification of the reload policy subject to time vesting
requirement, it is necessary to specify clearly the reload policy during the
last 6-period before maturity. When the reload right is exercised during
the last é-period, we assume that there will be no new option received by
the employee (since the vesting period of the new option reloaded would go
beyond the maturity date). Hence, the employee reload option essentially
becomes an American call option during the last é-period of its life [see Eq.
(6)]. Furthermore, suppose the holder exercises the last reload right at time
earlier than é-period before maturity, the new option received is an American
call option but still subject to time vesting constraint. Only when the time
vesting period has lapsed does the reload option become the usual American
call option. If we take n = 0 to represent the status of “no further reload
right”, and when u = 0, we have

%(S,t,()) - CA(Svt)v (3)
where C4(5, 1) is the price function of an American call with the same strike

and maturity.

2.1 Path dependence nature of time vesting

The price function V,, (9, ¢, u) apparently contains an extra vesting time vari-
able u, similar to the excursion time variable in Parisian options. The path



dependence nature of the time vesting feature is reflected by the property
that u is set equal ¢ at the grant date and reset to ¢ after each exercise of
the reload right. Fortunately, there exists a simple calculation procedure to
obtain the solution V,,(5,¢,u),0 < u < §, once the solution V,,(S,t + w,0) is
available. As there is no reload allowed within the time interval [¢,¢ + u), so
the reload option behaves like a compound option. Over the interval [, ¢+ u),
the price function V,,(S, ¢, u) satisfies the Black-Scholes equation, subject to
“known” payoff V,,(S,t + u,0) at the future time ¢ + u. Let (S, ,|S; = S5)
denote the transition density function of the stock price at time ¢ + u, condi-
tional on the stock price at time ¢ equals 5. Tt is straightforward to deduce
the following relation:

Vn(S,t,U) - /0 67TU¢(St+U|St - S)V;“L(Sﬁruvt + U,O) dSt+U' (4)

This is like an integral transform on V,,(S,t + wu,0) with the kernel function
e "1 ( Sy |St). For notational convenience in later discussion, we define the
integral transform operator F> by

Va(S,tu) = FP[Va(S,t +u,0)]

_ / e (SIS Vi (S, 1, 0) dS, (5)

0
where S;., = S and S, = S. Accordingly, we may rewrite the exercise
payoff in Eq. (2) as S — 1+ FS[V,_1(S,t + 6,0)]‘ . Now, the function

=1
V(S t,u),u > 0, is related directly to V,,(9,¢,0) by the relation in Eq. (4).
Next, we concentrate our discussion on the properties of the price function
at u = 0.

2.2 Analytic properties of V,,(S,t,0)

Let tq denote the grant date of the reload option, then V,,(5,¢,0) is defined
over the time period [ty + 6,T]. Assume that at the current time, the time
vesting requirement has been satisfied so that « = 0. Recall that during
the last é-period before maturity, the remaining reload rights held by the
employee has zero value. Hence, a n-reload option is the same as an American
call option. We have

Va(S,t,0) = V5(5,¢,0) = C4(S,t) forn>Tandte (T —6T]. (6)
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Alternatively, it is seen that the holder of an employee option with n reload
rights outstanding can exercise all n reloads only when the time to expiry is
not less than né. Deductively, we then have

%(S,t,O) S (T_(S?T]

Vi(S,t,0) te (T —26T—¢
Va(5,1,0) = 1 . :

Vi(9,6,0) te (T —(k+1)6,T — kb
Equivalently, we may write
Vo(S,t,0) = Vi(S,t,0) when te (T —(k+1)8,T — k6|, (8)

form>k,k=0,1,2,---.

Due to the time vesting feature, one reload right will be forfeited automat-
ically when the calendar time advances towards maturity by one é-period.
Note that relation (2.8) remains valid when n — oo, that is, the employee
option has unlimited number of reload rights.

2.3 Procedures to solve for V,,(S5, %, 0)

Given the grant date o, length of vesting period 6, maturity date T" and num-
ber of allowable reloads n, we outline the procedures that solve for V,, (.5, tg, 6).
From Eq. (2.5), we have V,(S,t,68) = FZ[V,(S,t, + 6,0)] so that it suffices
to illustrate the procedures for solving V,, (S, %y + 6,0). We consider two sep-
arate cases, depending on whether the actual maximum number of reloads
allowable for a given time to expiry is less than n or same as n.

In this case, the time to expiry of the option at time ty + 6 is less than

né. Let k denote the actual allowable maximum number of reloads.
T — (to+6)
R 6 ’
thus k is less than n when tq + 6 > T — néd. According to Eq. (7), we
have V,,(S,to +6,0) = V2(S, 1o +6,0).

