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Currency-translated foreign equity options (quanto options) are designed for investors
who would like to manage different types of risk in international equity investments.
The terminal payoffs of quanto options depend on the price of a foreign currency de-
nominated asset (or stock index) and the exchange rate in different combinations of
choices. This paper presents a systematic framework to derive pricing formulas for dif-
ferent European-style quanto options with path-dependent payoff functions. The path
dependent features can be the barrier feature associated with the underlying asset price
movement, the averaging feature of the exchange rate over the life of the option, etc. In
many cases, the pricing formulas for quanto options can be inferred from their vanilla
counterparts by applying the quanto-prewashing technique of making modifications on
the risk neutralized drift rates and volatility rates. The extension of the pricing formu-
lations to multi-asset extremum options with the quanto feature is also considered. The
pricing behaviors of the joint quanto options and the Asian quanto options are examined.
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options.
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1. Introduction

With the growth in globalization of investments in recent years, the currency-

translated foreign equity options (quanto options) have gained wider popularity.

Quanto options are contingent claims where the payoff is determined by a financial

price or index in one currency but the actual payout is done in another currency.

The payoffs of these quanto options can be structured in a variety of combinations

of linking foreign asset price and exchange rate, thus generating a rich set of choices

of investment and hedging opportunities. Besides the choice of either fixed or float-

ing exchange rate, their payoff structures can be made more exotic by introducing

the barrier or Asian feature on either the underlying asset price or the exchange rate

or both. These wider classes of payoff structures allow investors to hedge a specific

risk or bet on a particular speculation in their international equity investment. The
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exposition on the uses and hedging properties of vanilla type quanto options can

be found in [1, 6–8].

In this paper, we derive the pricing formulas and examine the pricing behaviors

of European-style quanto options with exotic path-dependent payoff structures in

the Black–Scholes world. The pricing formulations are also extended to multi-asset

extremum options. Although we follow similar “quanto-prewashing” technique of

making modifications on the risk neutralized drift rates and volatilities [8], this is a

non-trivial extension of a number of earlier works [1, 6–8], where only vanilla type

payoff functions were considered in those papers. For example, the pricing formulas

for the joint quanto options (with and without barrier) and Asian quanto options

(single-asset and multi-asset) are obtained in our work. The pricing behaviors of

these new classes of quanto options are also examined.

This paper is organized as follows. In the next section, various versions of the

partial differential equation formulation of the quanto option models are derived.

The required modifications on the risk neutralized drift rates and volatility rates

in the quanto-prewashing process are summarized in a succinct fashion. The pric-

ing formulas for several standard quanto options with vanilla payoffs are obtained

as illustrations of the effectiveness of the formulations. The pricing formulas and

pricing behaviors of quanto options with barrier feature and Asian feature are pre-

sented in Secs. 3 and 4, respectively. The barrier feature and the Asian feature can

be on the asset price process or the exchange rate process. The extension of the pric-

ing formulations to multi-asset extremum options with the quanto feature is given

in Sec. 5. Summary of results and conclusive remarks are given in the last section.

2. Partial Differential Equation Formulations

We would like to derive the various versions of the partial differential equation

formulation of quanto option models. Apparently, there are four independent vari-

ables, namely, the domestic currency price of one unit of foreign currency F , the

asset price in foreign currency S, the asset price in domestic currency S∗, and time

t. Note that S and S∗ are related by

S∗ = FS , (1)

and so the quanto option prices can be functions of either the set of independent

variables: S∗, F and t, or the other set: S, F and t, or even the third set: S, S∗ and

t. The usual lognormal distributions for the stochastic state variables are assumed,

where

dS

S
= µSdt+ σSdZS (2a)

dF

F
= µFdt+ σFdZF (2b)

dS∗

S∗
= µS∗dt+ σS∗dZS∗ . (2c)
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Here, µS , µF and µS∗ are the constant drift rates, σS , σF and σS∗ are the constant

volatilities, and dZS , dZF and dZS∗ are the Wiener processes of the respective

stochastic variables. Also, we write the correlation coefficient between dZS and

dZF as ρSF , and similar meaning for ρS∗F and ρSS∗ . Since S∗, F and S are related

by Eq. (1), and from Ito’s lemma, we obtain

µS∗ = µS + µF + ρSFσSσF (3a)

σ2
S∗ = σ2

S + σ2
F + 2ρSFσSσF . (3b)

Further, the correlation coefficients are related by

ρS∗F =
σF + ρSFσS

σS∗
(4a)

ρSS∗ =
σS + ρSFσF

σS∗
. (4b)

2.1. Domestic currency world

The usual assumptions of the Black–Scholes environment are adopted. Let

Vd(S
∗, F, t) denote the price of a quanto option in domestic currency using S∗,

F and t as the independent variables. By using the standard argument of forming

a riskless hedging portfolio containing appropriate units of the underlying asset

and foreign currency and selling short one unit of the quanto option, the governing

equation for Vd = Vd(S
∗, F, t) is found to be

∂Vd

∂t
+
σ2
S∗

2
S∗

2 ∂2Vd

∂S∗2
+ ρS∗FσS∗σFS

∗F
∂2Vd

∂S∗∂F
+
σ2
F

2
F 2 ∂

2Vd

∂F 2
+ (rd − q)S∗

∂Vd

∂S∗

+ (rd − rf )F
∂Vd

∂F
− rdVd = 0, S∗ > 0, F > 0, t > 0 , (5)

where q is the dividend yield of the asset and rf (rd) is the foreign (domestic) riskless

interest rate.

Let δdS∗ and δdF denote the risk neutralized drift rates for S∗ and F in the

domestic currency world, respectively. It can be observed easily from the drift terms

in above governing equation that

δdS∗ = rd − q and δdF = rd − rf . (6a)

The risk neutralized drift rate for S in the domestic currency world, δdS , is then

given by [see Eq. (3a)]

δdS = δdS∗ − δdF − ρSFσSσF = rf − q − ρSFσSσF . (6b)

The derivation of δdS using financial argument can be found in [8].

