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Abstract
Unlike conventional convertible bonds, contingent convertible (CoCo) bonds are converted
into equity shares of the issuing bank subject to certain trigger mechanisms (accounting
and/or regulatory trigger) when the issuing bank is under financial nonviable state. We
consider pricing of these CoCo bonds using the contingent claims approach, where the state
variables are the stock price and Tier 1 capital ratio. We use the Parisian feature to model
the regulatory trigger where equity conversion is triggered when the capital ratio stays un-
der the nonviable state consecutively for a certain period of time. The accounting trigger is
modeled using the one-touch barrier feature associated with the capital ratio. The Parisian
trigger feature adds one extra path dependent state variable in the pricing model of a CoCo
bond. We design effective numerical algorithms for pricing the CoCo bonds using the ex-
tended Fortet method that avoid adding one extra state variable for the Parisian feature of
regulatory trigger. Pricing properties of the CoCo bonds under both regulatory trigger and
accounting trigger are explored.

Keywords: CoCo bonds, conversion triggers, Parisian feature, Fortet method

1 Introduction

The contingent convertible (CoCo) bonds are hybrid equity-credit securities that are designed
to have the loss absorption mechanism, where the CoCo bond is converted into shares of
the issuing bank when the bank is under financial nonviable state. This equity conversion
feature serves to lower the debt/equity ratio when the bank is in the state of nonviability.
Another loss absorption mechanism is via predefined principal writedown of the principal.
Since their first launch in 2009, the growth of the issuance of CoCo bonds has been quite
phenomenal, with issuance amount more than 120 billion US dollars by 2015. From the
investors’ perspective, CoCo bonds pay a high coupon rate that compensates the potential
loss absorption liabilities. From the issuer’s perspective, the CoCo bonds can be counted as
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additional Tier 1 capital even under the more stringent regulatory requirement imposed after
the financial tsunami in 2008. Regulators have been demanding more loss absorbency within
hybrid capital, holding the view that investors of these capital instruments can contribute
to the recovery phase of a distressed firm.

The loss absorption mechanism is activated either by regulator’s discretion based on
judgment about solvency prospects of the issuing bank and / or mechanical trigger based on
the capital ratio that falls below some preset threshold value. The capital ratio trigger can
be either set contractually in terms of the book value of the Common Equity Tier 1 capital
as a ratio of the risk-weighted assets or the market value of the ratio of the bank’s stock
market capitalization to its assets. The details of these trigger mechanisms can be found
in Avdjiev et al. (2013). There are subtleties in the actual implementation of these trigger
mechanisms. Due to the general lack of transparency on the criteria used by regulators in
activating the discretionary trigger, timing of the activation is highly uncertain. There may
be a lagged effect in the activation of the book value trigger since accounting reports are
published infrequently. Glasserman and Nouri (2012) present a thorough discussion on the
risk implication of CoCo bonds under various conversion mechanisms.

The pricing of CoCo bonds poses great challenge, in particular, the modeling of uncer-
tainty of the timing of conversion trigger. Wilkens and Bethke (2014) present an empirical
assessment of selected pricing models of CoCo bonds. They categorize the pricing models
into three types: structural models, equity derivatives models and credit derivatives models.
The structural models use the fundamental information of issuing banks asset and liabilities
structure, and impose contingent capital conversion into equity when certain trigger mech-
anism is activated. However, equity value is an option on the firm value, so optionality on
equity value becomes a compound option on the firm value process. Brigo et al. (2015) use
the structural-default approach that considers two different thresholds for the firm value, the
first one triggering equity conversion and the second one triggering default. On the other
hand, Wilkens and Bethke (2014) advocate the use of equity derivatives models due to its
straightforward modeling and interpretation of the conversion mechanism. For example, De
Spiegeleer and Schoutens (2012) model conversion trigger by the first time that the stock
price crosses a barrier level from above in their equity derivatives model. In general, equity
derivatives models have better tractability due to its simplicity as one-dimensional pricing
models since the stock price is the only single state variable. However, this may not reflect
the contractual reality in CoCo bonds where conversion into equity is triggered based on
the capital ratio falling below a preset threshold. In the credit derivatives models, conver-
sion trigger is based on the credit spreads or the risk premia of credit default swaps (CDS).
Pelger (2012) argue that defining the conversion trigger in terms of credit spreads or CDS
premia may circumvent unobservability of the firm value process. With the advantage of
rapid adjustment to new information, credit spreads and CDS premia reflect new changes
in the firm value in a timely fashion. Using the reduced form approach, Cheridito and Xu
(2015a) model the arrival of the conversion trigger in a CoCo bond by the first jump of a
time-changed Poisson process.

In this paper, we propose a two-state pricing model using the joint stochastic process of
the Tier 1 capital ratio and stock price as the underlying state variables. The capital ratio
is included in the pricing model since it appears as part of the contractual specification.
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Under Basel III, the minimum trigger level in terms of the ratio of Common Equity Tier 1
capital to risk-weighted assets required for a CoCo bond to be qualified as Additional Tier
1 capital is 5.125%. Many CoCo bonds have set their trigger levels at this value. Since
equity conversion occurs upon activation of trigger, so it is more direct to use the stock
price as the underlying state variable rather than the firm value process. We would like to
incorporate both the mechanical trigger and regulatory trigger in our CoCo bond pricing
model. Mechanical trigger is activated when the capital ratio hits the one-touch threshold
level from above. The regulatory trigger is modeled by the event of breaching the allowable
cumulative occupation time that the capital ratio is staying below some threshold value that
warns against potential nonviability of the issuing bank. The use of consecutive occupation
time in modeling regulatory trigger follows a similar approach used in modeling default risk
in defaultable debts using the notion of occupation times (Makarov et al., 2015). This allows
for a situation in which the issuing firm may be temporarily in the state of financial distress.
The regulatory trigger occurs only when the excursion time period of staying in distressed
state exceeds certain level. In our CoCo bond pricing model, we set the warning threshold to
be above the mechanical trigger threshold of mandatory equity conversion. The regulatory
trigger mechanism resembles the cumulative Parisian feature on the knock-out condition in
barrier style derivatives. The dimensionality of the pricing model increases by one due to an
inclusion of this extra Parisian state variable.

