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Abstract

We consider pricing Guaranteed Lifelong Withdrawal Benefit (GLWB) that consists of the
early phase of accumulation of benefit base and the later income phase of annuities. The
most recent form of the GLWB provides flexibility in allowing additional purchases in the
accumulation phase, dynamic withdrawals in the income phase, dynamic initiation into
the income phase and complete surrender right throughout the life of the contract. The
policyholder chooses the initiation of the income phase optimally based on a combination
of factors, like the age-dependent scheduled withdrawal rates, penalty charge rate, bonus
and ratchet provisions. Using the bang-bang control analysis, we show that the strategy
space of the optimal policies is limited to four choices: maximum allowable purchase, zero
withdrawal, withdrawal at the contractual amount or complete surrender. We construct
the Fourier transform algorithm for effective pricing of GLWB products with policy fund
value under the general two-dimensional Markov process of the fund value and its variance.
Our pricing model includes complex path dependent features arising from the ratchet and
bonus provisions, dynamic control of withdrawals and additional purchases, together with
optimality in the time of initiation of the income phase. We also analyze various pricing
properties of the GLWB based on the effective and accurate Fourier transform algorithms.
In particular, we examine the impact of various contractual specifications of the GLWB on
the optimal decision of initiation of the income phase and optimal withdrawal strategies.
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1 Introduction

Variable annuities are long-term unit-linked insurance products that offer various types of guar-
antees. In 2005, variable annuities with Guaranteed Lifelong Withdrawal Benefit (GLWB) were
introduced with the unique features that combine the longevity protection of an income benefit
and periodic withdrawal benefits. By 2016, the GLWB rider is structured in about half of new
variable annuities sales in the US markets. These guarantees are funded by the rider charges
(proportional fees), which are paid annually by the policyholder from the policy account. S-
ince the embedded guarantees may be too costly to the issuers and they are difficult to be
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hedged, many insurers of variable annuities faced record levels of breakage of their risk hedging
strategies. This problem became more acute in the period after the financial tsunami in 2008.
The types of risks faced by insurers in the actual implementation of hedging strategies include
policyholder behavior, basis risk and execution risk from poor liquidity of hedging instruments.

In a typical contractual design of GLWB, the policyholder first accumulates assets during
the accumulation phase and later receives annuities payments during the income phase. The
policyholder pays an upfront premium and the amount is then invested in her own choice
of portfolio of mutual funds. Policyholder can be allowed to place additional purchases of
funds during the accumulation phase beyond the initial upfront premium. In some GLWB
contracts, policyholders may be allowed to have a limited number of withdrawals (say, once
in every rider year) during the accumulation phase without initiating the income phase. The
policy account is the ongoing value of the mutual funds held by the policyholder. Besides
changes due to investment returns and withdrawal amounts, the policy account is also subject to
periodic deduction due to payment of the rider charges and increment in value due to additional
purchases of funds during the accumulation phase. The GLWB’s benefit base is not the same
as the policy account value, except at initiation of the GLWB contract where the benefit base
is set equal to the policy account value. The ratchet (step-up) provision increases the benefit
base periodically if the policyholder’s policy account has increased to a value higher than the
benefit base on an event date. During the accumulation phase, the benefit base is increased
under the bonus (roll-up) provision if the policyholder does not withdraw in a given year.
The bonus provision on the benefit base become ineffective once the accumulation phase ends.
Rider charges and contractual withdrawal amounts are typically calculated based on a fixed
proportion of the benefit base. There are GLMB contracts that may charge the rider charges
based on the maximum among the benefit base and policy account value. During the income
phase, the policyholder is entitled to receive the guaranteed lifelong annual income calculated
based on the product of the benefit base and the scheduled withdrawal rate. The scheduled
withdrawal rate is dependent on the age of the policyholder in the year of entry into the income
phase. The scheduled withdrawal rate is locked in and never changes in the remaining life of
the contract. The initiation of the income phase is chosen optimally by the policyholder based
on various considerations, like the age-dependent scheduled withdrawal rates, bonus rates and
others. It is common to set an upper bound on the period length of the accumulation phase, say,
20 years. Beyond the allowable time period, the income phase will be activated automatically.
Throughout the whole life of the policy, the policyholder is allowed to withdraw more than the
contractual amount (up to the policy account value) by paying a penalty charge based on the
excess withdrawals. Also, the excess withdrawals would reduce the benefit base. Indeed, the
complete withdrawal of the policy account means surrender (early termination) of the contract.
Empirical studies have revealed various forms of policyholders’ behaviors that induce surrender.
The surrender of the contract incurs various costs to the issuer, like upfront costs of finding
new customers, adverse selection problem of keeping only poor-insurability policies and liquidity
issues of coping with cash payments.

In the literature, there have been numerous papers that discuss pricing and hedging of
various types of GLWB products. Chi and Lin (2012) study flexible premium variable annuities
that allow additional contributions. Bernard et al. (2017) analyze the risk of mispricing by
insurers that offer guarantees on flexible premiums in variable annuities. Fung et al. (2014)
examine how financial and demographic parameters would affect the fair guaranteed fee charged
for a GLWB. Their studies are limited to the plain GLWB that only allows static withdrawals
and the withdrawals start immediately without any deferment period. Their results show
that financial risk is dominant for GLWB while the effect of systematic mortality risk can be
significant. Steinorth and Mitchell (2015) adopt an expected utility framework to examine how
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a risk-averse decision maker would choose her optimal withdrawal policies in a GLWB. They
show that the ratchet provision may make the policyholder behavior more predictable. Feng
and Jing (2017) manage to derive analytic solution for the risk neutral valuation and delta
hedging of the plain vanilla GLWB by neglecting structural features like dynamic withdrawals
and existence of the accumulation phase. They claim that their analytical solution can provide
benchmark against which finite difference and simulation algorithms can be tested. They also
demonstrate new techniques for fitting a sum of exponentials to the probability density function
of mortality.

On the design of effective numerical algorithms for pricing and hedging GLWB products,
Forsyth and Vetzal (2014) construct finite difference schemes for solving a coupled system of
one-dimensional partial differential equations to compute the hedging cost for a GLWB when the
underlying fund value process follows a Markov regime switching process. They also consider the
different costs of hedging under various withdrawal policies, like the optimal withdrawal policies
that maximize policyholder’s expected value of discounted cash flows and the sub-optimal
withdrawal policies that are dependent on moneyness of the surrender option. Though the
policyholder may be allowed to withdraw any portion of the account according to the contractual
withdrawal guarantees, Azimzadeh and Forsyth (2015) show by using the bang-bang control
theory that a holder can maximize the issuer’s costs by only choosing either zero withdrawal,
withdrawal at the contractual rate or complete surrender for GLWB products. The success
of their bang-bang analysis rests on the choices of contractual features such that the solution
to the optimal control model can be formulated as maximizing a convex objective function,
together with satisfaction of the technical condition that the underlying fund value process
preserves convexity and monotonicity. Interestingly, these conditions are satisfied for the GLWB
products but not the related Guaranteed Minimum Withdrawal Benefits (GMWB) products.
Huang and Kwok (2016) develop an effective regression-based Monte Carlo simulation algorithm
for solving the stochastic control models associated with pricing of GLWB products. With the
simplification of the strategy space of optimal withdrawal policies to only three choices, the
solution of the stochastic control GLWB model by the regression-based Monte Carlo simulation
algorithm becomes feasible. They perform sensitivity analysis of the GLWB price function with
respect to different parameter values in the stochastic control models of GLWB. Their numerical
calculations show that high bonus rate and short cycle of ratchet event add more value to the
GLWB price, and reveal the downward trend in the adoption of the zero withdrawal as the
optimal strategy when the policyholder ages. On the other hand, the adoption of the contractual
guaranteed withdrawal exhibits an upward trend over the calendar time. They also show how
a high penalty rate suppresses the propensity of adopting the strategy of complete surrender.
Also, there may be significant difference in the GLWB prices under different assumptions of
the policyholder’s withdrawal behavior.

Our paper addresses the relatively less explored issue of optimal initiation of the income
phase in GLWB products. For simpler insurance contracts (not GLWB products) that allow
policyholders to switch from a financial investment to a life annuity, Hainaut and Deelstra
(2014) consider the optimal timing for annuitization under jump diffusion process of the under-
lying fund and stochastic mortality. Their analysis is based on maximizing the market value
of discounted cash flows. For GLWB products, Huang et al. (2014) analyze the optimal time
that the policyholder should end the accumulation phase and initiate the income phase. Their
GLWB model assumes that payments of fees, bonuses, steps-up and withdrawals occur contin-
uously, while ignoring other contractual features like dynamic withdrawals and surrender right
of the policyholders. Also, constant interest rate and volatility, and deterministic mortality are
assumed for the sake of simplicity in their model formulation. They show that the guarantee
rider in a GLWB is more valuable when the probability of ruin (zero policy fund value) is
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higher. For GLWBs that are in-the-money (value of the benefit base is higher than that of the
account value), their numerical studies reveal that it is optimal for the policyholders to initiate
the income phase in their late 50s and certainly in early 60s, except when the age-dependent
guaranteed scheduled withdrawal rate is about to increase to a higher age band. Under such
scenario, the optimal policy of initiation is to wait until the new guaranteed withdrawal rate is
hit and then initiate immediately into the income phase.

The contribution of this paper is four-fold. Firstly, we present the full formulation of the
stochastic control models for pricing the GLWB products with both the accumulation and
income phases, the ratchet and bonus provisions, additional purchases, dynamic controls of
withdrawals, surrender right and initiation into the income phase. Secondly, we perform the
bang-bang analysis of the set of control policies and show that the strategy space of the optimal
withdrawal policies and additional purchases is limited to a finite discrete values from the set
of continuous values. Thirdly, we construct efficient and accurate Fourier transform algorithms
for solving the stochastic control models associated with pricing of GLWB products when the
underlying fund value process follows the Heston stochastic volatility model. The numerical e-
valuation of the value function can be performed over successive event dates (typically one year)
in single step, without the necessity of performing time-marching evaluations over multiple time
steps between successive event dates as in typical finite difference calculations. Lastly, we ex-
amine how the optimal initiation regions and optimal choices of withdrawal policies are affected
by various structural features in the GLWB, like the age-dependent scheduled withdrawal rate,
bonus rate, additional purchase and penalty charge rate.

This paper is organized as follows. In the next section, we present a detailed product
description of GLWB, in particular, the different bonus and ratchet features in the accumulation
phase and income phase. We then discuss the model formulation of GLWB under the general
framework of two-dimensional Markov process for the underlying policy fund value and its
variance process. Special attention is paid to consider the jump conditions on the policy fund
value and benefit base across the event dates of additional purchases, initiation of the income
phase, withdrawals, death payment event, bonus and ratchet provisions. In Section 3, we
present the details of the bang-bang analysis of the strategy space of optimal policies. For the
optimal polices, we show that there are only four possible choices: maximum allowable purchase,
zero withdrawal, withdrawal at the contractual amount and complete surrender. In Section 4,
we discuss the construction of the Fourier transform algorithms for pricing GLWB products
under the Heston stochastic volatility model. In Section 5, we present the numerical studies
that analyze how the GLWB price, optimal withdrawal policies and optimal initiation regions,
and their sensitivities with respect to various contractual features and model parameters of the
GLWB. The last section contains summary of results and conclusive remarks.

2 Formulation

We start with the product description of the GLWB in a variable annuity contract. At initiation
of the contract, the policyholder pays an upfront single premium into her policy account,
which is then invested in mutual funds of her own choice. The initial policy account value
is set to be the initial premium paid by the policyholder. The rider charges paid by the
policyholder throughout the policy life for the provision of the guarantees are calculated based
on a fixed proportion of the benefit base, or alternatively, maximum value of the benefit base
and account value. These rider charges are taken from the policy account periodically through
the cancellation of fund units. The benefit base is set to be the upfront premium initially,
which can be adjusted upward via the ratchet provision (step-up) or bonus feature (roll-up).
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The ratchet mechanism increases the benefit base to the level of the policy account at the
time right after the ratchet event date if the policy account value after the withdrawal and
payment of rider charges exceeds the benefit base. If the policyholder chooses not to withdraw
any amount on a withdrawal date in the accumulation phase, then the benefit base is increased
proportionally by the bonus rate. The policyholder is allowed to have additional purchases of
fund units in the accumulation phase. In the income phase, the contractual withdrawal amount
is a fixed proportion of the benefit base. The policyholder is also allowed to withdraw more
than the contractual withdrawal amount and the excess withdrawal amount is subject to a
proportional penalty charge. If the policyholder withdraw the whole policy account, then this
signifies complete surrender. Indeed, complete surrender is allowed in both the accumulation
phase and income phase. Another event that causes the termination of the contract is the
death of the policyholder. The value that remains in the policy account will be passed to a
beneficiary. We assume that all events of additional purchase, initiation of the income phase,
death payment event, withdrawals, surrender, bonus and ratchet provisions are limited to a
predetermined set of event dates.