There are quanto options whose terminal payoff function depends only on one

stochastic state variable S, and so the corresponding option price depends on S and

t only. By performing the calculus of changing the independent variables in Eq. (5),
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the governing equation for Vd = Vd(S, t) reduces to the usual one-dimensional

Black–Scholes equation, namely,

∂Vd

∂t
+
σ2
S

2
S2 ∂

2Vd

∂S2
+ δdSS

∂Vd

∂S
− rdVd = 0 , S > 0, t > 0 , (7)

where the risk neutralized drift rate is simply δdS , which is given in Eq. (6b).

Suppose the independent stochastic asset variable is changed from S∗ to S, the

governing equation for Vd = Vd(S, F, t) can be inferred directly from Eq. (5) and

this gives

∂Vd

∂t
+
σ2
S

2
S2 ∂

2Vd

∂S2
+ ρSFσSσFSF

∂2Vd

∂S∂F
+
σ2
F

2
F 2 ∂

2Vd

∂F 2

+ δdSS
∂Vd

∂S
+ δdFF

∂Vd

∂F
− rdVd = 0 , S > 0, F > 0, t > 0 . (8)

In one of the barrier quanto option models analyzed later [see Eq. (22)], it is most

convenient to choose S, S∗ and t as the independent variables. The corresponding

governing equation for Vd = Vd(S, S
∗, t) is given by

∂Vd

∂t
+
σ2
S

2
S2 ∂

2Vd

∂S2
+ ρSS∗σSσS∗SS

∗ ∂
2Vd

∂S∂S∗
+
σ2
S∗

2
S∗2

∂2Vd

∂S∗2

+ δdSS
∂Vd

∂S
+ δdS∗S

∗ ∂Vd
∂S∗

− rdVd = 0 , S > 0, S∗ > 0, t > 0 . (9)

2.2. Foreign currency world

Let Vf = Vf (S
∗, F, t) denote the option price in foreign currency, where

Vf (S
∗, F, t) = Vd(S

∗, F, t)/F . (10)

By performing the calculus of transformation of variables in Eq. (5), the governing

differential equation for Vf = Vf (S
∗, F, t) can be found to be

∂Vf

∂t
+
σ2
S∗

2
S∗

2 ∂2Vf

∂S∗2
+ ρS∗FσS∗σFS

∗F
∂2Vf

∂S∗∂F
+
σ2
F

2
F 2 ∂

2Vf

∂F 2

+ (rd − q + ρS∗FσS∗σF )S∗
∂Vf

∂S∗
+ (rd − rf + σ2

F )F
∂Vf

∂F
− rfVf = 0 ,

S∗ > 0, F > 0, t > 0 . (11)

By observing the drift terms in the above governing equation, one again deduces

that the risk neutralized drift rates for S∗ and F in the foreign currency world are

given by (see Appendix)

δfS∗ = rd − q + ρS∗FσS∗σF and δfF = rd − rf + σ2
F , (12a)

respectively. The risk neutralized drift rate of S in the foreign currency world is

known to be

δfS = rf − q . (12b)
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The alternative approach of deriving these risk neutralized drift rates in the foreign

currency world is presented in the Appendix.

By observing the general pattern shown in Eqs. (5), (8), (9) and (11), one can

deduce immediately the governing equation for the option price in either currency

world and any set of independent state variables by simply placing the “quanto-

prewashing” drift rates and volatilities as coefficients in the corresponding drift

terms and volatility terms. This “quanto-prewashing” technique is reminiscent of

the two numeraire theorems stated in [8].

Once the risk neutralized drift rates for S∗, S and F in both the domestic and

foreign currency worlds are available [see Eqs. (6a), (6b), (12a) and (12b)], the

pricing formulas for quanto options with vanilla payoff structures can be inferred

directly from their non-quanto counterparts. As for illustration, we consider the

following three types of quanto options analyzed in Reiner’s paper [6]:

(i) Fixed exchange rate foreign equity call

terminal payoff : V
(1)
d (ST , T ) = F0 max(ST −Xf , 0) ,

where F0 is some predetermined fixed exchange rate and Xf is the strike price

in foreign currency.

Since the payoff depends on S and it is denominated in the domestic currency

world, the risk neutralized drift rate adopted should be δdS . Hence, the corresponding

price formula is given by

V
(1)
d (S, t) = F0e

−rdτ [Seδ
d
SτN(d1)−XfN(d2)] , τ = T − t , (13a)

where

d1 =
ln S

Xf
+
(
δdS +

σ2
S

2

)
τ

σS
√
τ

, d2 = d1 − σS
√
τ . (13b)

The price formula does not depend on the exchange rate F since the exchange

rate has been chosen to be at the fixed value F0. Note that the writer of the option

has an exposure of the foreign currency of amount max(ST − Xf , 0) at expiry.

The dependence of the option price on the exchange rate volatility σF and the

correlation coefficient ρSF (through δdS) reflects this exposure.

(ii) Call on foreign equity denominated in domestic currency

terminal payoff : V
(2)
d (ST , FT , T ) = max(FTST −Xd, 0) = max(S∗T −Xd, 0) ,

where Xd is the strike price in domestic currency.

The corresponding price formula is easily seen to be

V
(2)
d (S∗, t) = S∗e−qτN(d̂1)−Xde

−rdτN(d̂2) , τ = T − t , (14a)
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where

d̂1 =
ln S∗

Xd
+
(
δdS∗ +

σ2
S∗
2

)
τ

σS∗
√
τ

, d̂2 = d̂1 − σS∗
√
τ . (14b)

(iii) Floating exchange rate foreign equity call

terminal payoff : V
(3)
d (ST , FT , T )/FT = V

(3)
f (ST , T ) = max(ST −Xf , 0) .

This call option behaves like the usual vanilla call option in the foreign currency

world, and so the corresponding price formula is given by

V
(3)
d (S, F, t)/F = V

(3)
f (S, t)

= Se−qτN(d̄1)−Xfe
−rfτN(d̄2) , τ = T − t , (15a)

where

d̄1 =
ln S

Xf
+
(
δfS +

σ2
S

2

)
τ

σS
√
τ

, d̄2 = d̄1 − σS
√
τ . (15b)

A genuine two-dimensional quanto option model is the “joint” quanto option

where the exchange rate F is guaranteed to have at least the floor value F0 [7].