Following the approach in Cheridito and Xu (2015b) and Chung and Kwok (2016), we
model the capital ratio directly as a diffusion process and consider the random times of
breaching the various thresholds as first passage times under the joint equity-capital ratio
process. Unlike the stock price process which can be observed continuously, the capital ra-
tio process is observed only infrequently. This may pose technical challenges in performing
calibration of the parameters. Ritzema (2015) suggests the use of CDS rates in the cali-
bration procedure. Cheridito and Xu (2015b) propose an improved procedure of computing
the Q-survival probabilities inferred from the CDS rates using a reduced form method. The
papers by Ritzema (2015) and Cheridito and Xu (2015b) provide details on the procedures
of calibrating the capital ratio. They also consider pricing and hedging CoCo bonds using
tradeable securities, like stocks, credit default swaps and interest rate swaps, to hedge against
various risk factors in the joint equity-capital ratio models. De Spiegeleer et al. (2017) pro-
pose the use of observable CoCo bond prices to calibrate the implied capital ratio volatility.
Since calibration of the model parameters can be performed using tradeable securities, this
justifies the use of a risk neutral measure in the pricing models.

In the design of an effective numerical algorithm for computing the fair value of a CoCo
bond, we adopt the Fortet method that was first used for pricing defaultable debts un-
der stochastic interest rates (Longstaff and Schwartz, 1995; Collin-Dufresne and Goldstein,
2001). Later, the Fortet method was extended by Bernard et al. (2005, 2006, 2008) in their
series of papers on pricing various types of barrier style derivatives under stochastic interest
rates. Another application of the Fortet method is presented by Coculescu et al. (2008) in
pricing defaultable sensitive claims under imperfect information. The Fortet method solves
an integral equation for the determination of the first passage time to a barrier under the joint
Gaussian process by making use of the strong Markov property of the underlying Gaussian
process. We manage to extend the Fortet method in pricing a CoCo bond in two aspects.
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Firstly, we deal with two barriers, the upper warning threshold and the lower mandatory
trigger threshold on the capital ratio. Secondly, the curse of an additional Parisian state
variable in the CoCo bond pricing model is resolved. The computational complexity of our
extended Fortet method remains to be the same as that of the pricing algorithm for pricing
one-touch single-barrier options under joint Gaussian process.

The paper is organized as follows. In the next section, we use the equity derivatives ap-
proach to construct the pricing model of a CoCo bond under both mechanical and regulatory
trigger mechanisms. The stochastic process of the Tier 1 capital ratio is modeled as a mean
reversion Geometric Brownian motion that is correlated with the Geometric Brownian mo-
tion of the stock price process. The pricing model includes the usual cash flows of coupons
and terminal par payment, together with the feature of conversion into equity under the
two conversion mechanisms. The equity conversion is activated either under the one-touch
barrier criterion (mechanical trigger) or the Parisian cumulative occupation time criterion
(regulatory trigger) based on the path realization of the stochastic process of the Tier 1 cap-
ital ratio. In Section 3, we consider an extension of the Fortet method to devise an effective
numerical algorithm for pricing a CoCo bond with the Parisian feature and one-touch barrier
feature of equity conversion. We achieve dimension reduction in the pricing algorithm via
the determination of the auxiliary CoCo bond value function at the Tier 1 capital ratio that
is slightly below the warning threshold of non-viability. In Section 4, we present numerical
pricing results and performance analysis of the algorithm. We also present numerical studies
of the pricing properties of the CoCo bonds under various market conditions. Summary and
conclusive remarks are presented in the last section.

2 Model formulation

Similar to the pricing model of conventional convertible bonds, the value of a CoCo bond is
decomposed into the bond component and equity component. Unlike conventional convert-
ible bonds where conversion into equity occurs when the underlying stock price is performing
well, conversion into shares of the issuing bank in a CoCo bond occurs when the Tier 1 cap-
ital ratio either stays below the warning threshold G consecutively for a period of d (years)
or hits an one-touch conversion barrier level B, where B < G. These two trigger mecha-
nisms of mandatory equity conversion are called the Parisian trigger and one-touch trigger,
respectively. Provided that no trigger event is activated throughout the contractual life of
the CoCo bond, the CoCo investor is entitled to receive the bond par F at bond’s maturity
and the coupon payment stream at the annualized rate of c for the whole life of the bond.
When the CoCo bond is terminated prematurely due to either one of the two conversion
triggers, the bond is converted into N shares of the underlying stock. It is common to set a
floored value K on the stock price at equity conversion so that the CoCo bond value upon
conversion has a lower floor value. The payoff of equity conversion at the random conversion
time τ is given by N max(Sτ , K).

Let St and Yt denote the price process of the underlying stock and the logarithm of the
value process of the Tier 1 capital ratio, respectively. Under a risk neutral measure Q, the
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dynamics of St and Yt are assumed to evolve as follows:

dSt

St

= (r − q) dt+ σ
(√

1− ρ2 dW 1
t + ρ dW 2

t

)
, (2.1a)

dYt = α(µ− Yt) dt+ σY dW 2
t , (2.1b)

where St follows the usual Geometric Brownian motion and Yt follows the mean reversion
process with mean reversion level µ and reversion rate α, W 1

t and W 2
t are two independent

standard Brownian motions. Here, the correlation coefficient ρ, riskfree interest rate r,
dividend yield q, stock price volatility σ, Tier 1 capital volatility σY , µ and α are assumed
to be constant.

We let T be the maturity date of the CoCo bond and time zero be the time of initiation
of the CoCo bond. At the time of issuance of the CoCo bond, the issuing bank should not
be under the nonviable state; so we observe Y0 > lnG > lnB. One-touch trigger occurs at
the first random time τB at which Yt hits the logarithm of the lower barrier lnB from above;
that is,

τB = inf {s ≥ 0 : Ys = lnB|S0, Y0} . (2.2a)

On the other hand, monitoring of Yt staying below the warning threshold lnG is initiated
at the first passage time that Yt hits lnG from above; and monitoring of nonviability is
discontinued once Yt goes above lnG. Regulatory equity conversion (Parisian trigger) occurs
when Yt stays below lnG consecutively for a period of d years, conditional on Yt staying above
lnB throughout. Let Ht,lnG denote the excursion time that the log capital ratio process Yt

stays below lnG in its most recent excursion to the region below lnG; that is,

Ht,lnG = (t− ht,lnG)1{Yt≤lnG},

where
ht,lnG = sup {u ≤ t : Yu = lnG} .

Given the time period d, the right-continuous inverse of the excursion time is defined by

τP = inf {t ≥ 0 : Ht,lnG ≥ d} . (2.2b)

That is, τP is the first random time at which the occupation time to the region below
lnG reaches d years so that the Parisian trigger occurs. As a summary, the CoCo bond
terminates due to one-touch trigger when τB < min{τP , T} and regulatory equity conversion
occurs provided that τP < min{τB, T}. The CoCo bond survives until maturity T , provided
that T < min{τP , τB}.

