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Agenda

1. Product nature and uses of timer options

• Barrier options in the volatility space: knock-out depends

on the discrete realized variance hitting the preset variance

budget

• Hedge downside risk with timing uncertainty

• Capture volatility premium

2. Analytic pricing of timer options under the stochastic volatility

3/2-model

• Decomposition into a portfolio of timerlets

• Joint characteristic function of log-asset price and integrated

variance
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3. Numerical pricing of timer options using the Hilbert transform

algorithm

• The Fourier transform of a function multiplied by an indicator

function (barrier feature) is related to the Hilbert transform

of the Fourier transform: avoidance of nuisance of moving

between the real space and Fourier space to check the knock-

out condition

• Evaluation via the Sinc expansion: exponential decay of the

truncation errors
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Volatility misspecification risk

• The level of implied volatility is often higher than the realized

volatility, reflecting the risk premium due to uncertainty of the

future asset price movement.

• As revealed by empirical studies, 80% of the three-month calls

that have matured in-the-money were overpriced.

• In a timer option, we fix volatility and allow maturity to float.

This would resolve the volatility misspecification risk.
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Variance budget

At initiation of the timer option, the investor specifies an expected

investment horizon T and a target volatility σ0 to define a variance

budget

B = σ20T.

Let ti, i = 0,1,2, . . . , N , be the monitoring dates. Let τB be the first

time in the tenor of monitoring dates at which the discrete realized

variance exceeds the variance budget B, namely,

τB = min

j
∣∣∣∣∣∣

j∑
i=1

(
ln

Sti

Sti−1

)2
≥ B

∆.

Here, ∆ is the time interval between consecutive monitoring dates.

Termination date of a finite-maturity timer option = min(τB, T ),

where T is the preset mandated expiration date.
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Knocked out at τB, which is earlier than T
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Uses of timer options

• Portfolio managers can use timer put options on an index to

hedge their downside risk due to sudden market drops (with

uncertainty in timing). Cashflows from the timer put payoff are

received right after the incidence of market drop.

• If one feels the implied volatility in the market is too high cur-

rently, then one can capture the volatility risk premium by long-

ing a timer call and short a vanilla call. The volatility target is

set below the current implied volatility and the volatility risk is

captured by the difference in time value of the two options.
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Analytic pricing of discretely monitored finite-maturity timer

options under the stochastic volatility 3/2-model

Define the continuous integrated variance (quadratic variation) to

be It =
∫ t

0
Vs ds. We use It as a proxy of the discrete realized

variance for the monitoring of the first hitting time. We define τB
to be

τB = min

j
∣∣∣∣∣∣Itj ≥ B

∆.

This approximation does not introduce a noticeable error for daily

monitored timer options. Note that

C0(X0, I0, V0) = E0[e
−r(T∧τB)max(ST∧τB −K,0)]

= E0[e
−rTmax(ST −K,0)1{τB>T}

+ e−rτBmax(SτB −K,0)1{τB≤T}],

where K is the strike price and r is the constant interest rate.
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Decomposition into a portfolio of timerlets

The event {τB > t} is equivalent to {It < B}. Note that τB = tj+1

if and only if Itj < B and Itj+1 ≥ B. Therefore, we have

{τB ≤ T} =
N−1∪
j=0

{Itj < B, Itj+1 ≥ B}.

The price of a finite-maturity discrete timer call option can be con-

veniently computed by decomposing it into a portfolio of timerlets

as follows

C0 = E0[ e
−rTmax(ST −K,0)1{IT<B}]

+ E0

N−1∑
j=0

e−rtj+1

(
max(Stj+1 −K,0)1{Itj<B}

− max(Stj+1 −K,0)1{Itj+1
<B}

)]
.

