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Agenda

1. Stochastic volatility models

Asset price, St : dSt = µSt dt+
√
VtSt dZt

Instantaneous variance, Vt : dVt = κV α
t (θ − Vt)dt+ ϵV γdWt,

α = {0,1}, γ = {1/2,1,3/2}; dZtdWt = ρdt

• Affine stochastic volatility model with simultaneous jumps
• 3/2 - model

Joint moment generating functions / characteristic functions.

2. Analytic pricing of the third generation exotic variance products

• Gamma swaps: EQ

[∑N
k=1

Stk
St0

(
ln

Stk
Stk−1

)2]

• Corridor swaps: EQ

[∑N
k=1

(
ln

Stk
Stk−1

)2
1{L<Stk−1

≤U}

]
• Timer options: Knock-out contingent on achieving variance

budgets, subject to a mandated maximum

expiration date.
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Key results

• We manage to derive closed form pricing formulas for discrete

barrier-style variance derivatives (corridor or knock-out feature)

under stochastic volatility models.

• By virtue of the nice exponential affine structure of the Hes-

ton model, instead of deriving analytic approximation formulas

for discrete variance swaps from those of the continuous coun-

terparts, we obtain analytic pricing formulas for the continuous

variance swaps by taking the time interval between successive

monitoring dates to be zero. The direct solution of the contin-

uous variance swap model appears to be intractable.

• Analytic results for the joint characteristic function of the triple:

(lnSt, Vt,
∫ t
0 Vu du) of the 3/2-model are obtained.
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Gamma swaps on weighted discrete realized variance

Gamma swaps allow investors to acquire variance exposure propor-

tional to the underlying level. Given a tenor structure {t0, t1, · · · , tN},
the terminal payoff of the gamma swap is defined by

A

N

N∑
k=1

Stk

St0

ln Stk

Stk−1

2

−K.

where A is the annualized factor.

The share gamma of a derivative with value function Vt(St, t) is de-

fined to be St
∂2Vt

∂S2
t

. Unlike the vanilla swap which provides constant

cash gamma exposure, the gamma swap provides constant share

gamma exposure.
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Corridor variance swaps

The underlying price must fall inside a specified corridor (L,U ] (L ≥
0, U < ∞) in order for its squared return to be included in the

floating leg of the corridor variance swap.

Suppose the corridor is monitored on the underlying price at the old

time level tk−1 for the kth squared log return, the floating leg with

the corridor (L,U ] is given by

A

N

N∑
k=1

ln Stk

Stk−1

2

1{L<Stk−1
≤U}.
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Downside-variance swaps

The payoffs of downside-variance swaps and vanilla variance swaps

are sufficient to span all different payoffs of various corridor variance

swaps. An investor seeking crash protection may buy the downside-

variance swap since it can provide almost the same level of crash

protection as the vanilla variance swap but at a lower premium.

Goal: to find the fair strike price of a downside-variance swap with

an upper bound U whose payoff at maturity T is given by

A

N

N∑
k=1

(
ln

Stk

Stk−1

)2
1{Stk−1

≤U} −K.

An alternative definition is given by

A

N

N∑
k=1

(
ln

Stk

Stk−1

)2
1{Stk

≤U} −K.
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Finite-maturity discrete timer options

• The price of a vanilla option is determined by the level of implied

volatility quoted in the market. However, the level of implied

volatility is often higher than the realized volatility, reflecting

the risk premium due to the uncertainty of the future asset

price movement.

• For a finite-maturity timer call option, the buyer of the option

has the right to purchase the underlying asset at the preset

strike price at the first time when a pre-specified variance budget

is fully consumed by the accumulated realized variance of the

price process of the underlying asset or on the mandated preset

expiration date, whichever comes earlier.

• We fix volatility and allow maturity to float. This would re-

solve the volatility misspecification risk. As revealed by empir-

ical studies, 80% of the three-month calls that have matured

in-the-money were overpriced.
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Variance budget and mandated expiration date

At the initiation of the timer option, the investor specifies an ex-

pected investment horizon T0 and a target volatility σ0 to define a

variance budget

B = σ20T0.

Let τB be the first time in the tenor of monitoring dates at which the

discrete realized variance exceeds the variance budget B, namely,

τB = min

j
∣∣∣∣∣∣

j∑
i=1

(
ln

Sti

Sti−1

)2
≥ B

∆.