The initiation of the GLWB contract starts in the accumulation phase. After then, the
policyholder has the right to activate the income phase or stay in the accumulation phase at
each of the later event dates. Once leaving the accumulation phase, the GLWB contract stays
in the income phase for the remaining life of the contract. In the accumulation phase, the
policyholder is allowed to make additional purchase or withdraw any nonnegative amount up
to full depletion of the fund (surrender), otherwise there is no contractual withdrawal. The
benefit base enjoys the bonus feature if no withdrawal or additional purchase is made. There
is a maximum length of the period of the accumulation phase, where the GLWB contract
is mandated to move into the income phase beyond a specified date. In the income phase,
additional purchase is not allowed while the policyholder is guaranteed to receive the contractual
withdrawal amount even when the policy account value is fully depleted.

We present the following list of notations used in our later discussion.

Notations

T : maximum remaining longevity of the policyholder

T : set of the annual event dates, where T = {1, 2, . . . , T − 1}

Te: set of the ratchet event dates, Te ⊆ T

Ta: the last event date on which the policyholder can remain in the accumulation phase,
beyond which the income phase will be activated automatically

Γ: characterized by the vector (γ1, γ2, . . . , γT−1), where γi is the annual withdrawal
amount or additional purchase (considered as negative withdrawal) on the with-
drawal date i.

Wt: time-t policy fund value process

At: time-t benefit base process

B: cap multiplier of the benefit base that fixes the upper bound of additional purchase

fA
i : cash flow received by the policyholder in the accumulation phase in year i.

f I
i : cash flow received by the policyholder in the income phase in year i.
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ηb: percentage of the benefit base charged on the policy fund value as the annual rider
fee

τI : Ft-stopping time at which the policyholder activates the income phase

τS: Ft-stopping time at which the policyholder chooses to surrender the contract

G(τI): percentage of the benefit base for calculating the annual contractual withdrawal
amounts with dependence on the initiation time of the income phase τI

ki: proportional penalty charge applied on the excess of withdrawal amount over the
contractual withdrawal at year i

bi: bonus rate at year i

x0pi: probability that an x0-year old policyholder survives in the next i years (written as
pi for notational convenience for fixed x0)

qx0+i: probability that a policyholder at age x0 + i dies within the next year (written as
qi for notational convenience for fixed x0)

2.1 Bonus and ratchet features

The updating procedures of the policy fund value and benefit base observe different bonus and
ratchet provisions in the two different phases, the details of which are presented below.

Jump of benefit base and policy fund value across a withdrawal date in the income
phase
In the income phase, when the withdrawal amount γi at year i chosen by the policyholder
does not exceed the contractual withdrawal amount G(τI)Ai, then the benefit base would not
be reduced and the withdrawal is not subject to penalty charge. When γi exceeds G(τI)Ai,
the benefit base decreases proportionally according to the amount of excess withdrawal. More
specifically, the ratio of decrease is given by γi−G(τI)Ai

Wi−ηbAi−G(τI)Ai
so that the updated benefit base

is given by Wi−ηbAi−γi
Wi−ηbAi−G(τI)Ai

Ai. On the other hand, the updated benefit base may benefit from
the ratchet provision when the policy fund value after withdrawal and payment of rider charge
exceeds the updated benefit base. The jump conditions of the benefit base and policy fund
value across the withdrawal date at year i are presented below:

Wi+ =
(
(Wi − ηbAi)

+ − γi

)+

0 ≤ γi ≤ max(Wi − ηbAi, G(τI)Ai); (2.1a)

Ai+ =


max

(
Ai, ((Wi − ηbAi)

+ − γi)
+1{i∈Te}

)
if 0 ≤ γi ≤ G(τI)Ai

max
(

Wi−ηbAi−γi

Wi−ηbAi−G(τI)Ai
Ai, ((Wi − ηbAi)

+ − γi)
+
1{i∈Te}

)
if G(τI)Ai < γi ≤ Wi − ηbAi

. (2.1b)

Note that Wi has zero value as the floor and the rider charge ηbAi is deducted from the policy
fund value Wi before the policyholder makes the withdrawal γi. Since the excess withdrawal
beyond the contractual withdrawal amount G(τI)Ai is charged at the proportional penalty rate
ki, the actual cash amount received by the policyholder in the income phase as resulted from
the withdrawal amount γi is given by

f I
i (γi;Ai, G(τI)) =

 γi if 0 ≤ γi ≤ G(τI)Ai

G(τI)Ai + (1− ki)[γi −G(τI)Ai] if G(τI)Ai < γi ≤ Wi − ηbAi

. (2.2)
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Jump of benefit base and policy fund value across a withdrawal date in the accu-
mulation phase
In the accumulation phase at year i, the benefit base Ai rolls up by predetermined bonus rate bi
if there is no withdrawal. The policyholder is allowed to have an additional purchase of the fund
units, which would increase both the benefit base and policy account value. Otherwise, any
positive withdrawal taken by the policyholder reduces both the policy fund value and benefit
base, and the withdrawal amount is subject to penalty charge. Also, γi may assume negative
value up to −BAi, which indicates that an additional purchase can be up to the cap multiplier
B times the benefit base Ai. The jump conditions on the benefit base and policy fund value
across year i are summarized as follows:

Wi+ =
(
(Wi − ηbAi)

+ − γi

)+

−BAi ≤ γi ≤ (Wi − ηbAi)
+; (2.3a)

Ai+ =


max

(
Ai(1 + bi)− γi, ((Wi − ηbAi)

+ − γi)
+1{i∈Te}

)
if −BAi ≤ γi ≤ 0

max
(

Wi−ηbAi−γi

Wi−ηbAi
Ai, ((Wi − ηbAi)

+ − γi)
+
1{i∈Te}

)
if 0 < γi ≤ (Wi − ηbAi)

+
. (2.3b)

The cash flow fA
i (γi;Ai) received by the policyholder as resulted from the withdrawal amount

γi is given by

fA
i (γi;Ai) =

{
γi if −BAi ≤ γi ≤ 0

(1− ki)γi if 0 < γi ≤ (Wi − ηbAi)
+ . (2.4)

The vector functions (W+
i , A

+
i ) = hA

i (Wi, Ai, γi) in the accumulation phase and (W+
i , A

+
i ) =

hI
i

(
Wi, Ai, γi;G(τI)

)
in the income phase are introduced to characterize the jump conditions

of the policy fund value and benefit base associated with the withdrawal amount γi in the
accumulation phase (i < τI) and income phase (i ≥ τI), respectively.

(i) In the accumulation phase where i < τI , we have

(Wi+ , Ai+) = hA
i (Wi, Ai, γi)

=



 ((Wi − ηbAi)
+ − γi)

+

max
(
Ai(1 + bi)− γi, ((Wi − ηbAi)

+ − γi)
+1{i∈Te}

)
T

if −BAi ≤ γi ≤ 0

 ((Wi − ηbAi)
+ − γi)

+

max
(

Wi−ηbAi−γi

Wi−ηbAi
Ai, ((Wi − ηbAi)

+ − γi)
+
1{i∈Te}

)


T

if 0 < γi ≤ (Wi − ηbAi)
+.

(2.5a)

(ii) In the income phase where i ≥ τI , we have

(Wi+ , Ai+) = hI
i

(
Wi, Ai, γi;G(τI)

)

=



 ((Wi − ηbAi)
+ − γi)

+

max
(
Ai, ((Wi − ηbAi)

+ − γi)
+1{i∈Te}

)
T

if 0 ≤ γi ≤ G(τI)Ai

 ((Wi − ηbAi)
+ − γi)

+

max
(

Wi−ηbAi−γi

Wi−ηbAi−G(τI)Ai
Ai, ((Wi − ηbAi)

+ − γi)
+
1{i∈Te}

)


T

if G(τI)Ai < γi ≤ (Wi − ηbAi)
+.

(2.5b)
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2.2 Pricing formulation

The full amount of the policy fund value Wi is given to the beneficiary at year i as the death
payment when the policyholder dies within year i − 1 and year i. The set of the control
variables do not include τS since τS is implicitly dictated by the optimal choices of Γ and τI .
Let E be the admissible strategy set for the pair of control variables (Γ, τI). Taking mortality
risk into account, the value function V (W,A, v, 0) at initiation is determined by assuming the
policyholder to choose the control variables (Γ, τI) so as to maximize the expectation of the
discounted cash flows. Correspondingly, hedging of the GLWB contract by the issuer would be
most costly. Under this assumption on the policyholder’s policy of activation and withdrawals,
we can use the standard hedging argument to derive the value function. As a result, by virtue
of the risk neutral valuation principle, the value function is computed under a risk neutral
measure Q. Further details on the justification of the use of risk neutral valuation under the
assumption that the policyholder chooses the optimal strategy to maximize the monetary value
of the contract can be found in Forsyth and Vetzal (2014).

The value function of the GLWB product is formally given by

V (W,A, v, 0) = sup
(Γ,τI)∈E

EQ

[ τS∧(T−1)∑
i=1

e−ripi−1qi−1Wi +

(τI−1)∧τS∑
i=1

e−ripif
A
i (γi;Ai)

+

τS∧(T−1)∑
i=τI

e−ripif
I
i

(
γi;Ai, G(τI)

)
+ 1{τS>T−1}e

−rTpT−1WT

]
. (2.6)

The first summation term represents the death payment weighted by the probability of mortality
from the first withdrawal date to the complete surrender time τS or T − 1, whichever comes
earlier. The second summation term gives the sum of discounted withdrawal cash flows from
the initiation date of the contract to the last withdrawal date in the accumulation phase or
the complete surrender time τS, whichever comes earlier. The third summation term gives
the sum of discounted withdrawal cash flows from the activation time of the income phase to
the complete surrender time τS or T − 1, whichever comes earlier. The last single term is the
discounted cash flow received by the policyholder at the maximum remaining life T provided
that complete surrender has never been adopted throughout the whole life of the policyholder.
In our subsequent exposition, we drop the subscript Q in the expectation operator EQ for
brevity.

In our pricing model, the joint process of policy fund value and its stochastic variance
{(Wt, vt)}0≤t≤T is assumed to be a two-dimensional càdlàg Markov process defined on the
filtered probability space (Ω,F , {Ft}t≥0,Q) between any two consecutive withdrawal dates,
i < t < i + 1, i = 0, 1, . . . , T − 1. We choose the joint process {(Wt, vt)}0≤t≤T to be a càdlàg
Markov process so as to satisfy the technical condition on the underlying fund value process in
the convexity analysis of the value function of the GLWB product in the bang-bang analysis.
The general two-dimensional càdlàg Markov process nests most popular stochastic models,
such as the geometric Brownian motion, Heston’s model, Merton’s jump diffusion model and
the double-exponential jump diffusion model.

The mortality risk is assumed to be diversifiable across a large number of policyholders. The
optimal complete surrender time is dictated by the optimal choice of the withdrawal amount
γi, where

τS = inf {i ∈ T |γi =Wi − ηbAi > 0} .
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Implicitly, the complete surrender amount Wi − ηbAi should be larger than the contractual
withdrawal amount G(τI)Ai in the income phase for activating the optimal complete surrender.

Dynamic programming procedure
We write GLWB(A) and GLWB(I) to represent the GLWB rider in the accumulation phase and
income phase, respectively. The time-t value function of GLWB(I), denoted by V (I) (W,A, v, t;G0),
is seen to have dependence on the guaranteed withdrawal rateG(τI). Since the contractual with-
drawal rate depends on the activation time of the income phase τI , it is necessary to calculate
a set of V (I) (W,A, v, t;G0) with G0 being set to be G(i), i = 1, 2, · · · , Ta + 1. For example,
suppose the policyholder purchases the GLWB at the age of 50 years old, the GLWB contract
sets the contractual withdrawal rate to be 5% if the activation time is between age 65 and
age 70; 5.5% if the activation time is between age 70 and age 75; 6% if the activation time
is between age 75 and age 80; 6.5% if the activation time is beyond age 80. It is necessary
to calculate V (I) (W,A, v, t;G0) with G0 being equal to the four separate cases: 5%, 5.5%, 6%
and 6.5%, respectively. For notational convenience, we let {Gn1 , · · · , GnK

} denote all possible
outcomes for G0.