(iv) Joint quanto option

terminal payoff : V
(4)
d (ST , FT , T ) = max(FT , F0)max(ST −Xf , 0) .

Let Gd(S, F, τ ;ST , FT ) be the Green function of the governing Eq. (8), where (see

[4, p. 105])

Gd(S, F, τ ;ST , FT ) =
e−rdτ

2πτ

1√
1− ρ2

SFσSσFSTFT

× exp

(
−x

2
S − 2ρSFxSxF + x2

F

2(1− ρ2
SF )

)
, (16)

where

xS =
1

σS
√
τ

[
ln
ST

S
−
(
δdS −

σ2
S

2

)
τ

]
(17a)

xF =
1

σF
√
τ

[
ln
FT

F
−
(
δdF −

σ2
F

2

)
τ

]
. (17b)

The price of the joint quanto option is then given by

V
(4)
d (S, F, t) = F0

∫ F0

0

∫ ∞
Xf

(ST −Xf )Gd(S, F, τ ;ST , FT ) dST dFT

+

∫ ∞
F0

∫ ∞
Xf

FT (ST −Xf )Gd(S, F, τ ;ST , FT ) dSTdFT

= F0e
−rdτ [Seδ

d
SτN2(d1,−f1;−ρSF )−XfN2(d2,−f2;−ρSF )]

+ Fe−rfτ [Seδ
f
SτN2(d̄1, f̄1; ρSF )−XfN2(d̄2, f̄2; ρSF )] , (18)
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where

f2 =
1

σF
√
τ

[
ln
F

F0
+

(
δdF −

σ2
F

2

)
τ

]
, f1 = f2 + ρSFσS

√
τ , (19a)

f̄2 =
1

σF
√
τ

[
ln
F

F0
+

(
δfF −

σ2
F

2

)
τ

]
, f̄1 = f̄2 + ρSFσS

√
τ . (19b)

Note that the first (second) term in the price formula (18) involves risk neutralized

drift rates in the domestic (foreign) currency world.

2.3. Pricing behaviors of the vanilla quanto options

Since the exchange rate in the terminal payoff of the joint quanto option is chosen

to be max(F0, FT ), and so we expect that the price of the joint quanto option is

more expensive than those of the quanto options with either fixed exchange rate

F0 or floating exchange rate FT , that is,

V
(4)
d (S, F, t) > max(V

(1)
d (S, t), V

(3)
d (S, F, t)) . (20)

It would be interesting to explore the dependence of the prices of the quanto

options on the correlation coefficient ρSF . For the floating exchange rate option, the

option price function V
(3)
d is independent of ρSF and so we have

∂V
(3)
d

∂ρSF
= 0. On the

other hand, since the effective dividend yield of the foreign asset in the domestic

currency world becomes q+ρSFσSσF [see δdS in Eq. (6b)], and so the price function

of the fixed exchange rate call, V
(1)
d (S, t), is a decreasing function of ρSF , that is,

∂V
(1)
d

∂ρSF
< 0.

Since the exchange rate in the joint quanto option is chosen to be a hybrid of

fixed and floating exchange rates, and so the rates of change in option prices with

respect to ρSF should satisfy

∂V
(1)
d

∂ρSF
<
∂V

(4)
d

∂ρSF
<
∂V

(3)
d

∂ρSF
= 0 . (21)

The properties of the price functions of the quanto options as summarized in

Eqs. (20) and (21) are succinctly illustrated in Fig. 1. The parameter values used in

the calculations are: rd = 9%, rf = 7%, q = 8%, σS = σF = 20%, S = 1.2, F =

1.5, F0 = 1.5, Xf = 1.0, τ = 0.5. Since F0 is chosen to be equal to F at the current

time, it is likely that FT > F0 as ρSF moves closer to 1 and so V
(4)
d tends to V

(3)
d

as ρSF → 1.

The price of the call on foreign equity denominated in domestic currency,

V
(2)
d (S, F, t), is an increasing function of ρSF since the effective volatility of the

asset price in the domestic currency world, σS∗ , increases with increasing ρSF [see

Eq. (3b)].
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Fig. 1. The dependence of the price functions of the quanto options on the correlation
coefficient ρSF .

3. Barrier Quanto Options

A barrier option is a path-dependent option that is either nullified, activated or

exercised if the price of the underlying asset breaches a barrier during the life of the

option. For barrier quanto options, the barrier feature can be either on the exchange

rate process or on the asset value process or both. Suppose the barrier feature is

on the exchange rate F while the payoff function does not depend explicitly on F ,

then F can be considered as an external barrier variable. The pricing behaviors

of single-asset options [2] and multi-asset options [5] with an external barrier have

been fully analyzed in the literature.

Suppose the asset price process S has a down-and-out barrier: b(τ) = b0e
−ατ ,

where b0 and α are constant, so that the quanto option is nullified when S falls below

b(τ). Since the terminal payoffs in V
(1)
d (S, t) and V

(3)
f (S, t) are independent of FT ,

the quanto option models remain to be one-dimensional, and so the price formulas

can be inferred directly from those of the corresponding non-quanto barrier options.

However, some efforts are required to derive the corresponding pricing formulas for

V
(2)
d (S, F, t) and V

(4)
d (S, F, t).