We let ci be the discrete coupon amount received on the coupon payment date ti, i =
1, 2, · · · , n, where ci = c(ti − ti−1)F . Here, c denotes the constant annualized coupon rate
of the CoCo bond and F is the bond par. We take t0 = 0 and tn = T for convenience. The
discrete coupon ci is received at ti, i = 1, 2, · · · , n, and the par F is received at T , provided
that the CoCo bond survives at ti and T , respectively. The sum of the coupons and par in
present value received contingent upon survival of the CoCo bond gives the bond component
of the CoCo bond. The equity component of the bond is given by the present value of the
shares received upon mandatory conversion under either the Parisian trigger or one-touch
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trigger. Under the risk neutral pricing measure Q, the time-0 value of the CoCo bond is
given by

V0(S0, Y0;T ) = EQ

[
n∑

i=1

cie
−rti1{ti<min{τP ,τB}} + e−rTF1{T<min{τP ,τB}}

+N max{SτP , K}e−rτP1{τP≤min{τB ,T}}

+N max{SτB , K}e−rτB1{τB≤min{τP ,T}}|S0, Y0

]
, (2.3)

where Y0 > lnG > lnB and K is the floored value of the stock price at equity conversion.
In our subsequent exposition, it is convenient to use Xt = lnSt as the state variable, where
the dynamics of Xt is governed by

dXt =

(
r − q − σ2

2

)
dt+ σ

(√
1− ρ2 dW 1

t + ρ dW 2
t

)
,

so that Xt and Yt is a joint Gaussian process.
We denote the time-t value function of the CoCo bond by Vt(Xt, Yt;T ). The determina-

tion of the joint density of (τP , XτP ) poses the major challenge in the pricing calculation of
V0(X0, Y0;T ). We would like to explore an alternative pricing approach to resolve the tech-
nical difficulties. The issuing firm enters into the monitoring state of financial nonviability
when Yt falls a small distance ε below the warning threshold lnG from above. We define the
random first passage time of Ys, s ≥ t, hitting lnG− ε from above by

τ−G,ε = inf{s ≥ t : Ys = lnG− ε|Xt, Yt}, Yt > lnG. (2.4a)

Under the continuous time model, we take the limit ε → 0+, and define

τ−G = lim
ε→0+

τ−G,ε. (2.4b)

We introduce τ−G,ε as an immediate step since we adopt a finite but small ε in our later
numerical pricing algorithms. We adopt the notation: (lnG)± = limε→0+ lnG± ε. Since the
Parisian feature based on the consecutive occupation time staying below lnG is activated
once the logarithm of capital ratio Yt crosses lnG from above, it is instructive to define the
auxiliary value function of the CoCo bond to be V G

t (Xt;T ) as follows:

V G
t (Xt;T ) = Vt(Xt, (lnG)−;T ). (2.5)

The key ingredient in our continuous time pricing formulation is to express Vt(Xt, Yt;T )
in terms of V G

t (Xt;T ), coupons and par contingent on survival. The pricing calculations
mainly involve the joint density of (τ−G , Xτ−G

), the numerical approximation of which can be
obtained by the Fortet method. Assuming Yt > lnG, the time-t value of the discrete coupons
received within the time period (t, s] is represented by

c(t, s) =
n∑

i=1

cie
−r(ti−t)1{ti∈(t,s]}.
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Under the risk neutral measure Q, we let f−
G (u, x) denote the conditional joint density

function of (τ−G , Xτ−G
), where

f−
G (u, x)dudx = Q(τ−G ∈ (u, u+ du), Xτ−G

∈ (x, x+ dx)|Xt, Yt).

Conditional on Yt > lnG, based on the strong Markov property of the joint Gaussian process
of Xt and Yt, we deduce that

Vt(Xt, Yt;T ) =Et
Q

[[
c(t, T ) + e−r(T−t)F

]
1{τ−G>T}

+
[
c(t, τ−G ) + e−r(τ−G−t)V G

τ−G
(Xτ−G

;T )
]
1{τ−G≤T}

]
=

∫ ∞

−∞
[c(t, T ) + e−r(T−t)F ]Q(τ−G > T |Xt, Yt) dx

+

∫ T

t

∫ ∞

−∞
[c(t, u) + e−r(u−t)V G

u (x;T )]f−
G (u, x) dxdu, 0 ≤ t ≤ T, (2.6)

where Et
Q denotes the expectation under Q conditional on Xt and Yt.

Next, we present the formulation of V G
t (Xt;T ). There are 3 possible scenarios to be

considered: (i) leaving the monitoring state at a later time before maturity, (ii) mechanical
conversion into equity under the one-touch trigger, (iii) regulatory conversion into equity
under the Parisian trigger. The quantitative modeling of these 3 scenarios is summarized
below.

1. When the logarithm of capital ratio crosses lnG+ε from below prior to the occurrence
of the Parisian trigger or one-touch trigger, the CoCo bond leaves the monitoring state
and the clock of counting the excursion time of staying between lnG and lnB is set to
be zero. For a finite but small value of ε, we define

τ+G,ε = inf{s ≥ t;Ys = lnG+ ε|Xt, Yt = lnG− ε},

and the corresponding continuous time limit is defined by

τ+G = lim
ε→0+

τ+G,ε.

This scenario occurs when τ+G < min{τB, t+ d} and the value function at τ+G becomes
Vτ+G

(Xτ+G
, (lnG)+;T ).

2. Mechanical conversion into equity occurs at τB, where τB < min{τ+G , t + d}. The
corresponding payoff of the CoCo bond at τB is N max{eXτB , K}.

3. When the Tier 1 capital ratio stays between G and B consecutively for a time pe-
riod of d, where t + d < min(τB, τ

+
G ), regulatory conversion into equity occurs. The

corresponding payoff of the CoCo bond at t+ d is N max{eXt+d , K}.
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We define the marginal density function of Xt+d conditional on t + d < min{τ+G , τB} to
be

FG+,B(x)dx = Q(t+ d < min{τ+G , τB}), Xt+d ∈ (x, x+ dx)|Xt, Yt = lnG−).

The conditional joint density functions fG+(u, x) and fB(u, x) are similarly defined by

fG+(u, x)dxdu = Q(τ+G ∈ (u, u+ du), Xτ+G
∈ (x, x+ dx)|Xt, Yt = lnG−)1{τ+G<min{τB ,t+d}},

fB(u, x)dxdu = Q(τB ∈ (u, u+ du), XτB ∈ (x, x+ dx)|Xt, Yt = lnG−)1{τB<min{τ+G ,t+d}}.