Using the dynamic programming principle of backward induction, we compute V (I)(W,A, v, i;G0)
as follows:

V (I)(W,A, v, T ;G0) = pT−1WT ,

V (I)(W,A, v, i;G0) = pi−1qi−1Wi + sup
γi∈[0,max(Wi−ηbAi,G0Ai)]

{pif I
i (γi;Ai, G0)

+ e−rE[V (I)(W,A, v, i+ 1;G0)|(Wi+ , Ai+) = hI
i (Wi, Ai, γi;G0), vi+ = vi]},

(2.7)

where i = 1, 2, · · · , T − 1 and G0 = Gnk
, k = 1, · · · , K. Since the GLWB rider is in the

accumulation phase at the initiation of the contract, the calculation of the value function of
GLWB(I) at time 0 is not required for pricing the GLWB rider. In Section 3, we show the
bang-bang analysis for GLWB(I); and in Section 4, we present an efficient Fourier transform
algorithm to calculate the values of V (I)(W,A, v, t;Gnk

) for k = 1, · · · , K.
Similarly, we let V (A)(W,A, v, t) be the time-t value function of GLWB(A). Since Ta is the

last withdrawal date on which the GLWB contract may stay in the accumulation phase, we start
from the withdrawal date Ta and calculate V (A)(W,A, v, Ta). Let V

(A)
C (Ta) be the continuation

value at year Ta conditional on the policyholder choosing to remain in the accumulation phase on
Ta. Also, we let V

(I)
C (Ta) be the continuation value at year Ta conditional on the policyholder’s

choice of activating the income phase. We then have

V (A)(W,A, v, Ta) = pTa−1qTa−1WTa +max{V (A)
C (TA), V

(I)
C (Ta)}, (2.8)

where

V
(A)
C (Ta) = sup

γTa∈[−BATa ,(WTa−ηbATa )
+]

{pTaf
A
Ta
(γTa ;ATa)

+ e−rE[V (I)(W,A, v, Ta + 1;G(Ta + 1)
)
|(WT+

a
, AT+

a
) = hA

Ta
(WTa , ATa , γTa), vT+

a
= v]},

V
(I)
C (Ta) = sup

γTa∈[0,max((WTa−ηbATa )
+,G(Ta)ATa )]

{pTaf
I
Ta
(γTa ;ATa , G(Ta))

+ e−rE[V (I)
(
W,A, v, Ta + 1;G(Ta)

)
|(WT+

a
, AT+

a
) = hI

Ta

(
WTa , ATa , γTa ;G(Ta)

)
, vT+

a
= v]}.

For V
(A)
C (Ta), since the income phase is mandated to be activated on Ta + 1, we then set the
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guaranteed withdrawal rate to be G(Ta+1) in the conditional expectation of V (I)
(
W,A, v, Ta+

1;G(Ta + 1)
)
. On the other hand, for V

(I)
C (Ta), since the income phase is activated on Ta, the

guaranteed withdrawal rate is set to be G(Ta). As a remark, if V
(A)
C (Ta) ≥ V

(I)
C (Ta), then it is

optimal for the policyholder to choose to remain in the accumulation phase on the event date
Ta. Otherwise, it is optimal to initiate the income phase at year Ta and the control variable
τI is set to be Ta accordingly. Besides the optimal timing of activation of the income phase,
the policyholder can also determine the optimal withdrawal strategy γTa for the value function
V (A)(W,A, v, Ta) for fixed W and A at year Ta using the Fourier transform method, details of
which are discussed in Section 5.

For an earlier event date, 1 ≤ i ≤ Ta − 1, we have

V (A)(W,A, v, i) = pi−1qi−1Wi +max{V (A)
C (i), V

(I)
C (i)}, (2.9)

where

V
(A)
C (i) = sup

γi∈[−BAi,(Wi−ηbAi)+]

{pifA
i (γi;Ai)

+ e−rE[V (A)(W,A, v, i+ 1)|(Wi+ , Ai+) = hA
i (Wi, Ai, γi), vi+ = v]},

V
(I)
C (i) = sup

γi∈[0,max((Wi−ηbAi)+,G(i)Ai)]

{pif I
i (γi;Ai, G(i))

+ e−rE[V (I)
(
W,A, v, i+ 1;G(i)

)
|(Wi+ , Ai+) = hI

i (Wi, Ai, γi;G(i)), vi+ = vi]}.

Here, V
(A)
C (i) corresponds to the case that the policyholder chooses not to activate the income

phase at year i. Since the policyholder is entitled to choose to stay in the accumulation phase
or activate the income phase in the next year i + 1, we evaluate the conditional expectation
of V (A)(W,A, v, i + 1). On the other hand, note that V

(I)
C (i) corresponds to the case that the

policyholder chooses to activate the income phase in year i, so we consider computing the
conditional expectation of V (I)

(
W,A, v, i + 1;G(i)

)
. Lastly, since the GLWB contract on the

initiation date, where i = 0, is in the accumulation phase and there is no withdrawal event at
the beginning of the contract, we have

V (W,A, v, 0) = e−rE[V (A)(W,A, v, 1)]. (2.10)

3 Bang-bang analysis

The design of the numerical algorithm would be much simplified if the choices of the optimal
withdrawal amount γi are limited to a finite number of discrete values. Azimzadeh and Forsyth
(2015) provide a rigorous proof on the existence of optimal bang-bang controls for various
variable annuities with guaranteed withdrawals, where the optimal withdrawal policies are
either zero withdrawal, withdrawal at the contractual amount or complete surrender. Here,
we would like to perform a rigorous bang-bang controls of GLWB under more general form of
the underlying asset price process and additional structural features (like optional initiation
and additional purchases). The technical analysis relies on the convexity and monotonicity
properties of the value function. As part of the technical procedure, it is necessary to require the
two-dimensional Markov process {(Wt, vt)}t to observe the following mathematical properties:

Property 1 (Convexity preservation) For any convex terminal payoff function Φ(WT ), the
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corresponding European price function as defined by

ϕ(w, v, t) = e−r(T−t)E [Φ(WT )|Wt = w, vt = v] , t ≤ T,

is also convex with respect to w.

Property 2 (Scaling) For any positiveK, the two stochastic processes {(Wt, vt)}t and {(Wt

K
, vt)}t

have the same distribution law given that their initial values agree almost surely.

Ekström and Tysk (2007) analyze the property of convexity preservation for option prices
in models with jump and show that many popular jump diffusion models, such as Merton’s
jump diffusion model and Kou’s model, satisfy Property 1. Hobson (2010) gives a sufficient
condition for convexity preservation in stochastic volatility models and the corresponding con-
dition required for the Heston model also satisfies Property 1. Moreover, it is obvious that all
the above mentioned models satisfy Property 2. The class of two-dimensional Markov process-
es that observes both Properties 1 and 2 indeed includes most popular models of asset price
processes.

By virtue of Property 2, together with the invariant forms of the bonus rate b, guaranteed
withdrawalG, cap multiplier for additional purchaseB and penalty charge k, the value functions
V (I) and V (A) satisfy the following scaling properties for any positive scalar K:

V (I)(KW,KA, v, t;G0) =KV
(I)(W,A, v, t;G0) (3.1a)

V (A)(KW,KA, v, t) =KV (A)(W,A, v, t). (3.1b)

By virtue of the above scaling properties, we can achieve reduction in dimensionality of the
pricing model by one when we calculate the conditional expectations in the dynamic program-
ming procedure. The scaling properties are also crucial in establishing the bang-bang control
analysis.

Our main results on the bang-bang control strategies for GLWB(I) and GLWB(A) are sum-
marized in Theorem 3.

Theorem 3 Assume that {(Wt, vt)}t satisfies both Properties 1 and 2, GLWB(I) and GLWB(A)

observe the following strategy space of optimal withdrawal, respectively.

1 On any withdrawal date i, the optimal withdrawal strategy γi for GLWB(I) in the income
phase with a positive guaranteed rate G0 is limited to (i) γi = 0; (ii) γi = G0Ai; or (iii)
γi = Wi − ηbAi.

2 On any withdrawal date i, the optimal strategy on this withdrawal date for GLWB(A) in
the accumulation phase is either

(2a) to initiate the income phase on this withdrawal date if V
(I)
C (i) > V

(A)
C (i).

(2b) or to remain in the accumulation phase on this withdrawal date if V
(I)
C (i) ≤ V

(A)
C (i)

and the optimal withdrawal strategy γi is limited to (i) γi = −BAi; (ii) γi = 0; or
(iii) γi = Wi − ηbAi.

In summary, when the policy is already in the income phase, the withdrawal policies are
limited to zero withdrawal, withdrawal at the contractual rate or complete surrender. When
the policy is in the accumulation phase, the policyholder may choose to enter into the income
phase or stay in the accumulation phase. The subsequent optimal policies while staying in the
accumulation phase are limited to maximum allowable purchase, zero withdrawal or complete
surrender. The proof of Theorem 3 is presented Appendix A. Interestingly, one may deduce
the following set of dominated strategies as stated in Corollary 4.
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Corollary 4 When positive bonus rate and penalty charge rate are applied on the withdrawal
date i and the income phase has not been activated before date i, the strategy of staying in the
accumulation phase on this withdrawal date and choosing zero withdrawal γi = 0 dominates the
strategy of activating the income phase on this withdrawal date and choosing zero withdrawal
γi = 0. Furthermore, when Wi−ηAi < G(τI)Ai in the income phase, the guaranteed withdrawal
strategy γi = G(τI)Ai dominates the complete surrender γi = Wi − ηbAi.

Corollary 4 identifies the set of dominated strategies and it is a direct consequence of The-
orem 3. These results are useful in the design of efficient Fourier transform algorithm since we
eliminate the dominated strategies when one searches for the optimal strategies in the numeri-
cal calculation procedures. Consequently, the strategy space of the optimal withdrawal policies
is limited to the following choices: (i) maximum allowable purchase, zero withdrawal or com-
plete surrender in the accumulation phase; (ii) zero withdrawal, withdrawal at the contractual
amount or complete surrender in the income phase.

4 Fourier transform algorithms

In this section, we construct the efficient Fourier transform algorithms for pricing the GLWB
product with policy fund value under the Heston model and complex path dependent features
arising from the ratchet and bonus events, dynamic control of withdrawals and additional pur-
chases, together with optimality in the time of initiation of the income phase. By the recursive
backward induction procedure, the computation starts with the discounted expectation of the
value function in the income phase. We then proceed backward in time to compute the value
function in the accumulation phase. Thanks to the bang-bang analysis, it suffices to consider
the choice set of γi at year i to be {−BAi, 0, (Wi − ηbAi)

+} and {0, (Wi − ηbAi)
+, G(i)Ai}

in the accumulation phase and income phase, respectively. Assuming annualized event dates
and adopting the dynamic programming procedure, the value function V (A)(W,A, v, i) on the
withdrawal date i in the accumulation phase can be expressed as

V (A)(W,A, v, i) = pi−1qi−1Wi +max{V (A)
C (i), V

(I)
C (i)}, (4.1)

where

V
(A)
C (i) = sup

γi∈{−BAi,0,(Wi−ηbAi)+}
{pifA

i (γi;Ai)

+ e−rE[V (A)(W,A, v, i+ 1)|(Wi+ , Ai+) = hA
i (Wi, Ai, γi), vi+ = v]},

V
(I)
C (i) = sup

γi∈{0,(Wi−ηbAi)+,G(i)Ai}
{pif I

i (γi;Ai, G(i))

+ e−rE[V (I)
(
W,A, v, i+ 1;G(i)

)
|(Wi+ , Ai+) = hI

i

(
Wi, Ai, γi;G(i)

)
, vi+ = vi]}.

We observe continuity of the value function across the two phases at Ta + 1, where

V (A)(W,A, v, Ta + 1) = V (I)
(
W,A, v, Ta + 1;G(Ta + 1)

)
.

Since the benefit base At remains unchanged between consecutive event dates, we achieve
dimensionality reduction by defining the normalized policy fund value W̃t and normalized value
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functions Ṽ (I)
(
W̃ , v, t;G(i)

)
and Ṽ (A)(W̃ , v, t) as follows:

W̃t = Wt/At,

Ṽ (I)
(
W̃ , v, t;G(i)

)
= V (I)

(
W,A, v, t;G(i)

)
/At,

Ṽ (A)(W̃ , v, t) = V (A)(W,A, v, t)/At.