The terminal payoff function of V
(2)
d (S, F, t) depends on the state variable S∗

while the barrier depends on S only. Hence, it is preferable to use the set of in-

dependent variables: S, S∗ and t and the corresponding governing equation for
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V
(2)
d (S, S∗, t) is given by Eq. (9). Now, S can be considered as the external barrier

variable and S∗ as the payoff variable. This barrier quanto option model resembles

the option model with an external barrier analyzed in [2] and [5]. By mimicking

directly the price formula in [5], the price formula V
(2)
d (S, S∗, t) (with the down-

and-out barrier b(τ)) is found to be

V
(2)
d (S, S∗, t)=S∗e−qτ [N2(e1, d̂1; ρSS∗)−exp(−2(γd+ρSS∗σS∗)x̂S)N2(e3, d̂3; ρSS∗)]

−Xde
−rdτ [N2(e2, d̂2; ρSS∗)− exp(−2γdx̂S)N2(e4, d̂4; ρSS∗)] , (22)

where d̂1 and d̂2 are defined in Eq. (14b), and

x̂S =
1

σS
ln

S

b(τ)
, γd =

1

σS

(
δdS − α−

σ2
S

2

)
, (23a)

d̂3 = d̂1 − 2ρSS∗
x̂S√
τ
, d̂4 = d̂2 − 2ρSS∗

x̂S√
τ
, (23b)

e1 =
ln S

b(τ) +
(
rd − q − σ2

S

2

)
τ

σS
√
τ

, e2 = e1 − ρSS∗σS∗
√
τ , (23c)

e3 = e1 −
2x̂S√
τ
, e4 = e2 −

2x̂S√
τ
. (23d)

Next, we compute the price formula V
(4)
d (S, F, t) for the joint quanto option

with the down-and-out barrier b(τ). The joint density of ST and FT , given S and

F at time t, and S has a down-and-out barrier b(τ), is found to be [5]

ψSF (ST , FT ;S, F |Su > b0e
−α(T−u))

=
e−rdτ

2πτ

1√
1− ρ2

SFσSσFSTFT

[
exp

(
−x

2
S − 2ρSFxSxF + x2

F

2(1− ρ2
SF )

)

− exp(−2γdx̂S) exp

(
− x̃

2
S − 2ρSF x̃S x̃F + x̃2

F

2(1− ρ2
SF )

)]
, (24)

where xS and xF are defined in Eqs. (17a), (17b), and

x̃S = xS +
2x̂S√
τ
, x̃F = xF +

2ρSF x̂S√
τ

. (25)

Correspondingly, the price of the joint quanto option, where S has the down-

and-out barrier b(τ), is given by

V
(4)
d (S, F, t) = F0

∫ F0

0

∫ ∞
Xf

(ST −Xf )ψSF dSTdFT

+

∫ ∞
F0

∫ ∞
Xf

FT (ST −Xf )ψSF dSTdFT
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= F0e
−rdτ{eδdSτS[N2(d1,−f1;−ρSF )

− exp(−2(γd + σS)x̂S)N2(g1,−h1;−ρSF )]

−Xf [N2(d2,−f2;−ρSF )− exp(−2γdx̂S)N2(g2,−h2;−ρSF )]}

+ F{Se−qτ [N2(d̄1, f̄1; ρSF )− exp(−2(γf + σS)x̂S)N2(ḡ1, h̄1; ρSF )]

−Xfe
−rfτ [N2(d̄2, f̄2; ρSF )− exp(−2γf x̂S)N2(ḡ2, h̄2; ρSF )]} , (26)

where d̄1 and d̄2 are defined in Eq. (15b), f1, f2, f̄1 and f̄2 are defined in Eqs. (19a)

and (19b), x̂S and γd are defined in Eq. (23a), and

g1 = d1 +
2x̂S√
τ
, h1 = f1 +

2ρSF x̂S√
τ

, (27a)

g2 = g1 − σS
√
τ , h2 = h1 − ρSFσS

√
τ , (27b)

ḡ1 = g1 + ρSFσF
√
τ , h̄1 = h1 + σF

√
τ , (27c)

ḡ2 = ḡ1 − σS
√
τ , h̄2 = h̄1 − ρSFσS

√
τ , (27d)

γf =
1

σS

(
δfS − α−

σ2
S

2

)
. (27e)

4. Asian Quanto Options

The Asian (or averaging) feature in an option model refers to the dependence of

the payoff function on some form of averaging of the underlying state variable over

a part or the whole life of the option. The averaging procedure can be taken either

discretely or continuously. The common forms of averaging in option contracts can

be either geometric or arithmetic average of the underlying state variables. Note

that lognormal distributions are assumed for both the asset price process and foreign

exchange rate process in the Black–Scholes world. Since the product of lognormal

densities remains to be lognormal, for the goal of achieving analytical tractability,

we assume continuous geometric averaging in the analysis of the following Asian

quanto options.

Let the averaging period be [0, T ], where T is the expiration date of the option,

and let t denote the current time, 0 < t ≤ T . The continuous geometric average of

the asset price process S over [0, t] is defined to be

GtS = exp

(
1

t

∫ t

0

ln S(τ)dτ

)
, 0 < t ≤ T , (28a)

and similar definition for the continuous geometric average of the foreign exchange

rate F , where

GtF = exp

(
1

t

∫ t

0

ln F (τ)dτ

)
, 0 < t ≤ T . (28b)
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The pricing formulas of the following Asian quanto options are to be derived:

(v) Fixed exchange rate foreign equity call with averaged strike

terminal payoff : V
(5)
d (ST , G

T
S , T ) = F0 max(ST −GTS , 0)

(vi) Averaged exchange rate foreign equity call

terminal payoff : V
(6)
d (ST , G

T
F , T ) = GTF max(ST −Xf , 0)

(vii) Averaged exchange rate foreign equity call with averaged strike

terminal payoff : V
(7)
d (ST , G

T
S , G

T
F , T ) = GTF max(ST −GTS ) .

Apparently, GS appears as an independent variable in V
(5)
d . It is observed that

dGS is deterministic where

dGS =

(
GS

t
ln

S

GS

)
dt . (29)

In the evaluation of the differential dVd(S,GS , t), an extra term (GS
t

ln S
GS

) ∂Vd
∂GS

dt

also appears. Hence, the governing equation for Vd = Vd(S,GS , t) can be inferred

easily from Eq. (7) to be (see [9])

∂Vd

∂t
+
σ2
S

2
S2 ∂

2Vd

∂S2
+ δdSS

∂Vd

∂S
+

(
GS

t
ln

S

GS

)
∂Vd

∂GS
− rdVd = 0 ,

S > 0 , GS > 0 , t > 0 . (30)

The following set of similarity variables are chosen:

x = t ln
GS

S
and U(x, t) =

Vd(S,GS , t)

S
, (31)

where the asset price S is used as the numeraire. In terms of the new similarity

variables, Eq. (30) is reduced to one-dimensional and takes the form

∂U

∂t
+
σ2
S

2
t2
∂2U

∂x2
−
(
δdS +

σ2
S

2

)
t
∂U

∂x
+ (δdS − rd)U = 0 , −∞ < x <∞, t > 0 .