The challenge is the modeling of the joint processes of {Stj+1, Itj}
and {Stj+1, Itj+1}.
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The 3/2 stochastic volatility model

Consider the 3/2 stochastic volatility model specified as follows:

dSt

St
= (r − q)dt+

√
Vt
(
ρdW1

t +
√
1− ρ2 dW2

t

)
,

dVt = Vt(θt − κVt)dt+ εV
3/2
t dW2

t ,

where W1
t and W2

t are two independent Brownian motions.

• The speed of mean reversion is now κVt, which is linear in Vt.

The mean reversion is faster when the instantaneous variance is

higher.

• The parameter ε cannot be interpreted as the same volatility of

variance in the Heston model.
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Partial Fourier transform of the triple joint density function

under 3/2 model

Write log asset price Xt = lnSt and integrated variance It =
∫ t
0 Vs ds,

where It is used as a proxy for the discrete realized variance used in

the barrier condition in the timer option.

Let G(t, x, y, v; t′, x′, y′, v′) be the joint transition density of the triple

(X, I, V ) from state (x, y, v) at time t to state (x′, y′, v′) at a later

time t′.

The joint transition density G satisfies the following three-dimensional

Kolmogorov backward equation:

−
∂G

∂t
=
(
r − q −

v

2

)
∂G

∂x
+

v

2

∂2G

∂x2
+v

∂G

∂y
+v(θt−κv)

∂G

∂v
+

ε2v3

2

∂2G

∂v2
+ρεv2

∂2G

∂x∂v
,

with the terminal condition:

G(t′, x, y, v; t′, x′, y′, v′) = δ(x− x′)δ(y − y′)δ(v − v′),

where δ(·) is the Dirac delta function.
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We define the generalized partial Fourier transform of G by Ǧ as

follows:

Ǧ(t, x, y, v; t′, ω, η, v′) =
∫ ∞

−∞

∫ ∞

0
eiωx

′+iηy′G(t, x, y, v; t′, x′, y′, v′)dy′dx′,

where the transform variables ω and η are complex variables. The

partial transform Ǧ also solves the above three-dimensional Kol-

mogorov equation with the terminal condition: Ǧ(t′, x, y, v; t′, ω, η, v′) =

eiωx+iηyδ(v − v′).

Note that Ǧ admits the following solution form:

Ǧ(t, x, y, v; t′, ω, η, v′) = eiωx+iηyg(t, v; t′, ω, η, v′),

where g satisfies the following one-dimensional partial differential

equation:

−
∂g

∂t
=
[
iω
(
r − q −

v

2

)
− ω2v

2
+ iηv

]
g+[v(θt−κv)+iωρεv2]

∂g

∂v
+

ε2v3

2

∂2g

∂v2
,

with the terminal condition:

g(t′, v; t′, ω, η, v′) = δ(v − v′).
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The double generalized Fourier transform on the log-asset and inte-

grated variance pair reduces the three-dimensional governing equa-

tion to a one-dimensional equation.

We manage to obtain

g(t, v; t′, v′)

= ea(t
′−t)At

Ct
exp

(
−
Atv + v′

Ctvv′

)
(v′)−2

(
Atv

v′

)1
2+

κ̃
ε2

I2c

 2

Ct

√
At

vv′

 ,

where I2c is the modified Bessel function of order 2c,

a = iω(r − q), κ̃ = κ− iωρε, At = e
∫ t′
t θs ds,

Ct =
ε2

2

∫ t′

t
e
∫ s
t θs′ds

′
ds, c =

√(
1

2
+

κ̃

ε2

)2
+

iω + ω2 − 2iη

ε2
.

Note that c is in general complex and the numerical valuation of a

modified Bessel function of complex order may pose some numerical

challenge.
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Solution procedure for obtaining g(t, v; t′, v′)

The reciprocal of the 3/2 process is a CIR process. Indeed, if we

define Ut =
1

Vt
, then Ut is governed by

dUt = [(κ+ ϵ2)− θtUt]dt− ϵ
√
UtdWt.