By considering the possible choices of withdrawal strategies and the jump conditions on W̃i
and Ai across the event date i under the respective withdrawal strategy, the normalized value

function in the accumulation phase Ṽ (A)(W̃ , v, i) can be written as

Ṽ (A)(W̃ , v, i)

= pi−1qi−1W̃i +max

{
pi

[
G(i) + (1− κi)(W̃i − ηb −G(i))

]
,

piG(i) + e−r max
(
1,

[
W̃i − ηb −G(i)

]
1{i∈Te}

)
E

Ṽ (I)
(
W̃ , v, i+ 1;G(i)

)∣∣∣∣W̃i+ =
(W̃i − ηb −G(i))+

max
(
1,

[
W̃i − ηb −G(i)

]
1{i∈Te}

) , vi

 ,

− piB + e−r max
(
(1 + bi) +B,

[
(W̃i − ηb)

+ +B
]
1{i∈Te}

)
E

Ṽ (A)(W̃ , v, i+ 1)

∣∣∣∣W̃i+ =
(W̃i − ηb)

+ +B

max
(
(1 + bi) +B,

[
(W̃i − ηb)+ +B

]
1{i∈Te}

) , vi

 ,

e−r max
(
1 + bi,

(
W̃i − ηb

)
1{i∈Te}

)
E

Ṽ (A)(W̃ , v, i+ 1)

∣∣∣∣W̃i+ =
(W̃i − ηb)

+

max
(
1 + bi,

(
W̃i − ηb

)
1{i∈Te}

) , vi

}
. (4.2)

For notational convenience, we define the following functions

ϕ
(1)
i (x) =

(x− ηb −G(i))+

max
(
1,
[
x− ηb −G(i)

]
1{i∈Te}

) ,
ϕ
(2)
i (x) =

(x− ηb)
+ +B

max
(
(1 + bi) +B,

[
(x− ηb)+ +B

]
1{i∈Te}

) ,
ϕ
(3)
i (x) =

(x− ηb)
+

max
(
1 + bi, (x− ηb)1{i∈Te}

) ,
ψ

(1)
i (x) = max

(
1,
[
x− ηb −G(i)

]
1{i∈Te}

)
,

ψ
(2)
i (x) = max

(
(1 + bi) + B,

[
(x− ηb)

+ +B
]
1{i∈Te}

)
,

ψ
(3)
i (x) = max

(
1 + bi, (x− ηb)1{i∈Te}

)
.

Here, {ϕ(j)
i (W̃i)}j=1,2,3 relate W̃i+ and W̃i across the withdrawal date i under the three respective

withdrawal strategies while {ψ(j)
i (W̃i)}j=1,2,3 give the multiplier for the benefit base arising from

the corresponding jump condition. In terms of these functions, the normalized value function
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in the accumulation phase Ṽ (A)(W̃ , v, i) can be rewritten into a more concise representation:

Ṽ (A)(W̃ , v, i)

= pi−1qi−1W̃i +max

{
pi

[
G(i) + (1− κi)(W̃i − ηb −G(i))

]
,

piG(i) + e−rψ
(1)
i (W̃i)E

[
Ṽ (I)

(
W̃ , v, i+ 1;G(i)

)∣∣∣∣W̃i+ = ϕ
(1)
i (W̃i), vi

]
,

− piB + e−rψ
(2)
i (W̃i)E

[
Ṽ (A)(W̃ , v, i+ 1)

∣∣∣∣W̃i+ = ϕ
(2)
i (W̃i), vi

]
,

e−rψ
(3)
i (W̃i)E

[
Ṽ (A)(W̃ , v, i+ 1)

∣∣∣∣W̃i = ϕ
(3)
i (W̃i), vi

]}
, i = 1, 2, . . . , Ta. (4.3)

Recall that {Gn1 , · · · , GnK
} denote all possible outcomes for the contractual withdrawal rateG0.

We introduce another set of functions that serve to capture the corresponding jump conditions
on W̃i and Ai across the withdrawal date i in the income phase as follows:

ϕ
(4)
i (x) =

(x− ηb)
+

max
(
1, (x− ηb)1{i∈Te}

) ,
ϕ
(5)
i (x;Gnk

) =
(x− ηb −Gnk

)+

max
(
1, (x− ηb −Gnk

)1{i∈Te}
) ,

ψ
(4)
i (x) = max

(
1, (x− ηb)1{i∈Te}

)
,

ψ
(5)
i (x;Gnk

) = max
(
1, (x− ηb −Gnk

)1{i∈Te}
)
.

In terms of these functions, the normalized value function in the income phase Ṽ (I)(W̃ , v, i;Gnk
)

can be expressed as follows

Ṽ (I)(W̃ , v, i;Gnk
)

= pi−1qi−1W̃i +max

{
pi

[
Gnk

+ (1− κi)(W̃i − ηb −Gnk
)
]
,

e−rψ
(4)
i (W̃i)E

[
Ṽ (I)(W̃ , v, i+ 1;Gnk

)

∣∣∣∣W̃i+ = ϕ
(4)
i (W̃i), vi

]
,

piGnk
+ e−rψ

(5)
i (W̃i;Gnk

)E

[
Ṽ (I)(W̃ , v, i+ 1;Gnk

)

∣∣∣∣W̃i+ = ϕ
(5)
i (W̃i), vi

]}
, i = 1, 2, . . . , T − 1.

(4.4)

As a result, we can also evaluate Ṽ (A)(W̃ , v, i) in an alternative way as follows:

Ṽ (A)(W̃ , v, i)

= pi−1qi−1W̃i +max

{
− pi−1qi−1W̃i + Ṽ (I)

(
W̃ , v, i;G(i)

)
− piB + e−rψ

(2)
i (W̃i)E

[
Ṽ (A)(W̃ , v, i+ 1)

∣∣∣∣W̃i+ = ϕ
(2)
i (W̃i), vi

]
,

e−rψ
(3)
i (W̃i)E

[
Ṽ (A)(W̃ , v, i+ 1)

∣∣∣∣W̃i = ϕ
(3)
i (W̃i), vi

]}
, i = 1, 2, . . . , Ta. (4.5)

We formulate the backward induction calculations combined with the dynamic programming
procedure for the normalized value functions in the income and accumulation phases as follows:

14



1. The backward induction procedure is initiated by observing the following terminal con-
dition corresponding to the respective scheduled withdrawal rate Gnk

:

Ṽ (I)(W̃ , v, T ;Gnk
) = pT−1W̃T ,

where k = 1, · · · , K.

2. Time-stepping calculations between the consecutive event dates
First, we evaluate Ṽ (I)(W̃ , v, i;Gnk

) recursively by eq. (4.4) for Ta + 1 ≤ i ≤ T − 1 and

1 ≤ k ≤ K. Next starting i from Ta to 1, we calculate Ṽ (I)(W̃ , v, i;Gnk
) and Ṽ (A)(W̃ , v, i)

according to eqs. (4.4) and (4.3), respectively.

3. The fair value of the normalized value function at initiation is obtained by setting

Ṽ (A)(W̃0, v0, 0) = e−rE
[
Ṽ (A)(W̃ , v, 1)

]
.

Remark
The above backward induction works for the general class of two-dimensional càdlàg Markov
processes. Though our proposed Fourier transform algorithm is constructed under the Heston
model, the formulation can be applicable for the 3/2 stochastic volatility model, Merton’s jump
diffusion model and the double-exponential jump diffusion model with some slight modifications.

In the numerical valuation of the conditional expectation of the normalized value functions,
two technical challenges remain. Firstly, the Fourier transforms of the normalized value func-
tions may be not well defined since the normalized value functions do not tend to zero at the
two ends of the domain of definition. Secondly, how does one perform effective conditional
expectation calculation of the normalized value functions in the variance domain? Next we
show how to circumvent these difficulties.

Normalized value functions at low policy fund value
Recall that in the above backward induction in calculating E

[
Ṽ (A)(W̃ , v, i + 1)

∣∣W̃i+ , vi
]
, we

have to consider the two separate cases: (1) W̃i+ > 0 (2) W̃i+ = 0. For the first case, we
present the Fourier transform algorithm to calculate the two-dimensional expectation in our
later discussion. For the second case, since

E
[
Ṽ (A)(W̃ , v, i+ 1)

∣∣W̃i+ = 0, vi
]
= E

[
Ṽ (A)(0, v, i+ 1)

∣∣vi],
so one has to calculate the solution for the normalized value functions at zero policy fund value
Ṽ (A)(0, v, i+ 1).

In fact, the normalized value functions do not decay to zero when Wi approaches to 0 and
∞. As a result, any choice of the damping factor cannot guarantee the existence of the Fourier
transform of the damped normalized value functions. Recall that ηb is the percentage of the
benefit base charged on the policy fund value as the annual rider fee. Fortunately, one can
always find the solutions for the normalized value functions when W̃i ≤ ηb, which plays an
important role in constructing the new functions based on the normalized value functions such
that the Fourier transforms of these damped new functions are well defined. Therefore, let us
first show how to derive the solutions for the normalized value functions when W̃i ≤ ηb.

For any i ∈ {1, 2, · · · , T}, we restrict our attention to the special case that W̃i ≤ ηb.

Actually, Ṽ (I)(W̃ , v, i;Gnk
) can be shown to have the closed form representation for 1 ≤ k ≤ K

in this special case. In the income phase, since W̃i+ = 0, we have W̃t = 0 for any t > i due to no
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additional purchase. As a result, complete surrender is excluded on all subsequent withdrawal
dates. In fact, it is always optimal to withdraw starting from the withdrawal date i. This leads
to

Ṽ (I)(W̃ , v, i;Gnk
) = pi−1qi−1W̃i +

T−1∑
j=i

pjGnk
e−r(j−i), if W̃i ≤ ηb. (4.6)

Here, the second term is the sum of the discounted expected withdrawal amounts. Alternatively,
the above closed form solution can also be obtained directly from eq. (4.4). We take qT−1 = 1
so that

Ṽ (I)
(
W̃ , v, T ;Gnk

)
= pT−1W̃T .

For notational convenience, we write

g(I)(i;Gnk
) =

T−1∑
j=i

pjGnk
e−r(j−i),

so that
Ṽ (I)(W̃ , v, i;Gnk

) = pi−1qi−1W̃i + g(I)(i;Gnk
), if W̃i ≤ ηb. (4.7)

In addition,

E
[
Ṽ (I)

(
W̃ , v, i+ 1;Gnk

)∣∣W̃i+ = 0, vi
]
= g(I)(i+ 1;Gnk

). (4.8)

According to eq. (4.7), the closed form solution for Ṽ (I)(W̃ , v, i;Gnk
) shows no dependence on

the current variance in the above special case.
Unfortunately, Ṽ (A)(W̃ , v, i) does not retain the above nice analytic tractability except at

Ta + 1. However, we can define

Ṽ (A)(W̃ , v, i) = pi−1qi−1W̃i + g(A)(v, i), if W̃i ≤ ηb. (4.9)

Provided that W̃i ≤ ηb for i = 1, · · · , Ta, based on eqs. (4.5) (4.7) and (4.9), we can derive

g(A)(v, i)

= max

{
g(I)

(
i;G(i)

)
,

− piB + e−r[(1 + bi) +B]E

[
Ṽ (A)(W̃ , v, i+ 1)

∣∣∣W̃i+ =
B

(1 + bi) +B
, vi

]
,

e−r(1 + bi)E
[
g(A)(vi+1, i+ 1)

∣∣vi]}, if W̃i ≤ ηb.

(4.10)

Here, g(A)(v, i) does not admit an analytical representation except when B = 0. Fortunately,
starting with the terminal condition g(A)(v, Ta + 1) = g(I)

(
Ta + 1;G(Ta + 1)

)
, g(A)(v, i) can be

calculated using the Fourier transform method to be shown later.
It is desirable to construct a new set of modified normalized value functions with the property

that they are equal to zero once W̃i ≤ ηb. This would guarantee that the generalized Fourier
transforms of these two modified functions with respect to log W̃t are well defined by adopting
some proper damping factors. We define the two modified normalized value functions by

U (A)(W̃ , v, i) = Ṽ (A)(W̃ , v, i)−
(
pi−1qi−1W̃i + g(A)(v, i)

)
,

U (I)(W̃ , v, i;Gnk
) = Ṽ (I)(W̃ , v, i;Gnk

)−
(
pi−1qi−1W̃i + g(I)(i;Gnk

)
)
.

(4.11)
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4.1 Expectation calculations of the normalized value functions

Now we are ready to calculate the conditional expectations of the normalized value functions,
which is a key step in the backward induction. In order to compute the conditional expectation
E
[
Ṽ (A)(W̃ , v, i + 1)

∣∣W̃i+ , vi
]
, provided that W̃i+ > 0, one has to evaluate the two-dimensional

expectation integral E
[
U (A)(W̃ , v, i+1)

∣∣W̃i+ , vi
]
. The latter can be calculated relatively easily

since the generalized Fourier transforms of the modified normalized value functions are guar-
anteed to exist. We would like to apply the Fourier transform method in the log normalized
policy fund value dimension and a quadrature rule in the variance dimension since the transi-
tion density of the variance vt has an analytic form. However, the Feller condition is difficult
to satisfy in practice, and the density of variance grows extremely fast in the left tail when the
Feller condition fails. To resolve this difficulty, Fang and Oosterlee (2011) propose to transform
the density function from the variance domain to the log-variance domain. Interested readers
may refer to Fang and Oosterlee (2011), Zeng and Kwok (2014) for more details.