(32)

The terminal payoff function of the fixed exchange rate foreign equity call with

averaged strike becomes

U(x, T ) = F0 max(1− ex/T , 0) . (33)

The Green function of Eq. (32) is found to be (see [9])

G(x, t; ξ, T ) = e(δdS−rd)τn

ξ − x+
(
δdS +

σ2
S

2

) ∫ T
t
u du

σS

√∫ T
t
u2 du

 , (34)
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where n(x) is the standard normal density function. The solution to Eq. (32) aug-

mented with the auxiliary condition in Eq. (33) can be formally represented by

U(x, t) = F0 e
(δdS−rd)τ

∫ ∞
−∞

max(1− eξ/T , 0)G(x, t; ξ, T ) dξ . (35)

By direct integration of the above integral, the value of the fixed exchange rate

foreign equity call with averaged strike is found to be

V
(5)
d (S,GS , t) = F0Se

(δdS−rd)τ

[
N(k1)−

(
GS

S

)t/T
e−Q(t;T )τN(k2)

]
, (36)

where

k1 =
−t ln GS

S
+
(
δdS +

σ2
S

2

)
T 2−t2

2

σS

√
T 3−t3

3

, (37a)

k2 = k1 − σS
√
T 3 − t3

3T 2
, (37b)

Q(t;T ) =

(
δdS +

σ2
S

2

)
T + t

2T
− σ2

S

T 2 + T t+ t2

6T 2
. (37c)

In the foreign currency world, the terminal payoff of the averaged exchange rate

foreign equity call can be expressed as

V
(6)
f (ST , F,G

T
F , T ) =

GTF
F

max(ST −Xf , 0) . (38)

Now, we choose the similarity variables:

Ũ(S, t) =
Vf (S, F,GF , t)

(GF /F )t/T
, (39)

the governing equation for Ũ(S, t) can be found to be

∂Ũ

∂t
+
σ2
S

2
S2 ∂

2Ũ

∂S2
+

(
rf − q −

t

T
ρSFσSσF

)
S
∂Ũ

∂S

−
[
rf −

(
rf − rd −

σ2
F

2

)
t

T
− σ2

F

2

t2

T 2

]
Ũ = 0 , 0 < S <∞, t > 0 . (40)

The corresponding terminal condition can be expressed as

Ũ(ST , T ) = max(ST −Xf , 0) . (41)

It is seen that Eq. (40) resembles the governing equation for the Black–Scholes call

model with time dependent coefficients. We define

α(t;T ) =
1

T − t

∫ T

t

(
rf − q −

ξ

T
ρSFσSσF

)
dξ

= rf − q −
T + t

2T
ρSFσSσF (42a)
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β(t;T ) =
1

T − t

∫ T

t

[
rf −

(
rf − rd −

σ2
F

2

)
ξ

T
− σ2

F

2

ξ2

T 2

]
dξ

= rf −
(
rf − rd −

σ2
F

2

)
T + t

2T
− σ2

F

6

T 2 + T t+ t2

T 2
. (42b)

The solution for Ũ(S, t) is then given by

Ũ(S, t) = e−β(t;T )τ [eα(t;T )τSN(a1)−XfN(a2)] , (43)

where

a1 =
ln S

Xf
+
[
α(t;T ) +

σ2
S

2

]
τ

σS
√
τ

, a2 = a1 − σS
√
τ . (44)

Lastly, the value of the averaged exchange rate foreign equity call is found to be

V
(6)
d (S, F,GF , t) = F (GF /F )t/T e−β(t;T )τ

[
eα(t;T )τSN(a1)−XfN(a2)

]
. (45)

We use the combination of the techniques used in the derivation of V
(5)
d (S,GS , t)

and V
(6)
d (S, F,GF , t) to obtain V

(7)
d (S, F,GS , GF , t). Suppose we choose the follow-

ing similarity variables as the independent variables in the option model:

Û(x, t) =
Vf (S, F,GF , t)

S(GF /F )t/T
and x = t ln

GS

S
, (46)

the governing equation for Û(x, t) is found to be

∂Û

∂t
+
σ2
S

2
t2
∂2Û

∂x2
−
(
rf − q −

t

T
ρSFσSσF +

σ2
S

2

)
t
∂Û

∂x

+

[
−q +

(
rf − rd −

σ2
F

2
− ρSFσSσF

)
t

T
+
σ2
F

2

t2

T 2

]
Û = 0 ,

−∞ < x <∞ , t > 0 . (47)

The corresponding terminal payoff function for V
(7)
d (ST , G

T
S , G

T
F , T ) is transformed

to become

Û(x, T ) = max(1− ex/T , 0) . (48)

Accordingly, we define

α̂(t;T ) =
1

T − t

∫ T

t

(
rf − q +

σ2
S

2
− ξ

T
ρSFσSσF

)
ξdξ

=

(
rf − q +

σ2
S

2

)
T + t

2
− ρSFσSσF

T 2 + T t+ t2

3T
, (49a)
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β̂(t;T ) =
1

T − t

∫ T

t

[
q −

(
rf − rd − ρSFσSσF −

σ2
F

2

)
ξ

T
− σ2

F

2

ξ2

T 2

]
dξ

= q −
(
rf − rd − ρSFσSσF −

σ2
F

2

)
T + t

2T
− σ2

F

6

T 2 + T t+ t2

T 2
, (49b)

Q̂(t;T ) =
α̂(t;T )