For any t′ > t, Ut′ follows a non-central chi-square distribution con-

ditional on Ut. The corresponding (conditional) density function is

given by

pU(Ut′|Ut) =
At

Ct
exp

(
−
AtUt′ + Ut

Ct

)(
AtUt′

Ut

)1
2+

κ
ϵ2

I
1+2κ

ϵ2

(
2

Ct

√
AtUt′Ut

)
.
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Evaluation of the timelets

To evaluate the series of expectations in the portfolio of timerlets,

we derive the explicit representation for the characteristic functions

of (Xtj , Itj) and (Xtj+1, Itj).

The characteristic function of (Xtj , Itj) is found to be

E0[e
iωXtj

+iηItj ] = eiωX0+iηI0h(t0, V0; tj, ω, η),

where

h(t, v; t′, ω, η) =
∫ ∞

0
g(t, Vt; t

′, ω, η, v′) dv′

= ea(t
′−t)Γ(β̃ − α̃)

Γ(β̃)

(
1

Ctv

)α̃
M

(
α̃, β̃,−

1

Ctv

)
,

α̃ = −
1

2
−

κ̃

ε2
+ c, β̃ = 1+ 2c,

Γ is the gamma function, M is the confluent hypergeometric func-

tion of the first kind.

15



Joint characteristic function of It and St across two successive time

points

The expectation calculation

E0[e
−rtj+1 max(Stj+1 −K,0)1{Itj<B}]

requires the joint characteristic function of It at tj and St at tj+1.

By virtue of a two-step expectation calculation, we obtain

E0[e
iωXtj+1

+iηItj ]

= eiωX0+iηI0
∫ ∞

0
g(t0, V0; tj, ω, η, v

′)h(tj, v
′; tj+1, ω,0) dv′.

Here, v′ is the dummy variable for the instantaneous variance Vtj.
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Iterated expectation

Working backward in time from tj+1 to tj, we compute Etj[e
iωXtj+1];

and from tj to t0, we compute E0[e
iωXtj

+iηItj ]. This is done by

setting η = 0 in h(tj, v
′; tj+1, ω,0) and integrating over v′ from 0 to

∞.
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Evaluation of expectation in the Fourier domain

We transform the product of the terminal payoff and transition

density function from the real domain to the Fourier domain via

Parseval’s theorem.

One-dimensional Parseval theorem

< f, g > =
∫ ∞

−∞
f(x)g(x) dx =

1

2π
< Ff(u),Fg(u) >

In the one-dimensional option pricing formulation, we may visualize

f(x)g(x) as the product of the density function and terminal payoff

while Ff(u)Fg(u) as the product of the characteristic function and

Fourier transform of the terminal payoff.
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Note that the pricing of the timerlets involves the joint process of

St and It (may or may not be at the same time point).

The Fourier transform of the terminal payoff (Stj+1 − K,0)1{Itj<B}
and (Stj+1 −K,0)1{Itj+1

<B} admit the same analytic representation

F̂ (ω, η) =
∫ ∞

−∞

∫ ∞

−∞
e−iωx−iηy(ex −K)+1{y<B} dxdy =

K1−iωe−iηB

(iω + ω2)iη
,

where x stands for lnStj+1 and y stands for Itj or Itj+1.

We take ω = ωR + iωI and η = ηR + iηI, where ωI < −1 and ηI > 0,

to ensure the existence of the two-dimensional Fourier transform.
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The finite-maturity discrete timer option price can be derived as

C0 =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−rT F̂ (ω, η)E0[e

iωXtN
+iηItN ] dωRdηR

+
N−1∑
j=0

1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−rtj+1

(
F̂ (ω, η)E0[e

iωXtj+1
+iηItj ]− F̂ (ω, η)E0[e

iωXtj+1
+iηItj+1]

)
dωRdηR

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F̂ (ω, η)H(ω, η) dωRdηR,

where

H(ω, η) = e−rT eiωX0+iηI0h(t0, V0; tN , ω, η) + eiωX0+iηI0
N−1∑
j=0

e−rtj+1

[∫ ∞

0
g(t0, V0; tj, ω, η, v

′)h(tj, v
′; tj+1, ω,0) dv′ − h(t0, V0; tj+1, ω, η)

]
.