Here, ∆ is the time interval between consecutive monitoring dates.

The price of a finite-maturity discrete timer call option can be de-

composed into a portfolio of timerlets.
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Constant-elasticity-of-variance process for the instantaneous

variance Vt

dVt = κV α
t (θ − Vt)dt+ ϵV

γ
t dZt

The class of stochastic volatility models that use a constant-elasticity-

of-variance (CEV) process for the instantaneous variance exhibit

nice analytical tractability when the CEV parameter γ takes a few

specific values (0,1/2,1,3/2).

• Heston’s model corresponds to γ = 1/2. Though exhibiting the

best analytical tractability, it leads to downward sloping volatility

of variance smiles, contradicting with empirical findings from

market data.

• The choice of 3/2 fits best with the estimation of the CEV pow-

er in the instantaneous variance process using S&P 500 daily

returns data. It maintains a certain level of analytical tractabil-

ity. It can capture the volatility skew evolution better than the

Heston model.
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Heston stochastic volatility model with simultaneous jumps

(SVSJ)

Under a pricing measure Q, the joint dynamics of stock price St and

its instantaneous variance Vt under the Heston affine SVSJ model

assumes the form

dSt

St
= (r − λm) dt+

√
Vt dW

S
t + (eJ

S
− 1)dNt,

dVt = κ(θ − Vt) dt+ ε
√
Vt dW

V
t + JV dNt,

where WS
t and WV

t are a pair of correlated standard Brownian mo-

tions with dWS
t dWV

t = ρdt, and Nt is a Poisson process with con-

stant intensity λ that is independent of the two Brownian motions.

• JS and JV denote the random jump sizes of the log price and

variance, respectively.

• These random jump sizes are assumed to be independent of

WS
t , WV

t and Nt.
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Joint moment generating function of the Heston SVSJ model

Let Xt = lnSt. The joint moment generating function of Xt and Vt
is defined to be

E[exp(ϕXT + bVT + γ)],

where ϕ, b and γ are constant parameters.

Let U(Xt, Vt, t) denote the non-discounted time-t value of a contin-

gent claim with the terminal payoff function: UT (XT , VT ), where T

is the maturity date. Let τ = T − t, U(X,V, τ) is governed by the

following partial integro-differential equation (PIDE):

∂U

∂τ
=

(
r −mλ−

V

2

)
∂U

∂X
+ κ(θ − V )

∂U

∂V

+
V

2

∂2U

∂X2
+

ε2V

2

∂2U

∂V 2
+ ρεV

∂2U

∂X∂V

+ λE
[
U(X + JS, V + JV , τ)− U(X,V, τ)

]
.

11



The joint moment generating function (MGF) can be regarded as

the time-t forward value of the contingent claim with the terminal

payoff: exp(ϕXT+bVT+γ), so that the MGF also satisfies the PIDE.

Thanks to the affine structure in the SVSJ model, U(X,V, τ) admits

an analytic solution of the following form:

U(X,V, τ) = exp
(
ϕX +B(Θ; τ,q)V +Γ(Θ; τ,q) + Λ(Θ; τ,q)

)
.

Here, q = (ϕ b γ)T and we use Θ to indicate the dependence of

these parameter functions on the model parameters in the SVSJ

model.
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Riccati system of ordinary differential equations

The parameter functions B(Θ; τ,q), Γ(Θ; τ,q) and Λ(Θ; τ,q) satisfy

the following Riccati system of ordinary differential equations:

∂B
∂τ = −1

2(ϕ− ϕ2)− (κ− ρεϕ)B + ε2

2 B2

∂Γ
∂τ = rϕ+ κθB
∂Λ
∂τ = λ

(
E[exp(ϕJS +BJV )− 1]−mϕ

)
with the initial conditions: B(0) = b, Γ(0) = γ and Λ(0) = 0.