T
− σ2

S

T 2 + T t+ t2

6T 2
. (49c)

The price formula for the averaged exchange rate foreign equity call with averaged

strike is finally found to be

V
(7)
d (S, F,GS , GF , t) = SF

(
GF

F

)t/T
e−β̂(t;T )τ

×
[
N(k̂1)−

(
GS

S

)t/T
e−Q̂(t;T )τN(k̂2)

]
, (50)

where

k̂1 =
−t ln GS

S
+ α̂(t;T )τ

σS

√
T 3−t3

3

and k̂2 = k̂1 − σS
√
T 3 − t3

3T 2
. (51)

4.1. Pricing behaviors of the Asian quanto options

It has been discussed earlier that the fixed exchange rate foreign equity call has no

dependence on F but the option price function V
(1)
d (S, t) [see Eq. (13a)] depends

on σF and ρSF through δdS . When the exchange rate is changed from fixed value F0

to the averaged value GTF , we would expect a reducing level of dependence of the

option price on ρSF . This is reflected in the adjusted risk neutralized drift rate in

the averaged exchange rate foreign equity call option. From Eq. (40), it is observed

that the adjusted risk neutralized drift rate δf,GFS is given by

δf,GFS = rf − q −
t

T
ρSFσSσF . (52)

Due to the presence of the factor t
T

in front of ρSF , the option price V
(6)
d (S, F,GF , t)

[see Eq. (45)] is less sensitive to the change of ρSF in comparison to V
(1)
d (S, t).

The more interesting aspect of the pricing behaviors of the Asian quanto option

models is the dependence of the option price function on time t. Compared to

options with vanilla payoff structures, the price functions of the Asian quanto option

models have more sophisticated functional dependence on the time variable since

the averaging processes evolve in time in a complicated manner.

The fundamental similarity state variables in the Asian quanto option models

are

RS =
GS

S
and RF =

GF

F
. (53)
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We plot the price functions of the Asian quanto options against time t with fixed

values of RS and/or RF [see Figs. 2, 3, 4(a)–(d)]. The parameter values used in

the calculations are: rd = 9%, rf = 7%, q = 8%, σS = σF = 20%, S = 1.0, F =

1.5, T = 1, F0 = 1.5, Xf = 1.0 and ρSF = 0.5.

The option price function V
(5)
d (S,GS , t) shows strong dependence on RS due to

the presence of the factor R
t/T
S in the price formula in Eq. (36). For fixed values

of RS , the plots in Fig. 2 show that V
(5)
d (S,GS , t) is an increasing (decreasing)

function of t when RS < 1 (RS ≥ 1). To justify the pricing behaviors by financial

argument, we consider two fixed exchange rate averaged strike call options which

have the same values of S and GS but different values of time to expiry. Three

separate cases are considered:

(i) RS < 1, that is, GS < S

The options are in-the-money but the gap between S andGS becomes narrower

as time evolves since GS will increase in value steadily given that S > GS at

the current time. It is likely that the option with the longer time to expiry will

expire less in-the-money than the shorter-lived counterpart, and thus leads to

V
(5)
d (S,GS , t1) < V

(5)
d (S,GS , t2), t1 < t2.

(ii) RS > 1, that is, GS > S

The options are now out-of-the-money. The shorter-lived option has the

lower chance to expire in-the-money and so V
(5)
d (S,GS , t1) > V

(5)
d (S,GS , t2),

t1 < t2.
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t

Fig. 2. Plots of V
(5)
d (S,GS , t) against t for RS = 0.6, RS = 1 and RS = 1.5.
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(iii) RS = 1, that is, GS = S

The options are now at-the-money. The option price is not quite sensitive to the

remaining time to expiry except when the time is sufficiently almost to expiry.

The option price drops almost to the zero value as the time is approaching

expiration.

The price formula V
(6)
d (S, F,GF , t) can be decomposed into the product of two

parts. The part e−β(t;T )τ [eα(t;T )τSN(a1) − XfN(a2)], which is independent of F

and GF , resembles the usual Black–Scholes formula, except that the drift rate and

discount rate are time dependent functions. The drift rate function α(t;T ) and the

discount rate function β(t;T ) [see Eqs. (42a) and (42b)] are decreasing functions of

time. The time dependence nature of the other part, F (GF /F )t/T , is more apparent.

For a fixed value of RF = GF /F , the value of (GF /F )t/T changes from 1 to RF as

t increases from 0 to T .

The time dependence properties of at-the-money averaged exchange rate foreign

equity call options are revealed in Fig. 3. The option price function V
(6)
d (S, F,GF , t)

corresponding to lower fixed value of RF decreases at a faster rate in time. With

sufficiently high fixed value of RF , the price function can be an increasing function

of time t for options with longer time to expiry.

The plots shown in Figs. 4(a)–4(d) illustrate that the time dependence proper-

ties of V
(7)
d (S, F,GS , GF , t) have close resemblance to those of V

(5)
d (S,GS , t) and

V
(6)
d (S, F,GF , t). This is not surprising since V

(7)
d (S, F,GS , GF , t) is a hybrid of

V
(5)
d (S,GS , t) and V

(6)
d (S, F,GF , t). When RF assumes the fixed value 1, the plots
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Fig. 3. Plots of V
(6)
d (S, F,GF , t) against t for RF = 0.5, RF = 1 and RF = 2.
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Fig. 4. (a) Plots of V
(7)
d (S, F,GS , GF , t) against t for RS = 0.8, RS = 1 and RS = 1.3, while RF

assumes the fixed value 1. (b) Plots of V
(7)
d (S, F,GS , GF , t) against t for RF = 0.8, RF = 1

and RF = 1.3, while RS assumes the fixed value 1. (c) Plots of V
(7)
d (S,F,GS , GF , t) against

t for RF = 0.8, RF = 1 and RF = 1.3, while RS assumes the fixed value 0.8. (d) Plots of

V
(7)
d (S, F,GS , GF , t) against t for RF = 0.8, RF = 1 and RF = 1.3, while RS assumes the fixed

value 1.3.

of V
(7)
d (S, F,GS , GF , t) against t for varying fixed values of RS resemble those of

V
(5)
d (S,GS , t) (see Figs. 4(a) and 2). On the other hand, when RS assumes the fixed

value 1, the plots of V
(7)
d (S, F,GS , GF , t) against t for varying fixed values of RF

resembles those of V
(6)
d (S, F,GF , t). The other plots shown in Figs. 4(c) and 4(d)

reveal similar features as those in Fig. 2.