Numerical challenge: Three-dimensional numerical integration is

required and the integrands involve the hypergeometric functions

with order that is complex.
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Plot of the finite-maturity discrete timer call option prices against

variance budget B. The discrete timer call option price tends to

that of the vanilla European call option (shown in the dashed line)

when B is sufficiently large.
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Plot of the finite-maturity discrete timer call option prices against

number of monitoring instants N . The dashed line represents the

finite-maturity timer call option price under continuous monitoring.
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Plot of the finite-maturity discrete timer call option price versus ma-

turity (mandated) under two different values of the variance budget.
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Hilbert transform algorithm

The underlying asset price process St and its instantaneous variance

vt under a risk neutral measure Q are assumed to follow the following

general stochastic volatility model

dSt

St
= (r − q) dt+

√
vt dWS

t ,

dvt = α(vt) dt+ β(vt) dW v
t ,

where Et[dWS
t dW v

t ] = ρ dt. Here, ρ is the correlation coefficient

between the pair of Brownian motions, q is the dividend yield, the

drift function α(vt) and the volatility function β(vt) are measurable

functions with respect to the natural filtration generated by the two

correlated Brownian motions.

We define the continuous realized variance over [0, t] by

It =
∫ t

0
vs ds.
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Choice of log-variance as the state variable

We define γt = lnVt, xt = ln
St

K
, where K is the strike price, ∆ be

the uniform time interval between successive monitoring instants.

We choose the log-variance instead of variance as the state variable

since the corresponding form of conditional density exhibits two

advantages.

• The left tail of the conditional density of log-variance decays to

zero more rapidly.

• The conditional densities of the log-variance processes for vary-

ing parameter values are more symmetric than those of the vari-

ance processes.
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Value function of discrete timer call option

Let Vtk(xtk, γtk, Itk) be the option value of the finite-maturity discrete

timer call option at monitoring time tk, k = 0,1, · · · , N , where xtk, γtk
and Itk denote the time-tk normalized log-asset return, log-variance

and realized variance, respectively.

Suppose we write the continuation value conditional on {Ik < B} as

Utk(xk, γk, Ik) = Etk[Vtk+1(xk+1, γk+1, Ik+1)],

then Vtk is the sum of the following two terms:

Vtk(xk, γk, Ik) = e−r∆Utk(xk, γk, Ik)1{Ik<B} +K(exk − 1)+1{Ik≥B},

k = 1,2, · · · , N − 1.
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Time-stepping calculations between successive monitoring dates

By the tower property and conditional on the log-variance process

γtk+1 at time tk+1, it follows that

Utk(xk, γk, Ik) = E
[
E[Vtk+1(xk+1, γk+1, Ik+1)|Ftk, γk+1]|Ftk

]
.

The outer expectation integral involves integration over the densi-

ty function pγ(γtk+1|γtk), which has analytic closed form under the

Heston and 3/2 stochastic volatility models.

• To evaluate the above three-dimensional expectation integral,

we apply an interpolation based quadrature rule for the outer

one-dimensional expectation integral and the Fourier transform

method for the inner two-dimensional expectation integral.

• Across a monitoring date, as exemplified by the barrier condition,

we can take advantage of the fast Hilbert transform method to

deal with the barrier feature associated with the accumulated

realized variance.
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FFT technique

We adopt the numerical quadrature rule to calculate the outer ex-

pectation integral. By performing discretization along the dimen-

sion of log-variance γtk+1 at the discrete nodes ζj, j = 1,2, · · · , J,
we obtain

Utk(xk, γk, Ik) ≈
J∑

j=1

wjpγ(ζj|γk)E
[
Vtk+1(xk+1, γk+1, Ik+1)|Ftk, γk+1 = ζj

]
,

where wj is the weight at the quadrature node ζj, j = 1,2, · · · , J.