For t+ d < T , the time-t auxiliary value function V G
t (Xt;T ) is then given by

V G
t (Xt;T ) =

∫ t+d

t

∫ ∞

−∞
f+
G (u, x)[c(t, u) + e−r(u−t)Vu(x, lnG

+;T )] dxdu

+

∫ t+d

t

∫ ∞

−∞
fB(u, x)[c(t, u) + e−r(u−t)N max{ex, K}] dxdu

+

∫ ∞

−∞
FG+,B(x)[c(t, t+ d) + e−rdN max{ex, K}] dx. (2.7)

Lastly, for t + d > T , the regulatory trigger would not occur since the time to maturity is
less than the accumulated excursion time required for activating the Parisian trigger. In this
case, the pricing formulation is much simplified since only the one-touch trigger remains. We
may simply set τP = ∞ in eq. (2.3) and perform the expectation calculation based on the
knowledge of the joint density function of (τB, XτB).

There do not exist analytic formulas for the above conditional density functions of the
first passage times. In this paper, we employ the extended Fortet method to derive the
recursive schemes for calculating the numerical approximation of these conditional density
functions (see Section 3). As part of the derivation procedure of the recursive Fortet schemes,
it is necessary to derive an analytic formula of the distribution function of Yt conditional on
varying level of Xt that is defined as follows:

L(x, y, t; x0, y0, t0)dx = Q(Yt ≤ y,Xt ∈ (x, x+ dx)|Xt0 = x0, Yt0 = y0).

Thanks to the joint Gaussian distribution of Xt and Yt, it can be shown that

L(x, y, t;x0, y0, t0) =
e
−

[
x−x0−

(
r−q−σ2

2

)
(t−t0)

]2
2σ2(t−t0)√

2πσ2(t− t0)
N

(
y − µY

ΣY

)
, (2.8a)

where

µY = y0e
−α(t−t0) + µ[1− e−α(t−t0)]

+
ρσσY

α
[1− e−α(t−t0)]

σ2(t− t0)

[
x− x0 −

(
r − q − σ2

2

)
(t− t0)

]
,

Σ2
Y =σ2(t− t0)−

{
ρσσY

α
[1− e−α(t−t0)]

}2

σ2(t− t0)
.

8



The derivation of eq. (2.8a) is presented in Appendix A. One can also obtain the analytic
expression of an alternative distribution function defined as follows:

M(x, y, t; x0, y0, t0)dx = Q(Yt > y,Xt ∈ (x, x+ dx)|Xt0 = x0, Yt0 = y0)

=
e
−

[
x−x0−

(
r−q−σ2

2

)
(t−t0)

]2
2σ2(t−t0)√

2πσ2(t− t0)

[
1−N

(
y − µY

ΣY

)]
. (2.8b)

The earlier papers by Bernard et al. (2005, 2006, 2007) on pricing barrier options under
stochastic interest rates employ the Fortet method to derive the density function of the first
passage time to single barrier. Since we have the lower barrier B and upper barrier G in
our CoCo pricing model, so it is necessary to derive two sets of equations for the individual
first passage time to each of these two barriers. Let yl and yu be the respective lower barrier
and upper barrier of the process Yt, where yl < Yt0 < yu; and let τyl and τyu denote the first
passage time of Yt hitting yl and yu, respectively. We define the following conditional joint
density functions:

fl(s, ξ) dsdξ = Q(τyl ∈ (s, s+ ds), τyl < τyu , Xτyl
∈ (ξ, ξ + dξ)|Xt0 = x0, Yt0 = y0);

fu(s, ξ) dsdξ = Q(τyu ∈ (s, s+ ds), τyu < τyl , Xτyu ∈ (ξ, ξ + dξ)|Xt0 = x0, Yt0 = y0).

By the strong Markov property of the joint process of Xt and Yt, and considering the disjoint
events {τyu < τyl} and {τyl < τyu}, we deduce the following pair of integral equations for the
conditional first passage time density functions:

L(x, y, t; x0, y0, t0)

=

∫ t

t0

∫ ∞

−∞
fl(s, ξ)L(x, y, t; ξ, yl, s) dξds+

∫ t

t0

∫ ∞

−∞
fu(s, ξ)L(x, y, t; ξ, yu, s) dξds; (2.9a)

and

M(x, y, t;x0, y0, t0)

=

∫ t

t0

∫ ∞

−∞
fl(s, ξ)M(x, y, t; ξ, yl, s) dξds+

∫ t

t0

∫ ∞

−∞
fu(s, ξ)M(x, y, t; ξ, yu, s) dξds. (2.9b)

In the next section, we derive the recursive schemes for calculating the numerical approx-
imation of the first passage time density functions by performing discretization of the above
pair of integral equations. We then show how to use the approximate density function values
to compute the fair value of the CoCo bond through numerical integration of the integral
representation formula of the value functions shown in eqs. (2.6) and (2.7).

3 Construction of the numerical algorithm

The numerical algorithm for pricing the CoCo bond with both mechanical conversion (one-
touch trigger) and regulatory conversion (Parisian trigger) involves the following sequential
steps:

9



1. Determination of the numerical approximation of the density functions of the first
passage times to the two barriers.

2. Calculation of the price functions Vt(Xt, Yt;T ) and V G
t (Xt;T ) where t > T − d. When

the time to expiry is less than d, the Parisian trigger becomes immaterial.

3. Calculation of the price functions Vt(Xt, Yt;T ) and V G
t (Xt;T ) where 0 ≤ t < T − d,

when both the mechanical conversion and regulatory conversion are under active mode.

As in most numerical algorithms, it is necessary to approximate the infinite domain of
Xt by a finite computational domain [xmin, xmax], where xmin and xmax are chosen such that
the probability of Xt staying outside the finite domain [xmin, xmax] is negligibly small. We
discretize the computational domain of [xmin, xmax]× [0, T ] by nx spatial grids and nT time
steps, where nx∆x = xmax−xmin and nT∆t = T . Here, ∆x and ∆T are the spatial stepwidth
and time step, respectively. Note that the grid points in the computational domain are
characterized by (xi, tj), where xi = xmin+ i∆x, i = 0, 1, ..., nx and tj = j∆t, j = 0, 1, ..., nT .