To solve for V2(S5,ty + 6,0), we first solve for V(5,¢,0) over the
last time interval (17" — 6,7]. This is an optimal stopping problem

with exercise payoff S — 1. Next, we solve for Vi(S,t,0) over (T —
26, T —6]. By continuity of the price function, we have V1 (5,17 —6,0) =

It is seen that k is given by the largest integer less than

7



Vo(S,T —6,0). As part of the procedure, it is also necessary to obtain
Vo(S,t,8) over (T — 26, T — 6| using Eq. (5). This is because the
exercise payofl associated with the one-reload option is S—1+4V5(1,¢, 6).
Deductively, we proceed the calculations backward in time over each
successive time interval of width 6. Sequentially, we solve for V5(5,t,0)
over [T'—36,T—26],V3(5,t,0) over (T'—46,T —36], etec., until we obtain
VZ(S, o + 6,0) over the last time interval [to 4 6,1 — ké).

At the first glance, we may proceed as above until we have solved for
V;(9,1,0) over the successive time intervals (T — (j + 1)8,T — jé|,j =
1,2,--+,n — 1. Over the time interval [ty + 6,T — nb|, we solve for
Vo (S,t,0) based on the exercise payoff S — 1+ V,, _1(1,¢,6). A slight
complication is encountered here. In order to obtain V,, 1(1,¢,8) over
[to + 6, T —nd|, it is necessary to have the solution for V,,_1(1,¢,0) over
[to + 26,7 — (n — 1)6]. Therefore, one has to solve for V,,_1(95,¢,0)
over a wider time interval, not just limited to the é-period time in-
terval (T"— né,T — (n — 1)6]. Proceeding backward successively to
Vieo(9,t,0),---,V1(S,t,0), we first solve for V;(S5,¢,0),5 = 1,2,--,
n—1, over the corresponding wider time interval [to+(n—7j+1)6, T—jé].

2.4 Construction of the numerical scheme

Once the analytic properties of the pricing model have been well understood,
it becomes quite straightforward to construct the numerical scheme for val-
uation of the price function of the reload options. We use the standard
binomial tree to simulate the stochastic movement of the stock price. The
optimal stopping problem can be solved by the dynamic programming pro-
cedure of comparing the continuation value and the exercise payoff at each
binomial node. Let T" denote the maturity date of the reload option. Let m
denote the number of time steps from option’s maturity, § be the number
of net upward jumps in stock price in the binomial random walk. Let S,
denote the stock price at node (j,m) in the binomial tree and At denote
the time step. Let V/  and V?,m denote the numerical approximation to
Vi (Sim, T —mAL,0) and V,(S;m, T — mAL,6), respectively, at node (j,m).
The exercise payoff at node (j,m) is given by V?O}Z + S;m — 1. Here, jo
corresponds to the node index where the stock price equals the strike price



(taken to be unity). The dynamic programming procedure in the binomial
calculations is given by

n—1

Vynm = max(eimt(puvjﬁmel prdVﬂLmﬂ)vV

Jo,m

+S;m—1). (9

Here, the probability parameters in the binomial scheme are given by (Cox

et al., 1976)

erAt o 3

pu=-——= and ps=1-—p,, (10)
u—d
where u = 1/d = VA1,
To compute V[ | it is necessary to proceed stepwise, starting from the

. . 0 1 . .
numerical calculations of Vi V.o -+ successively according to the proce-

dures outlined in Sec. 2.3. When n = 0, according to Eqgs. (3) and (6), we
should set, me equal the American call option value.

Numerical calculation of V;im

Suppose the width of the time vesting period 6 corresponds to d time steps,
that is, d At = 6. The numerical valuation of V;‘L,m from the known solu-
tion of V7, ; amounts to the numerical valuation of the expectation integral
defined in Eq. (5). To obtain V?,m? we perform the usual binomial calcula-
tions backward in time over d time steps from the (m — d)™ time level to
the m* time level. These binomial calculations are performed with the ex-
clusion of the dynamic programming procedure, and the available numerical
solution Vynmf 4 1s used as known terminal values in the backward induction

calculations.

Numerical valuation of infinite-reload options
The numerical valuation of the market value of the infinite-reload option V7,
can be effectively organized as follow.

1. Tn the first d steps, 0 < m < d, we compute the American call option
value me

2. For the next d steps, d < m < 2d, we first compute V‘?O’m by performing
usual backward binomial calculations (without the dynamic program-
ming procedure) with known terminal values V

m_a» then subsequently
compute V.| using Eq. (9).