More specifically, based on the dynamics for the policy fund value processWt, an application
of eq. (4.11) gives

E
[
Ṽ (A)(W̃ , v, i+1)

∣∣W̃i+ , vi
]
= E

[
U (A)(W̃ , v, i+1)

∣∣W̃i+ , vi
]
+ piqie

rW̃i+ +E[g(A)(vi+1, i+1)|vi].
(4.12)

We define the log-variance γt = ln vt. By the tower property and conditional on the log-variance
process at time i+ 1, we obtain

E
[
U (A)(W̃ , v, i+ 1)

∣∣W̃i+ , vi
]
= E

[
E
[
U (A)(W̃ , eγ, i+ 1)

∣∣W̃i+ , γi+1, γi
]∣∣∣∣W̃i+ , γi

]
.

Now we apply an appropriate J-point quadrature integration rule (say, the Gauss-Legendre
quadrature rule) to evaluate the outer expectation integral, which involves integration over the
density function pγ(γi+1|γi). By performing discretization along the dimension of γi+1 at the
discrete nodes ζj, j = 1, 2, · · · , J , we have

E
[
U (A)(W̃ , v, i)

∣∣W̃i+ , vi
]
≈

J∑
j=1

wjpγ(ζj|γi)E
[
U (A)(W̃ , eζj , i+ 1)|W̃i+ , γi+1 = ζj, γi

]
, (4.13)

where wj is the weight at the quadrature node ζj, j = 1, 2, · · · , J .
To perform the inner expectation calculation, we adopt the Fourier transform method that

is widely used in option pricing (Lord et al., 2008; Kwok et al., 2012). Let Xt = log W̃t, the

generalized Fourier transform of U (A)(W̃ , eζj , i+ 1) with respect to Xi+1 is defined by

Û (A)(β, eζj , i+ 1) =

∫ ∞

−∞
e(α+iβ)Xi+1U (A)(W̃ , eζj , i+ 1) dXi+1

=

∫ ∞

log ηb

e(α+iβ)Xi+1U (A)(eXi+1 , eζj , i+ 1) dXi+1.

(4.14)

Here, the parameter α is a damping factor, which should be properly chosen to insure the
existence of the generalized Fourier transform of U (A)(W̃ , eζj , i + 1). With reference to the
conditional moment generating function Ψ(ω, γt, γs) = E[eω(Xt−Xs)|γt, Xs, γs], the renowned
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Parseval relation leads to the following inverse Fourier transform representation:

E
[
U (A)(W̃ , eζj , i+ 1)

∣∣W̃i+ , γi+1 = ζj, γi

]
=

1

2π

∫ ∞

−∞
e−(α+iβ) log W̃i+ Û (A)(β, eζj , i+ 1)Ψ (−α− iβ, ζj, γi) dβ.

(4.15)

Combining eqs. (4.12), (4.13) and (4.15), and interchanging the order of integration and sum-
mation, we obtain

E
[
Ṽ (A)

(
W̃ , v, i+ 1

)∣∣W̃i+ , vi
]

= piqie
rW̃i+ +

J∑
j=1

g(A)(eζj , i+ 1)pγ(ζj|γi)wj

+
1

2π

∫ ∞

−∞
e−(α+iβ) log W̃i+

J∑
j=1

Û (A)(β, eζj , i+ 1)Ψ̃ (−α− iβ, ζj, γi)wj dβ, i = 0, 1, · · · , Ta.

(4.16)

Here, Ψ̃ (ω, γt, γs) = Ψ (ω, γt, γs) pγ(γt|γs) and Ψ̃(ω, γt, γs) admits a closed form representa-
tion (Fang and Oosterlee, 2011; Zeng and Kwok, 2014). For notational convenience, we have

suppressed the dependency of pγ(γt|γs),Ψ(ω, γt, γs) and Ψ̃ (ω, γt, γs) on t − s. Similarly, for
i = 1, · · · , T − 1, we have

E
[
Ṽ (I)

(
W̃ , v, i+ 1;Gnk

)∣∣W̃i+ , vi
]

= piqie
rW̃i+ + g(I)(i+ 1;Gnk

)

+
1

2π

∫ ∞

−∞
e−(α+iβ) log W̃i+

J∑
j=1

Û (I)(β, eζj , i+ 1;Gnk
)Ψ̃ (−α− iβ, ζj, γi)wj dβ.

(4.17)

The expectation corresponding to i = T − 1 admits a simple closed form representation

E
[
Ṽ (I)(W̃ , v, T ;Gnk

)
∣∣W̃T−1+ , vT−1

]
= pT−1e

rW̃T−1+ . (4.18)

Alternatively, this conditional expectation can be derived easily based on eq. (4.17) by observ-

ing that U (I)(W̃ , v, T ;Gnk
) is a zero function.

Implementation procedures
We would like to present the details of the implementation procedure of the Fourier trans-
form algorithm for computing the value functions. Substituting eq. (4.17) into eq. (4.4) and

taking advantage of the relation (4.11) between U (I)(W̃ , v, i;Gnk
) and Ṽ (I)(W̃ , v, i;Gnk

), we

manage to construct the Fourier transform algorithm that calculates U (I)(W̃ , v, i;Gnk
). Note

that U (A)(W̃ , v, i) can be evaluated in a similar manner. The detailed steps in constructing
these recursive equations and the terminal condition are provided in Appendix B. The initial
value function V (A)(W0, A0, v0, 0) can be obtained at the last time step. The implementation
procedures of the Fourier transform algorithm for calculating the value functions by applying
the Fourier transform method to the log policy fund value process and the quadrature rule to
the log-variance dimension are summarized as below.

Let the infinite Fourier domain for β be truncated to the finite truncation domain [−Mh,Mh],
and consider Xt = l0+ l∆, l = 1, 2, · · · , L. Here, M and L are referred as the truncation levels,
and l0 represents the lower truncation boundary. Later, we drop l0 and write Xt as l∆ for
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brevity, where l = 1, 2, · · · , L. By definitions of U (I)(W̃ , v, i;Gnk
) and U (A)(W̃ , v, i), it is only

necessary to evaluate these two functions when W̃ > ηb.

Step 1: Preparation at T − 1
Calculate the generalized Fourier transform using the following formula

Û (I)(mh, eζj , T − 1;Gnk
) =

L∑
l=1

e(α+imh)l∆pT−1(e
l∆ − ηb −Gnk

)+ ∆, (4.19)

where m = −M, · · · ,M , j = 1, · · · , J and k = 1, · · · , K. Here, α is the damping factor and
α < −1 is required to guarantee the existence of the generalized Fourier transform.

Step 2: Backward induction from T − 2 to Ta + 1

U (I)
(
el∆, eζp , i;Gnk

)
= − g(I)(i;Gnk

) + max

{
piGnk

+ pi(1− κi)(e
l∆ − ηb −Gnk

),

e−rψ
(4)
i (el∆)

[
piqie

rϕ
(4)
i (el∆) + g(I)(i+ 1;Gnk

) +
1

2π

M∑
m=−M

e−(α+imh) log ϕ
(4)
i (el∆)

∗
J∑

j=1

Û (I)(mh, eζj , i+ 1;Gnk
)Ψ̃ (−α− imh, ζj, ζp)wjh

]
,

piGnk
+ e−rψ

(5)
i (el∆;Gnk

)

[
piqie

rϕ
(5)
i (el∆;Gnk

) + g(I)(i+ 1;Gnk
) + 1{

ϕ
(5)
i (W̃i;Gnk

)>0
}

∗ 1

2π

M∑
m=−M

e−(α+imh) log ϕ
(5)
i (el∆;Gnk

)

J∑
j=1

Û (I)(mh, eζj , i+ 1;Gnk
)Ψ̃ (−α− imh, ζj, ζp)wjh

]}
,

(4.20a)

where l = 1, · · · , L, p = 1, · · · , J and k = 1, · · · , K. The corresponding generalized Fourier
transform is calculated according to the following formula

Û (I)(mh, eζp , i;Gnk
) =

L∑
l=1

e(α+imh)l∆U (I)(el∆, eζp , i;Gnk
)∆. (4.20b)

Repeat Step 2 for i = T − 2, · · · , Ta + 1.

Remark
One may employ the usual fast Fourier transform method to facilitate the computation of vari-
ous summation terms in eq. (4.20a), which take the form 1

2π

∑M
m=−M e−(α+imh)l∆f(m)h for some

f(m). In fact, numerical evaluation of the summation terms with respect to m in eq. (4.20a) is
achieved by combining the fast Fourier transform technique and spline interpolation of the log
normalized policy fund value (which exhibits jump across an event date).

Step 3: Preparation at Ta + 1
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The mandated activation to the income phase at Ta + 1 leads to

Û (A)(mh, eζp , Ta + 1) =
L∑
l=1

e(α+imh)l∆U (I)
(
el∆, eζp , Ta + 1;G(Ta + 1)

)
∆,

g(A)(eζp , Ta + 1) = g(I)
(
Ta + 1;G(Ta + 1)

)
.

(4.21)

Step 4: Backward induction from Ta to 1

(1) Calculate the function g(A)(eζp , i) based on the following formula:

g(A)(eζp , i)

= max

{
g(I)

(
i;G(i)

)
,

− piB + e−r
(
(1 + bi) +B

)[ Bpiqie
r

(1 + bi) +B
+

J∑
j=1

g(A)(eζj , i+ 1)pγ(ζj|ζp)wj

+ 1{B>0}
h

2π

M∑
m=−M

e
−(α+imh) log B

(1+bi)+B

J∑
j=1

Û (A)(mh, eζj , i+ 1)Ψ̃ (−α− imh, ζj, ζp)wj

]
,

e−r(1 + bi)
J∑

j=1

g(A)(eζj , i+ 1)pγ(ζj|ζp)wj

}
,

(4.22)
where p = 1, 2, · · · , J .

(2) Calculate U (I)
(
el∆, eζp , i;Gnk

)
and Û (I)(mh, eζp , i;Gnk

) as shown in Step 2.

(3) Calculate U (A)
(
el∆, eζp , i

)
and Û (A)(mh, eζp , i) based on the following formulas:

U (A)
(
el∆, eζp , i

)
= − g(A)(eζp , i) + max

{
U (I)

(
el∆, eζp , i;G(i)

)
+ g(I)(i;G(i)),

− piB + e−rψ
(2)
i (el∆)

[
piqie

rϕ
(2)
i (el∆) +

J∑
j=1

g(A)(eζj , i+ 1)pγ(ζj|ζp)wj

+
1

2π

M∑
m=−M

e−(α+imh) log ϕ
(2)
i (el∆)

J∑
j=1

Û (A)(mh, eζj , i+ 1)Ψ̃ (−α− imh, ζj, ζp)wjh

]
,

e−rψ
(3)
i (el∆)

[
piqie

rϕ
(3)
i (el∆) +

J∑
j=1

g(A)(eζj , i+ 1)pγ(ζj|ζp)wj

+
1

2π

M∑
m=−M

e−(α+imh) log ϕ
(3)
i (el∆)

J∑
j=1

Û (A)(mh, eζj , i+ 1)Ψ̃ (−α− imh, ζj, ζp)wjh

]}
,

(4.23a)
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and

Û (A)(mh, eζp , i) =
L∑
l=1

e(α+imh)l∆U (A)(el∆, eζp , i)∆, (4.23b)

where l = 1, 2, · · · , L, p = 1, 2, · · · , J and m = −M, · · · ,M .

Repeat Step 3 for i = Ta, Ta − 1, · · · , 1.

Step 4: Inversion of the Fourier transform at the final step to recover the value function

V (A)(W0, A0, e
ζp , 0)

= e−r
[
p0q0e

rW0 +
J∑

j=1

g(A)(eζj , 1)pγ(ζj|ζp)wjA0 +
A0

2π

M∑
m=−M

e−(α+imh) logW0/A0

∗
J∑

j=1

Û (A)(mh, eζj , 1)Ψ̃ (−α− imh, ζj, ζp)wjh
]
,

(4.24)

where p = 1, 2, · · · , J . The initial value function V (A)(W0, A0, v0, 0) can be obtained using
spline interpolation.

Remarks

1. Since the benefit base At is substituted into the pricing formulation only in the final step
of the algorithm through the initial benefit base A0, the Fourier transform algorithm can
be used to find the value function at varying values of A0 simultaneously with minimal
additional computational cost.

2. Huang and Kwok (2016) present the regression-based Monte Carlo simulation algorithms
for pricing and hedging of the GLWB in variable annuities without considering the optimal
initiation, age-dependent scheduled withdrawal rates and additional purchases. With the
level of complexities under the general framework considered in this paper, the regression-
based Monte Carlo method would not be effective for pricing the GLWB products. At
least for one consideration, the effective implementation of the regression-based Monte-
Carlo simulation method requires the knowledge of normalized value function at zero
policy fund value. Unfortunately, when additional purchases are allowed, the normalized
value function at zero policy fund value does not admit an analytic representation. On the
contrary, our newly derived Fourier transform algorithm can be employed for their GLWB
formulation by making some slight modification. The corresponding modified version is
much easier compared to our Fourier transform algorithm in this paper since we do not
need to calculate the two normalized value functions at each time step in the modified
version.