First, we would like to derive the recursive schemes that compute the numerical approx-
imation of the density/ distribution functions of the first passage times at varying values of
the stock price. This is done by performing discretization of the pair of integral equations
for the first passage time density functions. We define the following discrete grid values for
the first passage time density/ distribution functions as numerical approximation of their
continuous counterparts:

(i) q(m, i; y) ≈ Q(τy ∈ (tm, tm +∆t), Xτy ∈ (xi, xi +∆x)|X0, Y0), Y0 > y;

(ii) ql(i; y) ≈ Q(τy > tl, Xtl ∈ (xi, xi +∆x)|X0, Y0), tl > 0;

(iii) qy1<y2(m, i) ≈ Q(τy1 ∈ (tm, tm +∆t), τy1 < τy2 , Xτy1
∈ (xi, xi +∆x)|X0, Y0),

Y0 ∈ (y1, y2);

(iv) qy2<y1(m, i) ≈ Q(τy2 ∈ (tm, tm +∆t), τy2 < τy1 , Xτy2
∈ (xi, xi +∆x)|X0, Y0),

Y0 ∈ (y1, y2);

(v) qd(i; y1, y2) ≈ Q(min(τy1 , τy2) > d,Xd ∈ (xi, xi +∆x)|X0, Y0), Y0 ∈ (y1, y2).

Here, we do not state explicitly the dependence of these numerical density and distribution
functions on the initial values X0 and Y0 for notational simplicity.

Single-barrier discrete first passage time density and distribution

The first two discrete first passage time density and distribution function, q(m, i; y) and
ql(i; y), involve only single barrier y, so one may employ a similar approach of that of the
recursive Fortet scheme proposed by Bernard et al. (2008). We take t0 = 0 and assume
Y0 > y, and suppose Yt falls below y at some later time tl > 0, then Yt must hit the barrier y
at some time τy earlier than tl. By the strong Markov property of the joint process Xt and
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Yt, and using the law of total probability, we obtain

L(xi, y, tl;x0, y0, t0) dx

=

∫ tl

0

∫ ∞

−∞
Q(τy = u,Xu = ξ|X0 = x0, Y0 = y0)

Q(Ytl < y,Xtl ∈ (xi, xi + dx)|Xu = ξ, Yu = y) dξdu

=

∫ tl

0

∫ ∞

−∞
Q(τy = u,Xu = ξ|X0 = x0, Y0 = y0) dξdu [L(xi, y, tl; ξ, y, u)dx]; (3.1)

By performing discretization of the above integral equation, we have

L(xi, y, tl; x0, y0, t0) ≈
l∑

m=0

nx∑
k=0

q(m, k; y)L(xi, y, tl;xk, y, tm). (3.2)

Recall that L(xi, y, tl;x0, y0, t0) admits closed form formula [see eq. (2.8a)]. It is desirable to
derive a recursive scheme to determine q(m, i; y) over successive time level m and at varying
values of xi.

At initiation, it is obvious that q(0, i; y) = 0 since L(xi, y, t0; x0, y0, t0) = 0 for y0 ̸= y.
Suppose we have obtained values for q(m, i; y),m = 0, 1, ..., l, we would like to derive a
recursive scheme to determine q(l+1, i; y) at varying values of i. By virtue of the discretized
scheme in eq. (3.2), we deduce that

L(xi, y, tl+1;x0, y0, t0) ≈
l∑

m=0

nx∑
k=0

q(m, k; y)L(xi, y, tl+1;xk, y, tm)

+
nx∑
k=0

q(l + 1, k; y)L(xi, y, tl+1;xk, y, tl+1).

Note that

L(xi, y, tl+1; xk, y, tl+1) =

{
1 if k = i

0 otherwise
;

so we obtain the following recursive formula for q(l + 1, i; y):

q(l + 1, i; y) = L(xi, y, tl+1; x0, y0, t0)−
l∑

m=0

nx∑
k=0

q(m, k; y)L(xi, y, tl+1;xk, y, tm). (3.3)

Next, we show how to determine ql(i; y) in terms of q(m, i; y) and M(xi, y, tl;x0, y0, t0).
Suppose Y0 > y while Ytl > y, then either Yt hits the barrier y from above before time tl or
Yt never hits the barrier between times 0 and tl. Again, by the strong Markov property of
the joint process of Xt and Yt, conditioning on the first passage time τy, we obtain

M(xi, y, tl;x0, y0, t0) dx

=

∫ tl

0

∫ ∞

−∞
Q(τy = u,Xu = ξ|X0 = x0, Y0 = y0)

Q(Ytl > y,Xtl ∈ (xi, xi + dx)|Xu = ξ, Yu = y) dξdu

+Q(τy > tl, Xtl ∈ (xi, xi + dx)|X0 = x0, Y0 = y0). (3.4)
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Note that τy > tl would imply Ytl > y implicitly. By performing discretization of eq. (3.4),
we obtain

ql(i; y) = M(xi, y, tl;x0, y0, t0)−
l∑

m=0

nx∑
k=0

q(m, k; y)M(xi, y, tl; xk, y, tm) (3.5).

Two-barrier discrete first passage time density and distribution

To deal with the presence of two barriers in our CoCo pricing model, it is necessary to
determine qy1<y2(m, i), qy2<y1(m, i) and qd(i; y1, y2). In a similar manner, we perform the
discretization of eqs. (2.9a,b) as follows:

L(xi, y1, tl;x0, y0, t0) =
l∑

m=0

nx∑
k=0

qy1<y2(m, k)L(xi, y1, tl;xk, y1, tm)

+
l∑

m=0

nx∑
k=0

qy2<y1(m, k)L(xi, y1, tl; xk, y2, tm);

M(xi, y2, tl;x0, y0, t0) =
l∑

m=0

nx∑
k=0

qy1<y2(m, k)M(xi, y2, tl;xk, y1, tm)

+
l∑

m=0

nx∑
k=0

qy2<y1(m, k)M(xi, y2, tl;xk, y2, tm);

where y0 ∈ (y1, y2).
Again, we would like to construct the recursive scheme that computes qy1<y2(l, i) at

successive time levels tl, l = 0, 1, ... and varying values of xi, i = 0, 1, ..., nx. At initiation,
we deduce that

qy1<y2(0, i) = L(xi, y1, t0;x0, y0, t0) = 0;

qy2<y1(0, i) = M(xi, y2, t0;x0, y0, t0) = 0.