Since only the joint conditional characteristic function of xk+1 and

Ik+1 is known, we apply the Fourier transform method to perform

the inner expectation calculations. To guarantee that the Fourier

transforms are well defined, we need to introduce a proper expo-

nential damping factor.
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Let w = α1 + iβ1 and u = α2 + iβ2, where α1 and α2 are constants.

At γtk+1 = ζj, xtk+1 = x and Itk+1 = y, we define

V
α1,α2
tk+1

(x, ζj, y) = eα1x+α2yVtk+1(x, ζj, y).

The parameters α1, α2 are chosen to insure the existence of the

generalized two-dimensional Fourier transform of Vtk+1(x, ζj, y) as

defined by

V̂
α1,α2
tk+1

(ζj;β1, β2) =
∫ ∞

−∞

∫ ∞

−∞
eiβ1x+iβ2yV

α1,α2
tk+1

(x, ζj, y) dxdy

=
∫ ∞

−∞

∫ ∞

−∞
ewx+uyVtk+1(x, ζj, y) dxdy,

where w = α1 + iβ1 and u = α2 + iβ2.
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By the renowned Parseval’s theorem, we can represent the inner

expectation as follows

E[Vtk+1(xk+1, γk+1, Ik+1)|Ftk, γk+1 = ζj]

=
∫ ∞

−∞

∫ ∞

−∞
Vtk+1(x, ζj, y) p(x, y|Ftk, γk+1 = ζj) dxdy

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
V̂

α1,α2
tk+1

(ζj;β1, β2)p̌(w, u|Ftk, γk+1 = ζj) dβ1dβ2.

Here, p̌(w, u|Ftk, γk+1 = ζj) = E
[
e−wxk+1−uyk+1|Ftk, γk+1 = ζj

]
is

visualized as the generalized inverse Fourier transform of the joint

conditional density function p(x, y|Ftk, γk+1 = ζj) of xtk+1 and Itk+1.
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It is convenient to express p̌(w, u|Ftk, γk+1 = ζj) in the following

analytic representation

p̌(w, u|Ftk, γk+1 = ζj)

= e−wxk−uIkE[e−w(xk+1−xk)−u(Ik+1−Ik)|Ftk, γk+1 = ζj].

Next, we express p̌ in terms of the conditional moment generating

function Ψ(w, u; γt, γs) = E[ew(xt−xs)+u(It−Is)|Fs, γt]. Here, we have

suppress the dependency of Ψ on t− s for notational convenience.

By the tower property, for s < t, we have

Ψ(w, u; γt, γs) = E

[
E[ew(xt−xs)+u(It−Is)|Fs, γt, It − Is]|Fs, γt

]
= E

[
E[ew(xt−xs)|Fs, γt, It − Is]e

u(It−Is)|Fs, γt

]
.
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We may express the inner expectation integral at γtk+1 = ζj by the

following two-dimensional inverse Fourier transform

E[Vtk+1(xk+1, γk+1, Ik+1)|Ftk, γk+1 = ζj]

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−wxk−uIkV̂

α1,α2
tk+1

(ζj;β1, β2)Ψ(−w,−u; ζj, γk) dβ1dβ2.

Here, we have set γtk+1 = ζj in the conditional moment generating

function Ψ(w, u; γk+1, γk).

Next, we show that Ψ(w, u; γt, γs) possesses closed form analytic rep-

resentation under the Heston model and the 3/2 stochastic volatility

model via the determination of the respective kernel function.
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Kernel functions for the Heston model and 3/2-model

The kernel function Ψ(w, u; γt, γs) is the input that characterizes the

specific stochastic volatility model. We derive the explicit represen-

tation of Ψ(w, u; γt, γs) for the Heston model and 3/2 stochastic

volatility model.

Under the general stochastic volatility model, the asset price process

admits the following representation

St = S0e
(r−q)t+at+

√
btW ,

where at and bt are defined by

at = ρ[f(vt)− f(v0)]− ρHt −
It

2
and bt = (1− ρ2)It,

with

Ht =
∫ t

0
h(vs) ds and f(vt) =

∫ √
vt

β(vt)
dvt.