3. There may be potential loss of monotonicity in a finite term Fourier expansion of the
value function, thus raising the query on the justification of the bang-bang result under
such scenario. Indeed, a similar issue has been considered in Huang and Kwok (2016)
on the regression-based Monte Carlo simulation algorithm, where the expansion of the
value function in terms of finite number of basis functions may lose monotonicity as well.
The key consideration is to establish uniform convergence of the approximation in finite
number of basis functions to the value function as the number of basis functions tends to
infinity [see Assumption H1 in proving Proposition 3 in Huang and Kwok (2016)]. In our
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r κ ϵ θ v0 ρ
0.04 1.15 0.39 0.0348 0.0348 -0.64

Table 1: Parameter values of the Heston model.

Parameter Notation Value
Penalty for excess withdrawal k(t) 0 ≤ t ≤ 1 : 6%, 1 < t ≤ 2 : 5%,

2 ≤ t ≤ 3 : 4%, 3 < t ≤ 4 : 3%,
4 ≤ t ≤ 5 : 2%, 5 < t ≤ 25 : 1%,

25 < t ≤ T : 0%
Expiry time T 57 (years)
Initial investment W0 100
Initial benefit base A0 100
Insurance fee (for benefit base) ηb 1%
Mortality DAV 2004R (65 year old male)

(Pasdika and Wolff, 2005)
Mortality payments At year end
Bonus (no withdrawal) bi 0.06 annual
Ratchet cycle yearly
Withdrawal strategy Optimal
Withdrawal dates yearly

Table 2: Contract parameter values of the GLWB product.

Fourier transform algorithm, based on known results on uniform convergence of finite term
Fourier series, we observe that the numerical conditional expectation calculated by the
Fourier algorithm converges uniformly to the true solution as the number of Fourier terms
and the computational domain go to infinity. It is then seen that the proof of Proposition
3 in Huang and Kwok (2016) can be extended to show the desired convergence results in
the Fourier transform algorithm.

5 Numerical results

In this section, we first demonstrate the high level of accuracy and efficiency of the Fourier
transform algorithm for pricing GLWB under the Heston model through some carefully designed
test cases. The numerical performance of the Fourier transform algorithm is compared with that
of a modified regression-based Monte Carlo algorithm based on an extended version of Huang
and Kwok (2016). Secondly, we show the performance of our Fourier transform algorithm under
a general framework and perform the sensitivity analysis of the GLWB price with respect
to varying model parameters and contractual features. We also compute the fair rider fees
under various parameter values of the Heston model and different contractual specifications.
Furthermore, we explore the characterization of the optimal withdrawal strategy regions for
GLWB in the W̃ -v plane. Finally, we investigate the optimal initiation regions with respect to
the calendar time and the optimal initiation regions with respect to the initial age from the
perspective of diverse policyholders. In particular, we examine the impact of model parameters
and contractual features on these two kinds of optimal initiation regions.
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Refinement
Base No bonus No surrender No ratchet

Price CPU Price CPU Price CPU Price CPU
L = 2M = 26, J = 25 100.18997 0.3 100.12132 0.4 98.50320 0.3 99.40426 0.3
L = 2M = 27, J = 26 100.19916 1.4 100.12770 1.5 98.50740 1.5 99.40978 1.5
L = 2M = 28, J = 27 100.20326 6.7 100.12695 6.8 98.50659 6.7 99.40972 6.7
L = 2M = 29, J = 28 100.20365 58.7 100.12703 58.8 98.50695 59.1 99.40971 59.2

Monte Carlo 100.22 (0.020) 100.13 (0.021) 98.52 (0.023) ——

Table 3: Numerical results for GLWB obtained from the Fourier transform algorithm for var-
ious levels of refinement under B = 0, Ta = ∞ and G(t) = 0.05 for any t. Here, M , L and J
denote the truncation parameter for the Fourier transform of the normalized policy fund value,
the normalized policy fund value and discretization parameter for the log-variance, respectively.
The CPU times (seconds) required in the computations are listed. Numerical results obtained
from the regression-based Monte Carlo algorithm are provided in the last row and the stan-
dard deviation are listed in brackets. The regression-based Monte Carlo method fails to give
reasonable numerical results when there is no ratchet feature in the contract.

5.1 Numerical accuracy and efficiency

Firstly, we compare numerical accuracy and computational efficiency of the Fourier transform
algorithm with the regression-based Monte Carlo algorithm in pricing GLWB with the optimal
initiation feature. In our sample calculations, we consider the simplified scenario where B =
0, Ta = ∞ and G(t) = 0.05 for any t; that is, additional purchases is not allowed and there is
no restriction for the policyholder to activate the income phase by a given age.

We assume that the policy fund value dynamics is governed by the Heston model as follows:

dWt

Wt

= r dt+
√
vt(ρ dB

1
t +

√
1− ρ2 dB2

t ),

dvt = κ(θ − vt) dt+ ϵ dB1
t ,

(5.1)

where B1
t and B2

t are two independent Brownian motions under the risk neutral measure Q.
Tables 1 and 2 list the parameter values in the Heston model and the relevant contractual
features in the GLWB product, which are regarded as the “Base” case in our sample calculations.
We adopt the values of the Heston model parameters obtained by Bakshi et al. (1997). Their
calibration was performed based on minimizing the sum of squared pricing errors between the
market prices of S&P 500 options and the model-determined prices.

In Table 3, we list the prices of the GLWB product with the optimal initiation feature
under four different scenarios: “Base”, “No bonus”, “No surrender” and “No ratchet” using
the Fourier transform algorithm and the regression-based Monte Carlo algorithm. For the first
three scenarios, good agreement of numerical results obtained from the two numerical methods
is observed. This confirms high accuracy of the Fourier transform algorithm. When the ratchet
feature is not included, the regression-based Monte Carlo algorithm fails to provide reasonably
stable numerical results even with a large number of simulation paths. It took about 3000 sec-
onds to generate numerical results using the regression-based Monte Carlo algorithm when the
number of the simulation paths was taken to be 106. The CPU times (seconds) required using
the Fourier transform algorithm for various levels of refinement of the truncation parameters
L,M and J are also listed. The numerical GLWB prices obtained by the Fourier transform
algorithm exhibit penny accuracy (5 significant figures accuracy) at relatively low values of
L,M and J (say, L = 2M = 28, J = 27). By comparing the CPU times, we observe that
the fast Fourier transform method is more computationally efficient than the regression-based
Monte Carlo method. The CPU times are consistent with the order of complexity of the Fourier
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Withdrawal rate G (t)
Withdraw 1 0 ≤ t ≤ T : 5%
Withdraw 2 0 ≤ t ≤ 5 : 5%, 6 ≤ t ≤ 10 : 5.5%,

11 ≤ t ≤ T : 6%
Withdraw 3 0 ≤ t ≤ 15 : 5%+0.1%t, 16 ≤ t ≤ T : 6.5%

Table 4: Values of the contractual withdrawal rate G(t) of the GLWB product.

B
Withdrawal J = 25 J = 26 J = 27 J = 28

rate Price CPU Price CPU Price CPU Price CPU

0.3
1 100.23609 0.9 100.23685 1.9 100.23643 6.0 100.23640 21.1
2 103.60179 1.8 103.60036 3.9 103.59954 11.1 103.59953 37.4
3 105.62601 6.6 105.62304 15.9 105.62338 45.1 105.62324 158.2

0.5
1 100.26566 0.9 100.26725 2.0 100.26639 5.7 100.26649 20.7
2 104.81688 1.7 104.81303 3.9 104.81017 11.0 104.81065 37.1
3 108.51604 6.5 108.50796 16.1 108.50925 44.9 108.50835 157.8

L = 2M = 26 L = 2M = 27 L = 2M = 28 L = 2M = 29

Price CPU Price CPU Price CPU Price CPU

0.3
1 100.22046 1.9 100.23176 3.0 100.23643 5.5 100.23693 9.5
2 103.53241 3.6 103.55795 6.0 103.59954 11.2 103.59916 18.9
3 105.53063 14.3 105.56298 24.0 105.62338 44.8 105.62300 80.8

0.5
1 100.24946 1.8 100.26080 2.9 100.26639 5.4 100.26695 9.5
2 104.70765 3.6 104.74723 5.9 104.81017 11.1 104.80963 19.0
3 108.33800 14.3 108.39753 23.9 108.50925 45.1 108.50832 81.6

Table 5: Numerical results for the GLWB prices obtained from the Fourier transform algorithm
with respect to varying contractual withdrawal rates and upper bounds on additional purchases.
The CPU times (seconds) required in the Fourier transform calculations are also listed. The
truncation level parameters are set to be L = 2M = 28 and J = 27, except as noted.

transform algorithm when M and J go beyond 27. At low values of M and J , the order of the
complexity is less apparent since a significant portion of CPU time is used in the initiation step
in the Fourier transform algorithm.

5.2 Pricing behaviors of the GLWB

Next, we present the performance of the Fourier transform algorithm for pricing GLWB under
the generalized cases of inclusion of all contractual features, where the regression-based Monte
Carlo method may fail to give reasonably stable numerical results. In our calculations, we
set Ta = 20 and consider different choices on the contractual withdrawal rate G(t) and cap
multiplier of the benefit base B for additional purchases (see Tables 4 and 5).

In Table 5, we present the numerical results of the GLWB prices obtained from the Fourier
transform algorithm with varying values of J and varying values of M , respectively. The CPU
times required for the Fourier transform calculations are also reported. As expected, increasing
the additional purchase parameter B or the contractual withdrawal rate would lead to a higher
GLWB price. In addition, though the Cox-Ingersoll-Ross model parameters fail to satisfy the
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Case
θ = 0.0225 θ = 0.0286 θ = 0.0348

Fair rider fee (bps) Fair rider fee (bps) Fair rider fee (bps)
Base 68.6 86.1 103.8

No bonus 67.5 85.0 102.5
No surrender 51.3 69.2 83.5
No ratchet 59.7 74.6 89.4

Table 6: The effect of contractual provisions on the fair rider fee under varying values of θ,
the mean reversion level of the variance in the Heston model. Here, Ta = 20, B = 0.3 and the
contractual withdrawal rate is chosen to be “Withdraw 2”.

Case
ϵ = 0.25 ϵ = 0.32 ϵ = 0.39

Fair rider fee (bps) Fair rider fee (bps) Fair rider fee (bps)
Base 109.5 106.9 103.8

No bonus 108.1 105.5 102.5
No surrender 88.4 86.0 83.5
No ratchet 92.1 90.7 89.4

Table 7: The effect of contractual provisions on the fair rider fee under varying values of ϵ, the
volatility of the variance in the Heston model. Here, Ta = 20, B = 0.3 and the contractual
withdrawal rate is chosen to be “Withdraw 2”.

Feller condition, our fast Fourier transform algorithm remains to converge rapidly for the log-
variance dimension even under such scenario. Finally, though the time dependent feature of the
contractual withdrawal rate adds one additional dimension to our pricing problem, the CPU
times do not increase substantially. This is because the computational time of our Fourier
transform is mainly attributed to the calculations of the kernel function Ψ̃ (−α− imh, ζj, ζp),
which involves the valuation of the modified Bessel function. Interested readers may refer to
Zeng and Kwok (2014) for more details.

Next, we conduct sensitivity analysis of the GLWB price function with respect to the con-
tractual features and model parameters. Without loss of generality, we set Ta = 20, B = 0.3
and the contractual withdrawal rate to be “Withdraw 2”.

Fair rider fees
The fair rider fee is determined by setting the GLWB price at initiation to be equal to the
initial account value. We solve for the rider fee ηb from the following equation:

V (A)(W0, A0, v0, 0) = W0.

In Tables 6 and 7, we examine the effect of contractual provisions on the fair rider fee under
varying values of θ and ϵ. Here, θ represents the mean reversion level of the variance and ϵ is
the volatility of variance in the Heston model. The fair rider fee is more sensitive to θ but less
sensitive to ϵ. Since the GLWB prices increase with θ and decrease with ϵ (expected variance
of the policy fund value process is known to be a decreasing function of ϵ), so the fair rider fees
increase with θ and decrease with ϵ.

Cycle of ratchet events and penalty charge
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The cycle of ratchet events refers to the number of years lapsed between successive ratchet
event dates. In Figure 1, we plot the GLWB price against the cycle of ratchet events under
two penalty charge schemes: Penalty 1 and Penalty 2. Here, “Penalty 1” refers to the penalty
charge setting taken from Table 2, while “Penalty 2” is obtained by adding 3% to the penalty
charge fee k(t) when t ≤ 25. The GLWB price is seen to decrease with longer cycle of ratchet
events and higher penalty charge. The plots also reveal that the ratchet provision and penalty
charge scheme may have strong impact on the GLWB price.