Given the values of qy1<y2(k, i) and qy2<y1(k, i) for k = 0, 1, ...,m, we would like to derive
the recursive scheme that computes qy1<y2(m + 1, i) and qy2<y1(m + 1, i). By observing the
following relations:

M(xm, y2, tl+1;xk, y1, tl+1) = 0

and

M(xm, y2, tl+1; xk, y2, tl+1) =

{
1 if k = m

0 otherwise
;

and following a similar technique used in the single-barrier case, we obtain

qy1<y2(m+ 1, i) =L(xi, y1, tm+1; x0, y0, t0)−
m∑
k=0

nx∑
j=0

qy2<y1(k, j)L(xi, y1, tm+1; xj, y2, tk)

−
m∑
k=0

nx∑
j=0

qy1<y2(k, j)L(xi, y1, tm+1;xj, y1, tk); (3.6a)
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and

qy2<y1(m+ 1, i) =M(xi, y2, tm+1; x0, y0, t0)−
m∑
k=0

nx∑
j=0

qy2<y1(k, j)M(xi, y2, tm+1; xj, y2, tk)

−
m∑
k=0

nx∑
j=0

qy1<y2(k, j)M(xi, y2, tm+1;xj, y1, tk). (3.6b)

Lastly, in order to derive a numerical approximation scheme for finding qd(i; y1, y2) where
Y0 ∈ (y1, y2), we observe that the logarithm of the capital ratio Yd at a later time d stays
within (y1, y2) provided that (i) Yt ∈ (y1, y2) for 0 ≤ t ≤ d, (ii) τy1 < min{τy2 , d} and
Yd ∈ (y1, y2), (iii) τy2 < min{τy1 , d} and Yd ∈ (y1, y2). Again, by the strong Markov property
of the joint process Xt and Yt and using the law of total probability, we obtain

Q(Yd ∈ (y1, y2), Xd ∈ (xi, xi + dx)|X0, Y0)

=Q(min{τy1 , τy2} > d,Xd ∈ (xi, xi + dx)|X0, Y0)

+

∫ d

0

∫ ∞

−∞
Q(τy1 = u, τy1 < τy2 , Xu = ξ|X0, Y0)

Q(Yd ∈ (y1, y2), Xd ∈ (xi, xi + dx)|Xu = ξ, Yu = y1) dξdu

+

∫ d

0

∫ ∞

−∞
Q(τy2 = u, τy2 < τy1 , Xu = ξ|X0, Y0)

Q(Yd ∈ (y1, y2), Xd ∈ (xi, xi + dx)|Xu = ξ, Yu = y2) dξdu.

Let nd be the number of time steps corresponding to the time period d, where nd∆t = d.
By discretization of the above equation, we obtain

qd(i; y1, y2) =L(xi, y2, d;X0, Y0, t0)− L(xi, y1, d;X0, Y0, t0)

−
nd∑

m=0

nx∑
j=0

qy1<y2(m, j)[L(xi, y2, d;xj, y1, tm)− L(xi, y1, d; xj, y1, tm)]

−
nd∑

m=0

nx∑
j=0

qy2<y1(m, j)[L(xi, y2, d;xj, y2, tm)− L(xi, y1, d; xj, y2, tm)]. (3.7)

Numerical approximation of the price functions

The price function Vt(Xt, Yt;T ) can be represented in an integral form as shown in eq. (2.6),
which involves the auxiliary value function V G

u (x;T ), conditional joint density f−
G (u, x) and

marginal density function F−
G (x). For t + d < T , the auxiliary value function V G

t (Xt;T )
admits the integral representation [see eq. (2.7)] that involves the marginal density function
FG+,B(x) and conditional density functions fG+(u, x) and fB(u, x).

Recall from eq. (2.4) that V G
t (Xt;T ) and Vt(Xt, Yt;T ) are related to each other by

taking Yt → lnG − ε, where ε → 0+, under the continuous time formulation. We assume
that the regulatory authority would initiate monitoring of the issuing bank when the issuer’s
capital ratio falls slightly below G and the monitoring phase is terminated when the capital
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ratio rises slightly above G. In our numerical algorithm, we choose a finite small positive
constant ε such that the monitoring phase is initiated when Yt moves down to lnG − ε
and monitoring is terminated when Yt rises above lnG + ε. We are then interested to find
numerical approximation to the price functions Vt(Xt, lnG + ε;T ) and V G

t (Xt;T ) in terms
of the numerical approximation to the marginal density functions derived in the above. This
is done by performing numerical integration of the integral formulas of Vt(Xt, Yt;T ) and
V G
t (Xt;T ).
Since the Parisian trigger becomes ineffective when the time to maturity is less than d,

or t ≥ T − d, it is necessary to separate our numerical calculations in the two separate cases
(i) t ≥ T − d and (ii) 0 ≤ t < T − d. In our subsequent exposition, we write q(m, i; y)|X0,Y0 ,
ql(i, y)|X0,Y0 , etc. to specify the initial values for Xt and Yt to be X0 and Y0, respectively for
better clarity.

(i) t ≥ T − d
Suppose the discrete time level tm ∈ [T − d, T ], we then have

Vtm(xi, lnG+ ε;T ) ≈
nT∑
l=m

nx∑
j=0

q(l −m, j; lnB)|xi,lnG+ε[c(tm, tl) + e−r(tl−tm)N max{exj , K}]

+
nx∑
j=0

qnT−m(j; lnB)|xi,lnG+ε[c(tm, T ) + e−r(T−tm)F ]; (3.8a)

and

V G
tm(xi;T ) ≈

nT∑
l=m

nx∑
j=0

q(l −m, j; lnB)|xi,lnG−ε[c(tm, tl) + e−r(tl−tm)N max{exj , K}]

+
nx∑
j=0

qnT−m(j; lnB)|xi,lnG−ε[c(tm, T ) + e−r(T−tm)F ]. (3.8b)

(ii) 0 ≤ t < T − d
Suppose the time level tm ∈ [0, T − d], we have

Vtm(xi, lnG+ ε;T )

≈
nT∑
l=m

nx∑
j=0

q(l −m, j; lnG− ε)|xi,lnG+ε[c(tm, tl) + e−r(tl−tm)V G
tl
(xj;T )]

+
nx∑
j=0

qnT−m(j; lnG− ε)|xi,lnG+ε[c(tm, T ) + e−r(T−tm)F ]; (3.9a)
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and

V G
tm(xi;T )

≈
m+nd∑
l=m

nx∑
j=0

qlnB<lnG+ε(l −m, j)|xi,lnG−ε[c(tm, tl) + e−r(tl−tm)N max{exj , K}]

+

m+nd∑
l=m

nx∑
j=0

qlnG+ε<lnB(l −m, j)|xi,lnG−ε[c(tm, tl) + e−r(tl−tm)Vtl(xj, lnG+ ε;T )]

+
nx∑
j=0

qd(j; lnB, lnG+ ε)|xi,lnG−ε[c(tm, tm + d) + e−rdN max{exj , K}]. (3.9b)

In particular, the numerical approximation to the price function at initiation V0(X0, Y0;T )
is given by

V0(X0, Y0;T ) ≈
nT∑
l=0

nx∑
j=0

q(l, j; lnG− ε)|X0,Y0 [c(t0, tl) + e−rtlV G
tl
(xj;T )]

+
nx∑
j=0

qnT (j; lnG− ε)|X0,Y0 [c(t0, T ) + e−r(T−t0)F ]. (3.10)

4 Numerical results

In this section, we present numerical experiments that examine accuracy of numerical results
for the price function of the CoCo bond and analyze the order of convergence of the Fortet
algorithm. We also compare the Fortet algorithm with the Monte Carlo simulation method
with regard to accuracy and run time efficiency. Lastly, we examine pricing behavior of the
CoCo bonds under various model parameter values.