Here, W is a standard normal random variable and h is defined by

h(vt) = α(vt)f
′
(vt) +

1

2
β2(vt)f

′′
(vt).
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Heston model

For the Heston stochastic volatility model, the dynamics for its

variance is defined by

dvt = λ(v̄ − vt) dt+ η
√
vt dW v

t .

In the Heston model, α(vt) = λ(v̄ − vt) and β(vt) = η
√
vt. It follows

that f(vt) = vt
η and h(vt) = λ(v̄−vt)

η .

We can rewrite the normalized log-asset return process as follows

xt = ln
S0

K
+(r−q)t+

ρ

η
(eγt − eγ0 − λv̄t)+

(
ρλ

η
−

1

2

)
It+

√
(1− ρ2)ItW.
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We obtain

Ψ(w, u; γt, γs)

= E

[
E[ew(xt−xs)|Fs, γt, It − Is]e

u(It−Is)|Fs, γt

]
= e

w
{
(r−q)(t−s)+ρ

η[e
γt−eγs−λv̄(t−s)]

}
Φ

(
−iw

(
ρλ

η
−

1

2

)
−

1

2
iw2(1− ρ2)− iu; eγt, eγs

)
,

where

Φ(ξ; γt, γs) = E[eiξ
∫ t
s vu du|γt, γs]

is the conditional characteristic function of the time-integrated log-

variance process
∫ t
s vu du.

With the use of the kernel function, one can express the two-

dimensional moment generating function Ψ in terms of the one-

dimensional characteristic function Φ.
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3/2 stochastic volatility model

The variance process evolves according to the following dynamics

dvt = λvt(v̄ − vt) dt+ ηv
3/2
t dW v

t .

The use of Itô’s formula gives the corresponding dynamics for 1
vt

d

(
1

vt

)
= λv̄

(
λ+ η2

λv̄
−

1

vt

)
dt−

η
√
vt

dW v
t .

The reciprocal of the variance process of the 3/2 model follows a

mean-reverting square-root process with parameters (λv̄, λ+η2

λv̄ ,−η).
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In this case, α(vt) = λvt(v̄ − vt) and β(vt) = ηv
3/2
t . It follows that

f(vt) = ln vt
η and h(vt) = λ

η

[
v̄ −

(
1+ η2

2λ

)
vt

]
.

The normalized log-asset return process can be expressed as in the

following form

xt = ln
S0

K
+(r−q)t+

ρ

η
[γt − γ0 − λv̄t]+

[
ρλ

η

(
1+

η2

2λ

)
−

1

2

]
It+

√
(1− ρ2)ItW.

Similarly, we have

Ψ(w, u; γt, γs)

= e
w
{
(r−q)(t−s)+ρ

η[γt−γs−λv̄(t−s)]
}

Φ

(
−iw

[
ρλ

η

(
1+

η2

2λ

)
−

1

2

]
−

1

2
iw2(1− ρ2)− iu; eγt, eγs

)
.
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Definition of the Hilbert transform

For any f ∈ Lp(R),1 ≤ p < ∞, we define the Fourier transform f̂ by

f̂ = Ff =
∫ ∞

−∞
eiβxf(x) dx,

and f̂ = Ff ∈ Lq(R) with 1
p + 1

q = 1.

For any f ∈ Lp(R),1 ≤ p < ∞, its Hilbert transform is defined by the

Cauchy principal value integral

Hf(x) =
1

π
PV

∫
R

f(y)

x− y
dy,

and Hf̂ ∈ Lq(R) with 1
p + 1

q = 1.

38



Two key properties of the Hilbert transform

For any b ∈ R, the Fourier transform of a function multiplied by an

indicator function 1(−∞,b) is related to the Hilbert transform of the

Fourier transform function by

F(1(−∞,b) · f)(β) =
1

2
f̂(ξ)−

i

2
eiβbH

(
e−iηbf̂(η)

)
(β).