5. Multi-asset Extremum Options with the Quanto Feature

In this section, the above pricing formulations are extended to multi-asset ex-

tremum options with the quanto feature. The discussion is restricted to European
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call options on the maximum of several risky assets. The generalization to other

types of multi-asset quanto options is quite straightforward.

Let Si, i = 1, . . . ,m, denote the price of the ith underlying asset of the maximum

call option. Here, m is the total number of underlying assets. We consider the

following three types of quanto feature associated with the maximum call option:

(viii) Fixed exchange rate foreign equity maximum call

terminal payoff : V
(8)
d (S1T , . . . , SmT , T )

= F0 max(max(S1T , . . . , SmT )−Xf , 0)

(ix) Joint quanto maximum call

terminal payoff : V
(9)
d (S1T , . . . , SmT , FT , T )

= max(F0, FT )max(max(S1T , . . . , SmT )−Xf , 0)

(x) Averaged exchange rate foreign equity maximum call

terminal payoff : V
(10)
d (S1T , . . . SmT , G

T
F , T )

= GTF max(max(S1T , . . . , SmT )−Xf , 0)

In the risk neutral world, the underlying asset price processes and the exchange

rate process are assumed to follow the lognormal distributions:

dSi

Si
= (rf − qi)dt+ σidZi , i = 1, . . . ,m , (54a)

ρijdt = dZidZj , i 6= j , i, j = 1, . . . ,m , (54b)

dF

F
= (rd − rf )dt+ σFdZF , (54c)

where qi and σi are the dividend yield and volatility of the ith asset, respectively.

By extending the partial differential equation formulation in Sec. 2 [see Eq. (7)]

to multi-state option models, the governing equation for Vd = Vd(S1, . . . , Sm, t) is

found to be

∂Vd

∂t
+

1

2

m∑
i=1

m∑
j=1

ρijσiσjSiSj
∂2Vd

∂Si∂Sj
+

m∑
i=1

δdSiSi
∂Vd

∂Si
− rdVd = 0 ,

0 < Si <∞, i = 1, . . . ,m , t > 0 , (55)

where the risk neutralized drift rates are given by

δdSi = rf − qi − ρSiFσiσF , i = 1, . . . ,m . (56)

The governing equation and the payoff function of the fixed exchange rate foreign

equity maximum call resemble those of its non-quanto counterpart, except that the

drift rates appearing in the governing equation become δdSi [see Eq. (56)] instead of
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rd. Hence, the pricing formula for V (8)(S1, . . . , Sm, t) can be inferred directly from

that of the non-quanto counterpart (see [3]). We then have

V
(8)
d (S1, . . . , Sm, t) = F0

m∑
i=1

[Sie
(δdSi−rd)τNm(di1, e

i1, . . . , ei,i−1, ei,i+1, . . . , eim ;

ρi12, . . . , ρi1m, ρi23, . . . , ρi2m, . . . , ρi,m−1,m)]

−F0Xfe
−rdτ [1−Nm(−d1

2, . . . ,−dm2 ; ρ12, . . . , ρ1m ,

ρ23, . . . , ρ2m, . . . , ρm−1,m)] , (57)

where

di1 =
ln Si

Xf
+
(
δdSi +

σ2
i

2

)
τ

σi
√
τ

, di2 = di1 − σi
√
τ , i = 1, . . . ,m , (58a)

eij =
ln Si

Sj
+
(
δdSi − δ

d
Sj

+
σ2
ij

2

)
τ

σij
√
τ

, i, j = 1, . . . ,m , i 6= j , (58b)

σ2
ij = σ2

i + 2ρijσiσj + σ2
j , i, j = 1, . . . ,m , i 6= j , (58c)

ρijk =
ρjkσjσk − ρijσiσj − ρikσiσk + σ2

i

σijσik
, i, j, k = 1, . . . ,m . (58d)

Since the terminal payoff of the joint quanto maximum call involves F as well,

the governing equation should include F as one of the independent variables. The

generalization of the governing equation as posed in Eq. (8) to multi-asset option

models is deduced to be:

∂Vd

∂t
+

1

2

m∑
i=1

m∑
j=1

ρijσiσjSiSj
∂2Vd

∂Si∂Sj
+

m∑
i=1

ρSiFσiσFSiF
∂2Vd

∂Si∂F
+
σ2
F

2
F 2 ∂

2Vd

∂F 2

+
m∑
i=1

δdSiSi
∂Vd

∂Si
+ δdFF

∂Vd

∂F
− rdVd = 0 ,

0 < Si <∞, i = 1, . . . ,m, 0 < F <∞, t > 0 , (59)

where Vd = Vd(S1, . . . , Sm, F, t).

To derive V
(9)
d , we use the combination of the approaches used to derive V

(4)
d

[see Eq. (18)] and V
(8)
d [see Eq. (57)]. The price of the joint quanto maximum call

is found to be

V
(9)
d (S1, . . . , Sm, F, t)

= F0

m∑
i=1

[Sie
(δdSi
−rd)τNm+1(d

i
1,−f i, ei1, . . . , ei,i−1, ei,i+1, . . . , eim ;

− ρS1F , . . . ,−ρSmF , ρi12, . . . , ρi1m, ρi23, . . . , ρi2m, . . . , ρi,m−1,m)]
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− F0Xfe
−rdτ [1−Nm+1(−d1

1, . . . ,−dm1 , f2;−ρS1F , . . . ,−ρSmF ,

ρ12, . . . , ρ1m, ρ23, . . . , ρ2m, . . . , ρm−1,m)]