4.1 Numerical accuracy, order of convergence and computational
efficiency of the Fortet algorithm

First, we would like to examine the discretization errors arising from spatial and temporal
discretization of the computational domain. The parameter values used in our numerical
calculations were chosen to be: r = 0.03, q = 0.025, σ = 0.25, σY = 0.5, ρ = 0.3, α = 1.0488,
µ = ln 0.1, T = 2, F = 1000, c = 0.08, K = 2.5, d = 15

63
, N = 100, G = 0.075, B = 0.05. In

Table 1, we present the numerical values of the price function of the CoCo bond computed
using varying number of grids nx in the spatial x-domain and number of time steps nT in
the temporal domain. We observe that the change in numerical value of the price function is
almost insignificant with respect to different choices of nx. However, the choices of nT have
more significant impact on numerical accuracy of the price function since a fine resolution
of the first passage time is required for good numerical accuracy. In terms of computational
costs, the CPU time required increases roughly by a factor of 5 to 8 when nx is doubled and
a factor of 3 when nT is doubled.

15



Number of time
steps, nT

Number of x-
grids, nx

Numerical value
of price function

CPU time (in
seconds)

252
50 1050.3103 20.511
100 1050.0603 102.486
200 1050.0550 638.760

504
50 1035.3322 64.916
100 1035.1232 345.698
200 1035.1224 2851.536

Table 1: Impact of number of x-grids nx and time steps nT in the Fortet algorithm on
numerical accuracy of the price function and the CPU time. The CPU time required increases
roughly by a factor of 5-8 when nx is doubled and a factor of 3 when nT is doubled.

Number of time
steps, nT

Numerical value
of price function

Relative per-
centage error

Ratio of differ-
ence in values

252 1050.3103 3.3195%
504 1035.3322 1.8461%
1008 1025.9632 0.9245% 1.5987
2016 1020.8578 0.4222% 1.8351
4032 1018.2806 0.1687% 1.9810
8064 1017.0192 0.0446% 2.0431

Table 2: The difference between two consecutive iterations increases roughly by a factor of
two when the number of time steps is halved, indicating first order temporal accuracy of the
Fortet algorithm. The benchmark Monte Carlo simulation result using 10 million simulation
paths is 1016.5654.

Next, we performed another set of numerical tests to examine the order of convergence of
the Fortet algorithm with respect to the number of time steps nT . The same set of parameter
values in Table 1 are used to generate the numerical values of the price function in Table
2, except that nx is fixed to be 50. The numerical value of the price function of 1016.5654
was obtained by performing 10 million simulation paths in Monte Carlo simulation (used as
benchmark comparison for numerical accuracy). In Table 2, we observe that the ratio of the
relative errors is very close to 2. This indicates that the extended Fortet algorithm achieves
first order temporal accuracy.

4.2 Pricing behavior of the CoCo bonds

We would like to examine pricing behavior of the CoCo bonds under various model parameter
values. We examine the dependence of the price function of the CoCo bond, V0(X0, Y0;T ),
on X0, Y0 and T . In Figure 1, we show the plot of V0(X0, Y0;T ) against X0. The parameter
values used in the numerical calculations for the base case are: r = 0.03, q = 0.025, µ =
ln 0.1, σ = 0.25, σY = 0.5, ρ = 0.3, α = 1.0488, d = 15

63
, T = 2, F = 1000, c = 0.08,
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X0 Y0 d Probability of
Parisian trigger

Probability of
mechanical trigger

2 ln 0.15 d = 15
63

0.0979 0.0567
2 ln 0.12 d = 15

63
0.1339 0.0762

2 ln 0.09 d = 15
63

0.2126 0.1183
1.5 ln 0.12 d = 15

63
0.1345 0.0765

2 ln 0.12 d = 15
63

0.1339 0.0762
2.5 ln 0.12 d = 15

63
0.1340 0.0762

2 ln 0.12 d = 10
63

0.2301 0.0427
2 ln 0.12 d = 5

63
0.3678 0.0058

Table 3: Probability of the Parisian trigger and mechanical trigger at varying level of X0, Y0

and d.

N = 100, K = 2.5, G = 0.075, B = 0.05 and Y0 = ln 0.12. As expected, the price function
increases monotonically with respect to X0. Since the CoCo bond has a relatively high bond
component and low level of optionality in equity payoff, the impact of interest rate r on the
price function is more significant compared to the stock price volatility σ and correlation
coefficient ρ of the underlying joint process of Xt and Yt. Since the trigger conditions for
conversion are highly dependent on Yt, the capital ratio volatility σY has a stronger influence
on the price function compared to the stock price volatility σ. Next, we show the plot of
V0(X0, Y0;T ) against Y0 in Figure 2. The parameter values used in the numerical calculations
for the base case are the same as those for Figure 1, except that X0 is taken to be 2. The
price function is monotonically increasing with respect to Y0, an expected result. It is seen
that the mean reversion level µ has a stronger influence on the price function when compared
with the mean reversion speed α. A lower mean reversion level µ and a high mean reversion
speed α would decrease the value of the CoCo bond since the chance of equity conversion
becomes higher.