Correlation coefficient and volatility of variance
Figure 2 examines the impact of the correlation coefficient ρ and volatility of variance ϵ on the
price of GLWB. The GLWB price decreases with an increasing value of ϵ. The GLWB price is
seen to be an increasing function of the correlation coefficient ρ.

Optimal withdrawal strategy regions in the W̃ -v plane
Now we would like to explore the characterization of the optimal withdrawal strategy regions
for GLWB using the Fourier transform algorithm. In particular, we examine the impact of con-
tractual withdrawal rate and additional purchases on the optimal withdrawal strategy regions.
At a fixed time, the separation of the optimal withdrawal strategy regions is characterized
by the normalized policy fund value W̃ and variance v. Figure 3 illustrates the separation of
optimal withdrawal strategy regions in the W̃ -v plane on the first withdrawal date under four
different scenarios. As revealed from Figure 3, when the contractual withdrawal rate is an
increasing function of time, GLWB has a smaller withdrawal region. This is because the policy-
holder would choose not to withdraw prematurely and prefer to wait until a higher contractual
withdrawal rate at a later time. At the same time, the region of optimal additional purchase
increases under higher contractual withdrawal rate. In addition, a larger value of B would
enlarge the region of additional purchase. As a final remark, the region of optimal additional
purchases increases as the variance v increases while the optimal withdrawal region decreases
with higher variance.

5.3 Optimal initiation policies

Optimal initiation boundary against the calendar time t
By fixing the variance, for each t, we consider the optimal value of W̃ at which the value function
in the accumulation phase equals that in the income phase. Similar to the optimal exercise
boundary for an American option, we plot the optimal initiation boundary as a function of
time t. We examine the effect of the variance, bonus rate and contractual withdrawal rate on
the optimal initiation boundary in the W̃ -t plane. We let the colored region denote the optimal
initiation region in which the income phase should be initiated. In Figures 4a-4c, we assume a
constant contractual withdrawal rate and plot the optimal initiation regions in the W̃ -t plane
for different values of the variance and bonus rate. The optimal initiation region decreases as
the variance or the bonus rate increases. Note that it is optimal to stay in the accumulation
phase only in the areas with high normalized policy fund value W̃ and earlier withdrawal dates.
Especially when the bonus rate is low, as observed from Figure 4c, it is always optimal to
initiate the income phase immediately. This is because the incentive for the policyholder to
choose zero withdrawal or additional purchase is low when the bonus is very small.

We investigate the effect of the contractual withdrawal rate on the optimal initiation region.
We assume the same parameter values as in Figure 4a, except that the contractual withdrawal
rate increases on some specified dates (triggering dates). In our test, the contractual withdrawal
rate rises from 5% to 5.5% on the triggering date t = 6 and it increases to 6% at t = 11. Figure
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Parameter Notation Value
Initial age x0 50 ≤ x0 ≤ 120
Penalty for excess withdrawal x0kt 0 ≤ x0 + t ≤ 66 : 6%, 66 < x0 + t ≤ 67 : 5%,

67 ≤ x0 + t ≤ 68 : 4%, 68 < x0 + t ≤ 69 : 3%,
69 ≤ x0 + t ≤ 70 : 2%, 70 < x0 + t ≤ 90 : 1%,

90 < x0 + t ≤ 122 : 0%
Expiry time Tx0 122− x0 (years)

Survival probability x0pt e−e
x0+t−87.25

9.5 +e
x0−87.25

9.5

Table 8: Contract parameter values of the GLWB product with diverse policyholders.

4d reveals that when the time goes beyond the latest of the triggering dates, the plot agrees
with that of Figure 4a. Otherwise, the increase in the contractual withdrawal rate provides a
strong incentive for the policyholder to delay initiation of the income phase. Especially when
the calendar time is approaching a triggering date of changes of the contractual withdrawal
rate, the optimal initiation boundary is zero; so initiation becomes non-optimal at any level of
normalized policy fund value.

Optimal initiation regions in the W̃ -x0 plane
We would like to study the optimal initiation of a GLWB from the perspective of diverse poli-
cyholders. We let tpx0 , tkx0 and Gx0(t) denote the survival probability, the penalty charge rate
and contractual withdrawal rate at time t for a policyholder with an initial age x0, respectively.
The model and contract parameter values are taken from Tables 1 and 2, except those listed in
Table 8.

Similar to Huang et al. (2014), we can determine the optimal initiation region with respect
to the initial age x0. Compared to Huang et al. (2014), here we consider a discrete set of event
dates and allow for stochastic volatility, dynamic withdrawal, additional purchase and mandated
initiation time. Also, we construct the Fourier transform algorithm to determine the optimal
initiation region rather than using the finite difference method. On the first withdrawal date
(t = 1), for a fixed variance, we plot the optimal initiation region with respect to the initial age
x0. The effects of the investment, the penalty charge rate and the contractual withdrawal rate
on the optimal initiation are revealed in Figures 5a-5d. It is optimal for young policyholders
to accumulate regardless of the level of W̃ when more additional purchase is allowed. The
additional purchase parameter B has a pronounced impact on young policyholders. Secondly,
setting the penalty charge rate for excess withdrawal to be 100% is equivalent to ruling out
the complete surrender feature. The optimal initiation region becomes larger when compared
with the scenario where the complete surrender is allowed and the penalty charge rate is a
decreasing function of age. In fact, the lowering of the penalty rate motivates the policyholder
to delay the initiation until a smaller penalty charge rate kicks in. Finally, the effect of the
contractual withdrawal rate on this optimal initiation region is similar to that on the optimal
initiation region in the W̃ -t plane. We consider the contractual withdrawal rate as an increasing
function of age. In our test calculations, we assume that the contractual withdrawal rate rises
from 5% to 5.5% at age 71 (triggering age) and jumps from 5.5% to 6% at age 76. Figure 5d
shows that an increase in the contractual withdrawal rate motivates the policyholders who are
younger than the last triggering age to delay initiation. This effect becomes more profound for
policyholders at an age immediately before any triggering age since the corresponding optimal
initiation boundary is zero.
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6 Conclusion

We present the comprehensive pricing model for the GLWB product with the accumulation
phase and income phase, additional purchases, age-dependent scheduled withdrawal rate, bonus
and ratchet provisions under the Heston stochastic volatility process for the policy fund value.
The pricing model includes the optimal stopping rule of initiation and dynamic withdrawal
as the stochastic control process. Through a rigorous bang-bang analysis, we show that the
strategy space of the optimal policies is limited to four choices, thus simplifying the construction
of the Fourier transform algorithm for pricing GLWB products with complex path dependent
features. The success of the bang-bang analysis relies on the convexity and monotonicity
properties of the price function. The results are applicable to many common processes for the
policy fund value. In the design of the Fourier transform algorithm, the dimension of the pricing
model is reduced by one since the benefit base remains constant between two consecutive event
dates. We then apply the Fourier transform in the log normalized policy fund value dimension
and a quadrature rule in the log-variance dimension. The Fourier transform algorithm is seen
to be efficient, accurate and reliable even under the level of complexities of path dependence
in our comprehensive pricing model of the GLWB while the regression-based Monte Carlo
simulation algorithm may fail to give a reliable numerical solution. The CPU time required for
numerical evaluation of the price function to achieve 5 significant figures accuracy using the
Fourier transform algorithm is typically within a few seconds.

We perform sensitivity analysis of the GLWB price function with respect to various contrac-
tual features and model parameters. We consider the impact of the fair rider fees under various
parameter values of the Heston stochastic volatility model. We also examine the impact of the
contractual withdrawal rate and upper bound of additional purchases on the optimal initiation
policies. The optimal initiation policies are seen to depend sensibly on the age-dependent con-
tractual withdrawal rate. Policyholders would wait for a more favorable contractual withdrawal
rate for optimal entry into the income phase.

Appendix A - Proof of Theorem 3

We perform the bang-bang analysis for GLWB(I) in the income phase, then extend the analysis
in a similar manner to GLWB(A) in the accumulation phase. The proofs requires the following
two technical results in convex analysis, stated as Property A.1 and Property A.2 below:

Property A.1 Let A be a convex set, and let B and C be vector spaces over R. If g : A → B
is convex, h : B → C is convex and monotonic increasing, then h ◦ g is convex on set A.

Property A.2 Suppose we have a function f : R × R+ → R that satisfies (i) f(·, y) is convex
for any fixed y ∈ R+; (ii) for any positive constant K, f(Kx,Ky) = Kf(x, y), then f(·, ·) is
convex.

The proof of Property A.1 can be found in Boyd and Vandenberghe (2004). The proof of
Property A.2 is presented at the end of Appendix A.

1. Proof of the bang-bang controls for GLWB(I)

We would like to prove Part 1 of Theorem 3, which is restated as below: On any withdrawal
date 1 ≤ i ≤ T − 1, the optimal strategy γi for GLWB(I) with any positive guaranteed rate G0

is limited to (i) γi = 0; (ii) γi = G0Ai (iii) γi =Wi − ηbAi. Moreover V (I)(·, ·, i;G0) is convex.
The proof requires several intermediate results as stated in Lemmas A.3 and A.4. The

detailed proofs of these lemmas are presented at the end of Appendix A.
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Lemma A.3 If V (I)(·, ·, v, i + 1;G0) is convex, the optimal strategy γi on the withdrawal date
i for GLWB(I) is limited to (i) γi = 0; (ii) γi = G0Ai; (iii) γi = Wi − ηbAi.

Lemma A.4 If V (I)(·, ·, v, i+ 1;G0) is convex, then V
(I)(·, ·, v, i;G0) is also convex.

To complete the proof of Part 1 of Theorem 3, we argue as follows:

1. Suppose V (I)(·, ·, v, i + 1;G0) is convex, the optimal strategy on the withdrawal date i
for GLWB(I) is limited to a finite number of choices (see the details in Lemma A.3) and
V (I)(·, ·, v, i;G0) is also convex (see the details in Lemma A.4).

2. Since the terminal payoff V (I)(·, ·, v, T ;G0) is convex, Lemmas A.3 and A.4 can be applied
inductively to establish the bang-bang control for GLWB(I) on any withdrawal date.

2. Proof of the bang-bang controls for GLWB(A)

We define C
(I)
i,v,G0

(·, ·): R× R → R and C
(A)
i,v (·, ·): R× R → R as follows:

C
(I)
i,v,G0

(x, y) = E[V I(W,A, v, i+ 1;G0)|Wi+ = x,Ai+ = y, vi+ = v], i = 1, 2, . . . , T − 1,

and

C
(A)
i,v (x, y) = E[V A(W,A, v, i+ 1)|Wi+ = x,Ai+ = y, vi+ = v], i = 1, 2, . . . , Ta.

Suppose the income phase has not been initiated before Ta, then V
(A)(W,A, v, Ta) in eq. (2.8)

can be written as

V (A)(W,A, v, Ta) = pTa−1qTa−1WTa +max{V (A)
C (Ta), V

(I)
C (Ta)}, (A.1)

where

V
(A)
C (Ta) = sup

γTa∈[−BATa ,(WTa−ηbATa )
+]

{pTaf
A
Ta
(γTa ;ATa) + e−rC

(I)
Ta,v,G(Ta+1) ◦ h

A
Ta
(WTa , ATa , γTa)},

V
(I)
C (Ta) = sup

γTa∈[0,max((WTa−ηbATa )
+,G(Ta)ATa )]

{pTaf
I
Ta

(
γTa ;ATa , G(Ta)

)
+ e−rC

(I)
Ta,v,G(Ta)

◦ hI
Ta

(
WTa , ATa , γTa ;G(Ta)

)
}.

To show the calculation of V
(A)
C (Ta), we observe that f

A
Ta
(·;ATa) and hA

Ta
(WTa , ATa , ·) are both

convex on [−BATa , 0] and [0, (WTa − ηbATa)
+] by eqs. (2.4) and (2.5a). Since V (I)

(
·, ·, v, Ta +

1;G(Ta + 1)
)
is convex by the proof in part 1 of Theorem 3, we can similarly show that

C
(I)
Ta,v,G(Ta+1) ◦ h

A
Ta
(WTa , ATa , ·) is convex on [−BATa , 0] and [0, (WTa − ηbATa)

+]. By Corollary

32.3.2 in Rockafellar (1997), the optimal strategy γTa for V
(A)
C (Ta) is limited to: (i) γTa =

−BATa ; (ii) γTa = 0; (iii) γTa = (WTa − ηbATa)
+. Also, one can show that V

(A)
C (Ta) is convex

with respect to (WTa , ATa) using a similar argument of proving Lemma A.4 (see below).