3. Tn general, in the (k + 1)™ subinterval where kd < m < (k + 1)d, we

compute V‘l;;nl and V]];m in a similar sequential order as outlined in
Step (2).

Compared to the numerical algorithm proposed by Dybvig and Loewen-
stein (2003), our algorithm does not have to append an extra index (or di-
mension) to track the path dependence nature of the time vesting require-
ment. The successful design of a more efficient numerical scheme is achieved
through better understanding of the pricing properties of the reload options.

3 Numerical results

Through the numerical calculations of the reload option values, we would
like to examine the following issues.

1. Comparison of numerical accuracy and rate of convergence of the Dybvig-
Loewenstein algorithm with our algorithm.

2. Analysis of the sensitivity of the reload option price function with re-
spect to volatility, length of vesting period and number of reload rights
granted.

3. Exploration of optimal exercise policies of infinite-reload options.

Throughout our sample calculations, we assume that all reload options are
subject to time vesting requirement and the underlying stock is non-dividend
paying. When the stock is dividend paying, either as discrete dividends or
continuous dividend yield, we can use the well known standard procedures
to modify the binomial tree for the inclusion of the dividend effects into the
stock price dynamics. Once the appropriate binomial tree has been available,
all other procedures in the numerical algorithm outlined in Sec. 2.4 remain
the same.

Comparison of numerical accuracy

First, we would like to compare numerical accuracy and rate of convergence
of Dybvig-Loewenstein’s algorithm with our algorithm in the numerical val-
uation of an infinite-reload option. The parameter values used in the pricing
model of the infinite-reload option are: » = 0.05, X = 5 = 1 and 7 = 10.
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Here, 7 denotes the remaining life of the reload option. Dybvig and Loewen-
stein also computed the upper bound and lower bound to the option value.
The upper bound is given by the value of the infinite-reload option that allows
continuous exercise. The lower bound is the value of the infinite-reload option
with pre-determined exercise instants, where the interval between successive
exercise instants equals the length of the vesting period.

Table 1 lists numerical option values obtained using Dybvig-Loewenstein’s
algorithm and our algorithm with varying values of total number of time
steps N, volatility ¢ and length of vesting period 6. We used the numerical
results obtained by taking 10,000 time steps in the binomial calculations as
the asymptotic estimate of the option value at infinite number of time steps.
Though the asymptotic option values obtained from both algorithms agree
very well (within 0.05% accuracy), the results obtained from our algorithm
invariably demonstrate much faster rate of convergence. Our algorithm gives
numerical option values that achieve 0.1% numerical accuracy using only 200
time steps, while Dybvig-Loewenstein’s algorithm normally requires 4, 000
time steps in order to achieve 0.5% numerical accuracy.

Dai-Kwok
N =200 | N=400 | N =2800| N =10,000
0.3]0.5 0.6323 0.6326 0.6327 0.6328
0.41]0.5 0.7172 0.7176 0.7177 0.7178

o 1)

03] 1.0] 06172 0.6175 0.6175 0.6176
0.4] 1.0 0.7019 0.7022 0.7022 0.7023
o 5 Dybvig-Loewenstein lower | upper

N =2000 | N =4000 | N = oo || bound | bound
0.3]0.5 0.6296 0.6302 0.6326 | 0.6285 | 0.6676
0.41]0.5 0.7125 0.7140 0.7176 | 0.7126 | 0.7524
0.3]1.0 0.6140 0.6151 0.6178 | 0.6144 | 0.6676
0.41]1.0 0.6970 0.6985 0.7021 | 0.6966 | 0.7524

Table 1 Comparison of numerical option values obtained from Dybvig-
Loewenstein’s algorithm and our algorithm for valuation of infinite-reload
options. The parameter values of the reload option are: » =0.05, X =5 =1
and 7 = 10. Here, NV denotes the total number of time steps used in the nu-
merical calculations, and the option value at N = oo refers to the asymptotic
option value at infinite number of time steps.
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Pricing behaviors of reload options

We examine the sensitivity of the price of multi-reload options with respect to
the number of reload rights granted, volatility ¢ and length of vesting period
0. In Table 2, we list the numerical option values of one-reload, two-reload,
three-reload and infinite-reload options. Other parameter values used in the
calculations are: r = 0.05, X = 5§ = 1,7 = 10, and we used 1,000 time steps
in the numerical calculations. The numerical results reveal that the option
price function is an increasing function of number of reload rights and o, and
a decreasing function of 6. The option values are not highly sensitive to ¢
when the number of reload rights is small.

o 6 | one-reload | two-reload | three-reload | infinite-reload
0.3]0.5 0.5710 0.5936 0.6068 0.6328
0.3]1.0 0.5703 0.5918 0.6038 0.6176
0.41]0.5 0.6542 0.6787 0.6926 0.7178
0.41]1.0 0.6534 0.6768 0.6891 0.7023

Table 2 The entries are the option values of one-reload, two-reload, three-
reload and infinite-reload options with different values of volatility o and
length of time vesting period ¢. The parameter values used in the calculations

are: r =0.05,X =5 =1 and 7 = 10.