The consecutive occupation time factor d is the length of the time period that the regu-
latory authority allows the issuing firm to stay in distressed state before activating the loss
absorption mechanism. Since there has not yet a single case of regulatory trigger occurring
in CoCo bonds, we cannot calibrate the parameter d based on actual case studies. However,
it is instructive to analyze how d may impact the triggering mechanisms. We performed
numerical experiments to examine the impact of X0, Y0 and d on the respective probability
of the Parisian trigger and mechanical trigger (see Table 3). The numerical results were
obtained using Monte Carlo calculations with 16128 time steps and 1 million simulation
paths. The parameter values used in the calculations for the base case are the same as
those used for generating the plots in Figure 1. As revealed from the results in Table 3, the
level of Y0 and consecutive occupation time factor d have relatively strong influence on the
probability of the Parisian trigger and mechanical trigger. When d is chosen to be relatively
small, signifying stronger regulatory monitoring on financial state of the issuing bank, the
probability of the Parisian trigger increases quite significantly while that of the mechanical
trigger becomes smaller. As confirmed from the numerical results in Table 3, the stock price
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level X0 has almost insignificant impact on the probability of equity conversion. This is not
surprising since equity conversion is expected to be mostly dependent on the capital ratio.

5 Conclusion

We propose a two-state pricing model of the CoCo bond using the joint process of the
stock price and Tier 1 capital ratio. The accounting trigger of equity conversion into shares
of the bond issuer is activated when the capital ratio hits a lower threshold value while
the regulatory trigger is activated when the capital ratio stays under the nonviable state
consecutively for a certain period of time. The dimensionality of the CoCo bond pricing
model increases by one due to the inclusion of an extra Parisian state variable that models the
regulatory trigger mechanism. In this paper, we construct an effective numerical algorithm
that avoids adding an additional path dependent state variable for the Parisian feature of
regulatory trigger. The design of the algorithm is based on the extended Fortet method that
solves a pair of integral equations for the determination of the random first passage times of
the capital ratio process to the upper Parisian threshold (warning threshold of nonviability)
and the lower one-touch knock-out threshold. Dimension reduction in the pricing algorithm
is achieved via the determination of the auxiliary CoCo bond function at the Tier 1 capital
ratio that is slightly below the warning threshold of nonviability. As revealed from our
numerical experiments, the extended Fortet method is seen to compete favorably well in
terms of accuracy and run time efficiency when compared with the Monte Carlo simulation
method. Pricing properties of the CoCo bond price function under various model parameter
values are presented. The volatility parameters of the stock price process and capital ratio
process have relatively small influence on the price function when compared with the level of
interest rate, consistent with the dominant bond nature of the CoCo bond. The probability
of the Parisian trigger and mechanical trigger are strongly dependent on the level of capital
ratio and the length of the consecutive occupation time period staying within the nonviable
state.

6 Reference

Avdjiev, S., Kartasheva, A., Bogdanova, B., 2013. CoCos: a primer. BIS Quarterly Review,
43-56.

Bernard, C., Le Courtois, O., Quittard-Pinon, F., 2005. Market value of life insurance
contracts under stochastic interest rates and default risk. Insurance: Mathematics and
Economics, 36, 499-516.

Bernard, C., Le Courtois, O., Quittard-Pinon, F., 2006. Development and pricing of a new
participating contract. North American Actuarial Journal, 10(4), 179-195.

Bernard, C., Le Courtois, O., Quittard-Pinon, F., 2008. Pricing derivatives with barriers
in a stochastic interest rate environment. Journal of Economic and Dynamic Control, 32,
2903-2938.

18



Brigo, D., Garcia, J., Pede, N., 2015. CoCo bond pricing with credit and equity calibrated
first-passage firm value models. International Journal of Theoretical and Applied Finance,
18(3), 1550015 (31 pages).

Cheriditio, P., Xu, Z., 2015a. A reduced form CoCo model with deterministic conversion
intensity. Working paper of Princeton University.

Cheriditio, P., Xu, Z., 2015b. Pricing and hedging CoCos. Working paper of Princeton
University.

Chung, T.K., Kwok, Y.K., 2016. Enhanced equity-credit modeling for contingent convert-
ibles. Quantitative Finance, 16(10), 1511-1527.

Coculescu, D., Geman, H., Jeanblanc, M., 2008. Valuation of default-sensitive claims under
imperfect information. Finance and Stochastics 12, 195-218.

Collin-Dufresne, P., Goldstein, R.S., 2001. Do credit spreads reflect stationary leverage
ratios? Journal of Finance, 56 (5), 1929-1957.
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Appendix A – Derivation of eq. (2.8a)

From the dynamic equation for Xt,

dXt =

(
r − q − σ2

2

)
dt+ σ

(√
1− ρ2 dW 1

t + ρ dW 2
t

)
,

we obtain

E[Xt|Xt0 = x0] = x0 +

(
r − q − σ2

2

)
(t− t0),

var(Xt|Xt0 = x0) = σ2(t− t0).

Similarly, the mean and variance of the following mean reversion process of Yt, where

dYt = α(µ− Yt) dt+ σY dW 2
t ,

are found to be

E[Yt|Yt0 = y0] = y0e
−α(t−t0) + µ

[
1− e−α(t−t0)

]
,

var(Yt|Yt0 = y0) =
σ2
Y

2α

[
1− e−2α(t−t0)

]
.

As Xt and Yt is a joint Gaussian process, by the Projection Theorem, the mean and variance
of Yt|Xt are given by

µYt|Xt = E[Yt] +
cov(Xt, Yt)

var(Xt)
(Xt − E[Xt]) ,

Σ2
Yt|Xt

= var(Yt)−
cov(Xt, Yt)

2

var(Xt)
.

It is straightforward to obtain

cov(Xt, Yt|Xt0 = x0, Yt0 = y0) =
ρσσY

α

[
1− e−α(t−t0)

]
.

Finally, the distribution function of Yt conditional on varying level of Xt is given by the
product of the density function fXt and the conditional distribution function FYt|Xt as follows:

L(x, y, t; x0, y0, t0) = fXt(x;x0)FYt|Xt(y; y0)

=
1√

2πvar(Xt|Xt0)
e
−

{x−E[Xt|Xt0
=x0]}

2

2var(Xt|Xt0
)

∫ y

−∞

1√
2πΣ2

Y

e
− (ξ−µY )2

2Σ2
Y dξ

=
e
−

[
x−x0−

(
r−q−σ2

2

)
(t−t0)

]2
2σ2(t−t0)√

2πσ2(t− t0)
N

(
y − µY

ΣY

)
.
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Figure 1: Plot of the price function V0(X0, Y0;T ) against X0. The interest rate r and capital
ratio volatility σY are seen to have more significant impact on the price function when
compared with the stock price volatility σ and correlation coefficient ρ of the joint process
Xt and Yt.
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Figure 2: Plot of the price function V0(X0, Y0;T ) against Y0. The mean reversion level of
capital ratio µ shows stronger influence on the price function when compared with the mean
reversion speed α.
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