+ F

m∑
i=1

[Sie
−qiτNm+1(d̄

i
1, f̄

i, ki1, . . . , ki,i−1, ki,i+1, . . . , kim ;

ρS1F , . . . , ρSmF , ρi12, . . . , ρi1m, ρi23, . . . , ρi2m, . . . , ρi,m−1,m)]

− FXfe
−rfτ [1−Nm+1(−d̄1

2, . . . ,−d̄m2 ,−f̄2; ρS1F , . . . , ρSmF ,

ρ12, . . . , ρ1m, ρ23, . . . , ρ2m, . . . , ρm−1,m)] , (60)

where f2 and f̄2 are defined in Eq. (19a) and Eq. (19b), respectively, and

f i = f2 + ρSiFσi
√
τ , f̄ i = f̄2 + ρSiFσi

√
τ , i = 1, . . . ,m , (61a)

kij =
ln Si

Sj
+
(
δfSi − δ

f
Sj

+
σ2
ij

2

)
τ

σij
√
τ

i, j = 1, . . . ,m , i 6= j , (61b)

d̄i1 =
ln Si

Xf
+
(
δfSi +

σ2
i

2

)
τ

σi
√
τ

, d̄i2 = d̄i1 − σi
√
τ , i = 1, . . . ,m . (61c)

To derive the price formula for the averaged exchange rate foreign equity max-

imum call, we first consider the generalization of the governing equation for Ũ [see

Eq. (40)] to multi-asset option models. Here, Ū = Ū(S1, . . . , Sm, t) is defined by

Ū(S1, . . . , Sm, t) =
Vf (S1, . . . , Sm, F,GF , t)

(GF /F )t/T
, (62)

and its governing equation takes the form

∂Ū

∂t
+

m∑
i=1

σ2
i

2
S2
i

∂2Ū

∂S2
i

+
m∑
i=1

(
rf − qi −

t

T
ρSiFσiσF

)
Si
∂Ū

∂Si

−
[
rf −

(
rf − rd −

σ2
F

2

)
t

T
− σ2

F

2

t2

T 2

]
Ū = 0 ,

0 < Si <∞, i = 1, . . . ,m, t > 0 . (63)

The corresponding terminal condition for V
(10)
d (S1, . . . , Sm, GF , F, t) is transformed

to become

Ū(S1T , . . . , SmT , T ) = max(max(S1T , . . . , SmT )−Xf , 0) . (64)

Similar to α(t;T ) defined in Eq. (42a), we define

αi(t;T ) =
1

T − t

∫ T

t

(
rf − qi −

ξ

T
ρSiFσiσF

)
dξ = rf − qi −

T + t

2T
ρSiFσiσF ,

i = 1, . . . ,m . (65)
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Following similar lines of approach for deriving V
(6)
d and V

(8)
d [see Eq. (45) and

Eq. (57), respectively], the value of the averaged exchange rate foreign equity

maximum call is deduced to be

V
(10)
d (Si, . . . , Sm, F,GF , t)

= F (GF /F )t/T e−β(t;T )τ

{
m∑
i=1

[
eαi(t;T )τSiNm(ai1, l

i1, . . . , li,i−1, li,i+1, . . . , lim ;

ρi12, . . . , ρi1m, ρi23, . . . , ρi2m, . . . , ρi,m−1,m)

]

−Xf

[
1−Nm

(
−a1

2, . . . ,−am2 ; ρ12, . . . , ρ1m, ρ23, . . . , ρ2m, . . . , ρm−1,m

)]}
, (66)

where β(t;T ) is defined in Eq. (42b) and

lij =
ln Si

Sj
+
[
αi(t;T )− αj(t;T ) +

σ2
ij

2

]
τ

σij
√
τ

, i, j = 1, . . . ,m , i 6= j . (67a)

ai1 =
ln Si

Xf
+
[
αi(t;T ) +

σ2
i

2

]
τ

σi
√
τ

, ai2 = ai1 − σi
√
τ , i = 1, . . . ,m . (67b)

6. Conclusion

A general framework for pricing the class of quanto options with path dependent

features has been presented in this paper. Except for the three price formulas given

in Eqs. (13a), (14a) and (15a), all the other price formulas derived in this paper

are believed to be new additions to the dictionary of price formulas of derivative

products. In the analytic formulation of the quanto option models, one always has

to adjust the risk neutralized drift rates in the governing equation, according to

whether the valuation of the payoff function is considered in the domestic or for-

eign currency world. In those quanto option models where the payoff function can

be formulated such that the exchange rate F does not appear, the corresponding

pricing formula of the quanto option can be inferred from that of its non-quanto

counterpart, except that the risk neutralized drift rate and volatility value have to

be modified accordingly. This desirable property of inference of pricing formulas

persists even the quanto option contains path dependent feature, although the an-

alytic complexity of deriving the corresponding adjusted risk neutralized drift rates

and volatilities may increase quite substantially. In the joint quanto option models

where the payoff function depends on both the exchange rate and the underlying

asset prices, the dimensionality of the quanto option will be increased by one, with

F as an additional independent state variable. As compared to their non-quanto

counterparts, the analytic tractability of quanto option models is not much affected

by the presence of the quanto feature.
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Appendix A

The risk neutralized drift rates can be obtained in an alternative approach by using

Eq. (3a). We define F ′ = 1
F

, and it is obvious that δfF ′ = rf − rd, ρFF ′ = −1, σF ′ =

σF , ρS∗F ′ = −ρS∗F , δfS = rf − q and the risk neutralized drift rate of FF ′ is zero.

Using Eq. (3a), we deduce that

0 = δfF + δfF ′ − σ2
F so that δfF = rd − rf + σ2

F .

Further, by observing S = S∗F ′ and applying Eq. (3a), we obtain

δfS = δfS∗ + δfF ′ + ρS∗F ′σS∗σF ′ , (A.1)

and upon rearranging, we have

δfS∗ = (rf − q)− (rf − rd)− ρS∗F ′σS∗σF ′ = rd − q + ρS∗FσS∗σF . (A.2)

The use of financial argument to show Eq. (A.2) can be found in [8].
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