We would like to examine in more details the sensitivity of the option
value of infinite-reload options with respect to the length of the time vesting
period 6. In Figure 1, we plot the price function (evaluated at S = 1 and
r = 0.05) of a 10-year infinite-reload option against §. The plots agree with
the financial intuition that the price function of an infinite-reload option
is monotonically decreasing with increasing length of the vesting period and
has a higher value with increasing volatility level. With moderate stock price
volatility of 30%, the 10-year infinite-reload option value can drop by more
than 10% when ¢ increases from zero to 2 years.

In Figure 2, we plot the price functions of American call option (dashed
curve), one-reload option (dot-dashed curve), two-reload option (dotted curve)
and infinite-reload option (solid curve), against time to expiry 7, 7 =T —¢.
Other parameter values used in the calculations are: » = 0.05,0 = 0.3,6 =
0.5,5 = 1.243 and X = 1. One observes that the price function of the Amer-
ican call option and infinite-reload option can differ quite significantly even
at moderate value of time to maturity 7. Also, the price function of the one-
reload opiton is seen to exhibit a jump in value at 7 = 6. This is because the
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exercise payofl of the one-reload option at 7 = 6% is S — 1+ Vo(1,T — 6T, 6)
and the payoff reduces to S — 1 at 7 = 6. The jump in the exercise payoff
across T = ¢ leads to a jump in the price function. Similar argument can
be extended to the two-reload and infinite-reload options, so the price func-
tion exhibits jumps at 7 = 6 and 7 = 26 for the two-reload option and at
T=Fko,k=1,2,---, for the infinite-reload option.

Optimal exercise policies of infinite-reload options

Besides the calculations of the option values, we would like to explore the
optimal exercise policies of time vesting infinite-reload options. For usual
American call option, the optimal exercise policy dictates that the call is
never exercised prematurely when the underlying stock is non-dividend pay-
ing. When the stock pays a continuous dividend yield, the call option should
be optimally exercised when the stock price rises beyond some critical level
S*(71). For reload options, even when the stock is non-dividend paying, our
calculations reveal that there exists critical stock price above which the reload
option should be exercised optimally. Let S*(7)[S% (7)] denote the critical
stock price at time to expiry 7 for a n-reload [infinite-reload] option. In
our sample calculations, depending on the parameter values chosen in the
infinite-reload option model, we found that S’ (7) may exist for all times or
only over certain time intervals. Some interesting patterns of behaviors of
S* (1) are shown in Figures 3 and 4.

The plot of S* (1) against 7 in Figure 3 is obtained by choosing the
following set of parameter values in the time vesting infinite-reload option:
r = 0.08,0 = 0.1,6 = 0.5 and X = 1. For 7 € [0,0.5], S* (7) does not
exist indicating that the reload option is never optimally exercised. This is
because the reload option becomes an American call option during its last 6-
period before maturity; and any American call on non-dividend paying stock
is never exercised. For 7 € [6,26) = [0.5,1.0), the infinite-reload option has
essentially one reload right outstanding. Our numerical calculations show
that there exists an interval |77, 26) such that S* (7) does not exist. In the
next §-interval, there also exists some range of value of 7 where S* (7) is not
defined. Such phenomena are not too surprising since similar phenomena
also occur in finite-reload options without time vesting [see Dai and Kwok
(2004)]. Tndeed, a necessary condition for the existence of S* (7) is that
the temporal rate of change of the expectation of the discounted value of
the payoff upon exercising the reload right is negative. The non-existence
of S* (1) reflects the fact that the above condition is not satisfied over some
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time interval.