The Hilbert transform can be evaluated based on the Sinc expansion

of an analytic function as follows

Hf(x) =
1

π
PV

∫
R

f(y)

x− y
dy =

∞∑
l=−∞

f(lh)
1− cosπ(x−lh)

h
π(x−lh)

h

, h > 0,

where h is the fixed discretization step.
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Fast Hilbert transform algorithm

The backward induction procedure in the Fourier domain using the

fast Hilbert transform algorithm for pricing finite-maturity discrete

timer options can be formulated as follows:

(i) We initiate our time stepping calculations at maturity tN . The

generalized Fourier transform of the terminal payoff admits the

analytic formula

V̂
α1,α2
tN

(ζj;β1, β2) = −
K

(α1 + iβ1)(α1 + iβ1 +1)(α2 + iβ2)
,

for j = 1,2, · · · , N .

Here, the constraints α1 < −1 and α2 < 0 should be observed

in order to guarantee the existence of the above generalized

Fourier transform.
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(ii) For k = N − 1, N − 2, · · · ,1, the numerical approximation of

V̂
α1,α2
tk

(ζp;β1, β2) is recursively calculated by computing a se-

quence of Hilbert transforms

V̂
α1,α2
tk

(ζp;β1, β2)

= e−r∆
[
1

2
Û
α1,α2
tk

(ζp;β1, β2)−
i

2
eiβ2BH

(
e−iβ

′
2BÛ

α1,α2
tk

(ζp;β1, β
′
2)
)
(β2)

]
−

Ke(α2+iβ2)B

(α1 + iβ1)(α1 + iβ1 +1)(α2 + iβ2)
, p = 1,2, · · · , N.
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(iii) We approximate Û
α1,α2
tk

(ζp;β1, β2) using the quadrature rule

Û
α1,α2
tk

(ζp;β1, β2) ≈
J∑

j=1

wjV̂
α1,α2
tk+1

(ζj;β1, β2)Ψ(−w,−u; ζj, ζp).

(iv) For the last step where k = 0, the timer call option value is

obtained by

Vt0(x0, ζp, I0)

≈
J∑

j=1

e−r∆wj

4π2

∫ ∞

−∞

∫ ∞

−∞
e−(α1+iβ1)x0e−(α2+iβ2)I0

V̂
α1,α2
t1

(ζj;β1, β2)Ψ(−w,−u; ζj, ζp) dβ1dβ2,

for p = 1,2, · · · , N .
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Sinc approximation

We consider the evaluation of the Hilbert transform in the following

form

q(β) = H
(
e−iηxf̂(η)

)
(β),

and the calculation of the two-dimensional inverse Fourier transform

g(x1, x2) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−iβ1x1e−iβ2x2ĝ(β1, β2) dβ1dβ2.

The Hilbert transform can be evaluated by the truncated Sinc ap-

proximation

qh,L(β) =
L∑

l=−L

e−ilhxf̂(lh)
1− cosπ(β−lh)

h
π(β−lh)

h

.
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The inverse Fourier transform can be evaluated numerically by the

following discretized and truncated operator:

gh1,M,h2,L(x1, x2) =
1

4π2

M∑
m=−M

L∑
l=−L

e−imh1x1e−ilh2x2ĝ(mh1, lh2)h1h2.

The trapezoidal sum approximation has been shown to be highly

accurate, exhibiting exponentially decaying discretization errors.