Similarly for V
(I)
C (Ta), the optimal strategy γTa for V

(I)
C (Ta) is limited to: (i) γTa = 0;

(ii) γTa = G(Ta)ATa ; (iii) γTa = WTa − ηbATa . Moreover, V
(I)
C (Ta) is convex with respect to

(WTa , ATa).
We define the two mappings FA

Ta
: R× R → R and F I

Ta
: R× R → R as follows:

FA
Ta
(x, y) = V

(A)
C (Ta) with WTa = x and ATa = y
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and
F I
Ta
(x, y) = V

(I)
C (Ta) with WTa = x and ATa = y

Also, we define the mapping F Ta : R× R → R× R by

F Ta(x, y) :=

(
FA
Ta
(x, y)

F I
Ta
(x, y)

)
,

where FA
Ta

and F I
Ta

are seen to be convex. Then eq. (A.1) can be rewritten as

V (A)(W,A, v, Ta) = pTa−1qTa−1WTa +max ◦F Ta(WTa , ATa),

where the operator “max” is defined by max(x, y) = x1{x≥y} + y1{x<y}. By applying Property
A.1, V (A)(·, ·, v, Ta) is convex due to convexity of the two operators: max and F Ta .

The above arguments can be applied inductively to obtain Parts (2a) and (2b) in Theorem 3.

Proof of Property A.2
To show Property A.2, it suffices to show

f(x̂, ŷ) ≤ θf(x1, y1) + (1− θ)f(x2, y2), ∀θ ∈ (0, 1), (A.2)

where (
x̂
ŷ

)
= θ

(
x1
y1

)
+ (1− θ)

(
x2
y2

)
.

By virtue of the homogeneous property in Property A.2, eq. (A.2) is equivalent to

f

(
x̂

ŷ
, 1

)
≤ θ̂f

(
x1
y1
, 1

)
+ (1− θ̂)f

(
x2
y2
, 1

)
, (A.3)

with θ̂ =
θy1
ŷ

∈ (0, 1). Indeed, by observing x̂
ŷ
= θ̂ x1

y1
+ (1 − θ̂)x2

y2
and convexity of f(·, 1), we

can establish eq. (A.2).

Proof of Lemma A.3
On any withdrawal date, 1 ≤ i ≤ T − 1, we deduce from eq. (2.7) that

V (I)(W,A, v, i;G0) = pi−1qi−1Wi + sup
γi∈[0,max(Wi−ηbAi,G0Ai)]

{pif I
i (γi;Ai, G0)

+ e−rC
(I)
i,v,G0

◦ hI
i (Wi, Ai, γi;G0)} (A.4)

If V (I)(·, ·, v, i + 1;G0) is convex, then C
(I)
i,v,G0

(·, ·) is convex due to Property 1, eq. (3.1a) and

Property A.2. Notice that hI
i (Wi, Ai, ·;G0) is convex on [0, G0Ai] and [G0Ai,Wi−ηbAi] (the later

interval becomes empty when Wi − ηbAi < G0Ai). Together with monotonicity of C
(I)
i,v,G0

(x, y)

on both x and y, C
(I)
i,v,G0

◦ hI
i (Wi, Ai, ·;G0) is convex on [0, G0Ai] and [G0Ai,Wi − ηbAi] by

Property A.1. As a result, we can easily show that pif
I
i (·;Ai, G0)+ e

−rC
(I)
i,v,G0

◦hI
i (Wi, Ai, ·;G0)

is convex on [0, G0Ai] and [G0Ai,Wi − ηbAi].
Since the supremum of a convex function on a closed bounded convex set must occur at one

of the extreme points of the set (Corollary 32.3.2 in Rockafellar, 1997), the optimal strategy γi
shown in (A.4) is limited to (i) γi = 0, (ii) γi = G0Ai and (iii) γi = Wi − ηbAi. Hence, Claim
A.3 is proved.

30



Proof of Lemma A.4
It suffices to show that V (I)(·, A, v, i;G0) is convex due to eq. (3.1a) and Property A.2. We
define

Ŵ = θW1 + (1− θ)W2, ∀θ ∈ (0, 1),

and let γ̂∗ be the optimal strategy for V (I)(Ŵ , A, v, i;G0). Also, we let γ1 and γ2 be the candi-
date strategies (not necessary to be optimal) for V (I)(W1, A, v, i;G0) and V

(I)(W2, A, v, i;G0),
respectively. We observe that γ̂∗ is limited to the following three choices according to Claim
A.3: (i) γ̂∗ = 0; (ii) γ̂∗ = G0Ai; (iii) γ̂∗ = Ŵ − ηbAi.

For the case of γ̂∗ = Ŵ − ηbAi, we set γ1 = max(W1 − ηbAi, G0Ai) and γ2 = max(W2 −
ηbAi, G0Ai). We have

V (I)(Ŵ , A, v, i;G0) = pi−1qi−1Ŵ + pif
I
i (γ̂

∗;Ai, G0)

= pi−1qi−1Ŵ + pi
[
(Ŵ − ηbAi −G0Ai)(1− ki) +G0Ai

]
= θ

[
pi−1qi−1W1 + pi(W1 − ηbAi −G0Ai)(1− ki) + piG0Ai

]
+(1− θ)

[
pi−1qi−1W2 + pi(W2 − ηbAi −G0Ai)(1− ki) + piG0Ai

]
≤ θ[pi−1qi−1W1 + pif

I
i (γ1;Ai, G0)]

+(1− θ)[pi−1qi−1W2 + pif
I
i (γ2;Ai, G0)]

≤ θV (I)(W1, A, v, i;G0) + (1− θ)V (I)(W2, A, v, i;G0).

The above inequalities hold since γ1 and γ2 are the admissible strategies for V (I)(W1, A, v, i;G0)
and V (I)(W2, A, v, i;G0), respectively.

For the case of γ̂∗ = G0Ai, we set γ1 = γ2 = G0Ai. Since hI
i (·, Ai, G0Ai;G0) is convex

by virtue of eq. (2.5b), so C
(I)
i,v,G0

◦ hI
i (·, Ai, G0Ai;G0) is also convex. Since γ̂∗ is the adopted

optimal strategy, we have

V (I)(Ŵ , A, v, i;G0)

= pi−1qi−1Ŵ + pif
I
i (G0Ai;Ai, G0)

+e−rE[V (I)(W,A, v, i+ 1;G0)|(Wi+ , Ai+) = hI
i (Ŵ , Ai, G0Ai;G0), vi+ = v]

= pi−1qi−1Ŵ + pif
I
i (G0Ai;Ai, G0) + e−rC

(I)
i,v,G0

◦ hI
i (Ŵ , Ai, G0Ai;G0)

≤ pi−1qi−1Ŵ + pif
I
i (G0Ai;Ai, G0) + e−r[θC

(I)
i,v,G0

◦ hI
i (W1, Ai, G0Ai;G0)

+(1− θ)C
(I)
i,v,G0

◦ hI
i (W2, Ai, G0Ai;G0)]

= θ[pi−1qi−1W1 + pif
I
i (G0Ai;Ai, G0) + e−rC

(I)
i,v,G0

◦ hI
i (W1, Ai, G0Ai;G0)]

+(1− θ)[pi−1qi−1W2 + pif
I
i (G0Ai;Ai, G0) + e−rC

(I)
i,v,G0

◦ hI
i (W2, Ai, G0Ai;G0)]

≤ θV (I)(W1, A, v, i;G0) + (1− θ)V (I)(W2, A, v, i;G0).

For the last case where γ̂∗ = 0, we can establish in a similar manner that

V (I)(Ŵ , A, v, i;G0) ≤ θV (I)(W1, A, v, i;G0) + (1− θ)V (I)(W2, A, v, i;G0).

Hence, Lemma A.4 is proved. �.
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Appendix B - Backward induction for calculating the modified nor-
malized value functions and terminal condition

We show how to derive a backward induction for calculating U (I)(W̃ , v, i;Gnk
) and U (A)(W̃ , v, i)

and derive the terminal condition for Û (I)(W̃ , v, T − 1;Gnk
). Recall that when W̃i ≤ ηb,

U (I)(W̃ , v, i, Gnk
) equals to zero. Therefore we can restrict our attention to the condition that

W̃i > ηb. Based on eqs. (4.4), (4.17), and (4.8), we can express the normalized value functions

in terms of the Fourier transform integrals. When we compute E[Ṽ (I)(W̃ , v, i+ 1;Gnk
)
∣∣W̃i+ =

ϕ
(5)
i (W̃i), vi] in eq. (4.4), it is necessary to distinguish the two cases by comparing ϕ

(5)
i (W̃i;Gnk

)

with zero. An unified formula for V (I)(W̃ , v, i;Gnk
) can be expressed as follows

Ṽ (I)(W̃ , v, i;Gnk
)

= pi−1qi−1W̃i +max

{
pi

[
Gnk

+ (1− κi)(W̃i − ηb −Gnk
)
]
,

e−rψ
(4)
i (W̃i)

[
piqie

r−ηpϕ
(4)
i (W̃i) + g(I)(i+ 1;Gnk

)

+
1

2π

∫ ∞

−∞
e−(α+iβ) log ϕ

(4)
i (W̃i)

J∑
j=1

Û (I)(β, eζj , i+ 1)Ψ̃ (−α− iβ, ζj, γi)wj dβ

]
,

piG+ e−rψ
(5)
i (W̃i;Gnk

)

[
piqie

r−ηpϕ
(5)
i (W̃i;Gnk

) + g(I)(i+ 1;Gnk
) + 1{

ϕ
(5)
i (W̃i;Gnk

)>0
}

∗ 1

2π

∫ ∞

−∞
e−(α+iβ) log ϕ

(5)
i (W̃i;Gnk

)

J∑
j=1

Û I(β, eζj , i+ 1)Ψ̃ (−α− iβ, ζj, γi)wj dβ

]}
.

(B.1)

The last term is included conditional on ϕ
(5)
i (W̃i;Gnk

) > 0. Using the relation (4.11) between

U (I)(W̃ , v, i;Gnk
) and Ṽ (I)(W̃ , v, i;Gnk

), and performing the computation on a set of nodes, we

can obtain a recursive equation (4.20a) for U (I)(W̃ , v, i;Gnk
). Likewise, Ṽ (A)(W̃ , v, i) can be

derived easily by combining eqs. (4.5) and (4.16) when W̃i > ηb. Therefore, an application of

eq. (4.11) gives the result for Ũ (A)(W̃ , v, i) in eq. (4.23a).
At time T − 1, based on eqs. (4.4) and (4.18), one can easily obtain the closed form repre-

sentation for the normalized value function as follows

Ṽ (I)(W̃ , v, T − 1;Gnk
)

= pT−2qT−2W̃T−1 +max
{
pT−1Gnk

+ pT−1(1− κT−1)(W̃T−1 − ηb −Gnk
),

pT−1(W̃T−1 − ηb)
+, pT−1Gnk

+ pT−1(W̃T−1 − ηb −Gnk
)+
}

= pT−1Gnk
+ pT−1(W̃T−1 − ηb −Gnk

)+.

We then have

U (I)(W̃ , v, T − 1;Gnk
) = Ṽ (I)(W̃ , v, T − 1;Gnk

)−
(
pT−2qT−2W̃T−1 + g(I)(T − 1;Gnk

)
)

= pT−1(W̃T−1 − ηb −Gnk
)+,

leading to eq. (4.19) for Û (I)(mh, eζj , T − 1;Gnk
).
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Figure 1: Plot of the price of GLWB against the cycle of ratchet events under two penalty
schemes: Penalty 1 and Penalty 2.
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Figure 2: Plot of the price of GLWB against the volatility of variance ϵ under varying values
of correlation coefficient ρ.
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Figure 3: Plots of the optimal withdrawal boundaries for GLWB at time t = 1 under different
values for the contractual withdrawal rate and upper bound of additional purchase. Here,
“Withdraw 1” and “Withdraw 2” are depicted in Table 4, Ta = 20, and other model and
contract parameter values are shown in Tables 1 and 2.
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Figure 4: Plots of the optimal initiation regions in the W̃ -t plane under varying values of the
contractual withdrawal rate G(t), bonus rate bi and variance vt. In the “Base case” shown
in Figure 4a, we choose bi = 0.06, vt = 0.04, G(t) = 0.05. We modify one parameter from
the “Base case” as labelled in each of Figures 4b-4d. Here, B = 0.3, Ta = 20, and the other
parameter values are shown in Tables 1 and 2.
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Figure 5: Plots of the optimal initiation region in the W̃ -x0 plane on the first withdrawal date
under varying values of the contractual withdrawal rate Gx0(t), additional purchase parameter
B and penalty charge rate x0kt. In the “Base case” shown in Figure 5(a), we choose B =
0.3, Gx0(t) = 0.05 and the penalty scheme is taken from Table 8. We modify one parameter
from the “Base case” as labelled in each of Figures 5b-5d. Here, Ta = 20, vt = 0.04 and the
other parameter values are shown in Tables 1, 2 and 8.
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