In another set of sample calculations with the following parameter values
for the infinite-reload option model: » = 0.1,0 = 0.3,6 = 0.5 and X = 1,
the critical stock price S* (7) exists when 7 > 6, but exhibits jumps at
T = kék = 2,3,---. In Figure 4, we plot the critical stock price S*(7),
for n = 1,2,3 and oo, against 7. Since V,(5,¢,0) = Vi(S5,t,0) for 7 €
k6, (k + 1)6), we expect that

S*(r) = Si(r) for 7€ [kS,(k+ 1)) (11)

Figure 4 reveals that S* (7) consists of piecewise continuous curves over each
o-interval and it possesses the following jump properties:

Se((k6)7) = Sp((k6)T) < Si 1 ((k6)7) = S5 ((k6)7), k=1,2,--- (12)

that is, S* (7) exhibits discrete drops in value across time instants corre-
sponding to 7 = ké,k = 1,2,---. Such phenomena agree with the financial
intuition that the option holder is willing to exercise the reload right at a
lower critical stock price as 7 moves across the critical time instant k7 since
the genuine allowable number of reload rights decreases by one. Also, our
calculations reveal that the amount of discrete jump of S* (7) diminishes as
T increases. Interestingly, it is apparent that S* (7) tends asymptotically to
some finite value as 7 — oc.

Lastly, we would like to explore in more details how S* (c0) depends on ¢
and o. In Figure 5, we plot S* (o0) against 6 for varying values of o. Other
parameter values used in the calculations are the same as those for Figure 4.
With a longer time vesting period 6, the holder becomes more conservative
to use the reload rights; so S% (c0) increases with increasing 6. Also, like
most other call options with the early exercise right, 5% (o0) increases with
increasing volatility level of the stock price.
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Figure 1 We plot the price function V,, of the infinite-reload option against
the length of the vesting period é. The parameter values used in the calcula-
tions are: = 0.05,5 =1, X = 1,7 = 10. We observe that the price function
is monotonically decreasing with increasing ¢ and increasing with increasing
volatility o.
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Figure 2 The price functions of American call option (dashed curve), one-
reload option (dot-dashed curve), two-reload option (dotted curve) and infinite-
reload option (solid curve) are plotted against time to expiry 7. The param-
eter values used in the calculations are: r = 0.05,0 =0.3,6 = 0.5, 5 = 1.243
and X = 1. The price function of the n-reload option has jumps at 7 =
0,26,---,n6, where n =1,2,---, 00.
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Figure 3 The critical stock price S* (7) of an infinite-reload option is plotted
against time to expiry 7. The parameter values used in the calculations are:
r=0.08,0 =0.1,6 = 0.5 and X = 1. Within some time intervals, S*(7) is
not defined, signifying that it is never optimal to exercise the reload feature
during these time intervals.
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Figure 4 The critical stock price S*_ (7) for an infinite-reload option (labelled
“n = 00”) is plotted against time to expiry 7. The plots of S¥(7),n = 1,2, 3,
for the corresponding one-reload option (labelled “n = 1"), two-reload option
(labelled “n = 27) and three-reload option (labelled “n = 3”) against 7 are
also included for comparison. The parameter values used in the calculations
are: v = 0.05,0 = 0.3,6 = 0.5 and X = 1. Note that S;(7) = Sj(7)
when 7 € [j6,(j +1)6),n > 4,5 =0,1,2,---. Accordingly, S* (7) consists of
piecewise continuous curves over each é-interval.
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Figure 5 The critical stock price S*_ (o0) of perpetual infinite-reload options
is plotted against the time vesting period é at varying levels of volatility o.
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4 Conclusion

In this paper, we analyze the impact of the time vesting requirement on the
pricing behaviors of employee stock options with reload rights. An employee
stock option with unlimited reload rights subject to time vesting requirement,
is essentially an option with finite reload rights, where the genuine allowable
maximum number of reloads decreases as the calendar time is advancing
towards maturity. Whenever the time to expiry decreases in value by an
amount equals to the length of the vesting period, the price function of
the infinite-reload option becomes the price function of a new finite-reload
option with one less reload right. The price function of an infinite-reload
option may exhibit a jump across those time instants corresponding to time
to expiry which equals a multiple of the length of the vesting period.

By exploring the relevant analytic properties of the price functions, we
have developed an efficient algorithm for numerical valuation of finite-reload
and infinite-reload options. Since it becomes unnecessary to append an extra
index to track the path dependence associated with the vesting time, the
computational complexity of our algorithm has the same order as that of the
reload option without the time vesting requirement.

We also have examined the optimal policies of exercising the reload for
infinite-reload options subject to the time vesting requirement. Depending
on the parameter values in the pricing model, there may exist some time
interval during which it is never optimal to exercise the reload at any stock
price level. For all reload options, the critical stock price increases with
increasing length of the time vesting period and increasing volatility level of
the stock price.
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