Computational complexity

The overall computational complexity of the fast Hilbert trans-

form algorithm for pricing finite-maturity discrete timer options is

O(NMJ2L logL), where N is the number of monitoring instants,

M , J and L are the truncation level parameters in the log-asset

dimension, log-variance dimension and realized variance dimension,

respectively.
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Heston model

S0 T r q B N λ η v̄ v0
100 1.5 0.015 0 0.087 300 2 0.375 0.09 0.087

Parameter values in the Heston model and finite-maturity discrete timer options

K ρ Hilbert MC RE(%)
-0.5 17.6905 17.6927 -0.0124

90 0 17.5517 17.5551 -0.0194
0.5 17.4910 17.4882 0.0160
-0.5 12.3996 12.4099 -0.0830

100 0 12.2804 12.2909 -0.0854
0.5 12.2647 12.2692 -0.0367
-0.5 8.4174 8.4313 -0.1649

110 0 8.3503 8.3634 0.1566
0.5 8.3716 8.3774 -0.0692

Comparison of the numerical results for the finite-maturity discrete

timer call options for varying strike prices K and correlation values ρ

obtained from the fast Hilbert transform algorithm with the bench-

mark results obtained using the Monte Carlo method (MC) under

the Heston model.
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3/2-model

S0 T r q B N λ η v̄ v0
100 1.5 0.015 0 0.087 200 22.84 8.56 0.218 0.087

Parameter values in the 3/2 model and finite-maturity discrete timer options

K ρ Hilbert MC RE(%)
-0.5 17.7155 17.7383 -0.1285

90 0 17.5778 17.5892 -0.0648
0.5 17.4923 17.5016 -0.0531
-0.5 12.4366 12.4594 -0.1830

100 0 12.3195 12.3328 -0.1078
0.5 12.2759 12.2856 -0.0790
-0.5 8.4608 8.4802 -0.2287

110 0 8.3951 8.4063 -0.1332
0.5 8.3897 8.3962 -0.0774

Comparison of the numerical results for finite-maturity discrete timer

call options for varying strike prices K and correlation values ρ ob-

tained from the fast Hilbert transform algorithm with the benchmark

results obtained using the Monte Carlo method (MC) under the 3/2

stochastic volatility model.
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Sensitivity analysis on volatility of variance η and correlation coeffi-

cient ρ under the Heston model

• The price function may not be a monotonically increasing func-

tion of η.

• We observe that when ρ = −0.5, the discrete timer call option

price firstly increases and then decreases with increasing value

of η.

• On the other hand, when ρ = 0.5, the discrete timer call option

price is a decreasing function of η.
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Sensitivity analysis under the Heston model

ρ η K = 90 K = 94 K = 98 K = 102 K = 106 K = 110
0.15 17.6571 15.3986 13.3621 11.5434 9.9315 8.5091

-0.5 0.3 17.7028 15.4356 13.3888 11.5585 9.9342 8.4989
0.45 17.6654 15.3651 13.2840 11.4197 9.7630 8.2986
0.15 17.5859 15.3234 13.2845 11.4650 9.8537 8.4333

0.5 0.3 17.5453 15.2842 13.2475 11.4307 9.8226 8.4056
0.45 17.4522 15.1898 13.1569 11.3472 9.7483 8.3413

Comparison of the numerical values for finite-maturity discrete timer

call option prices with varying values of strike prices, volatility of

variance and correlation coefficient under the Heston model.
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Conclusion

• By decomposing a timer option into a portfolio of timerlets,

we manage to price a finite-maturity timer option based on the

explicit representation of the joint characteristic function of log

asset price and its integrated variance. The computational time

for numerical evaluation of the joint characteristic function under

the 3/2-model can be quite substantially lengthy.

• Our numerical tests on pricing the finite-maturity discrete timer

options under the Heston model and 3/2 model demonstrate

high level of numerical accuracy and robustness of the fast

Hilbert algorithm for pricing options with exotic barrier feature.

The computational times required for pricing under different s-

tochastic volatility models do not differ significantly.
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• We manage to obtain the closed form formulas for the condition-

al joint characteristic function and moment generating function

of log asset price xt and integrated variance It.

• Hedging remains a challenge since the risk factors involve the in-

stantaneous variance and integrated variance, besides the stock

price. How to use a portfolio of stock and variance derivatives

in hedging remains an open question? Note that the integrated

variance determines the knock-out condition.
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