Canonical jump distributions

Suppose we assume that JV ∼ exp(1/η) and JS follows

JS|JV ∼ Normal(ν + ρJJ
V , δ2),

which is the Gaussian distribution with mean ν+ ρJJ
V and variance

δ2, we obtain

m = E[eJ
S
− 1] =

eν+δ2/2

1− ηρJ
− 1,

provided that ηρJ < 1.
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Under the above assumptions on JS and JV , the parameter functions

can be found to be

B(Θ; τ,q) =
b(ξ−e−ζτ + ξ+)− (ϕ− ϕ2)(1− e−ζτ)

(ξ+ + ε2b)e−ζτ + ξ− − ε2b
,

Γ(Θ; τ,q) = rϕτ + γ −
κθ

ε2

[
ξ+τ +2 ln

(ξ+ + ε2b)e−ζτ + ξ− − ε2b

2ζ

]
,

Λ(Θ; τ,q) = −λ(mϕ+1)τ + λeϕν+δ2ϕ2/2k2
k4

τ −
1

ζ

(
k1
k3

−
k2
k4

)
ln

k3e
−ζτ + k4

k3 + k4

,
with q = (ϕ b γ)T and

ζ =
√
(κ− ρεϕ)2 + ε2(ϕ− ϕ2),

ξ± = ζ ∓ (κ− ρεϕ),

k1 = ξ+ + ε2b,

k2 = ξ− − ε2b,

k3 = (1− ϕρJη)k1 − η(ϕ− ϕ2 + ξ−b),

k4 = (1− ϕρJη)k2 − η[ξ+b− (ϕ− ϕ2)].
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The 3/2 model

Consider the 3/2 stochastic volatility model specified as follows:

dSt

St
= (r − q)dt+

√
Vt
(
ρdW1

t +
√
1− ρ2 dW2

t

)
,

dVt = Vt(θt − κVt)dt+ εV
3/2
t dW2

t ,

where W1
t and W2

t are two independent Brownian motions.

• The speed of mean reversion is now κVt, which is linear in Vt.

The mean reversion is faster when the instantaneous variance is

higher.

• ε cannot be interpreted as the same volatility of variance in the

Heston model.
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Partial Fourier transform of the triple joint density function

under 3/2 model

Write Xt = lnSt and quadratic variation by It =
∫ t
0 Vs ds. The inte-

grated variance It is used as a proxy for the discrete realized variance

used in the barrier condition in a timer option. Let G(t, x, y, v; t′, x′, y′, v′)
be the joint transition density of the triple (X, I, V ) from state

(x, y, v) at time t to state (x′, y′, v′) at a later time t′.

The joint transition density G satisfies the following three-dimensional

Kolmogorov backward equation:

−
∂G

∂t
=
(
r − q −

v

2

)
∂G

∂x
+

v

2

∂2G

∂x2
+v

∂G

∂y
+v(θt−κv)

∂G

∂v
+

ε2v3

2

∂2G

∂v2
+ρεv2

∂2G

∂x∂v
,

with the terminal condition:

G(t′, x, y, v; t′, x′, y′, v′) = δ(x− x′)δ(y − y′)δ(v − v′),

where δ(·) is the Dirac delta function.
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We define the generalized partial Fourier transform of G by Ǧ as

follows:

Ǧ(t, x, y, v; t′, ω, η, v′) =
∫ ∞

−∞

∫ ∞

0
eiωx

′+iηy′G(t, x, y, v; t′, x′, y′, v′)dy′dx′,

where the transform variables ω and η can be complex numbers.

The partial transform Ǧ also solves the above PDE with the terminal

condition being Ǧ(t′, x, y, v; t′, ω, η, v′) = eiωx+iηyδ(v − v′).

Note that Ǧ admits the following solution form:

Ǧ(t, x, y, v; t′, ω, η, v′) = eiωx+iηyg(t, v; t′, ω, η, v′),

where g satisfies the following PDE:

−
∂g

∂t
=
[
iω
(
r − q −

v

2

)
− ω2v

2
+ iηv

]
g+[v(θt−κv)+iωρεv2]

∂g

∂v
+

ε2v3

2

∂2g

∂v2
,

with the terminal condition:

g(t′, v; t′, ω, η, v′) = δ(v − v′).
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The double generalized Fourier transform on the log-asset and inte-

grated variance pair reduces the three-dimensional governing equa-

tion to a one-dimensional equation. We manage to obtain

g(t, v; t′, ω, η, v′)

= ea(t
′−t)At

Ct
exp

(
−
Atv + v′

Ctvv′

)
(v′)−2

(
Atv

v′

)1
2+

κ̃
ε2

I2c

 2

Ct

√
At

vv′

 ,

where I2c is the modified Bessel function of order 2c,

a = iω(r − q), κ̃ = κ− iωρε, At = e
∫ t′
t θs ds,

Ct =
ε2

2

∫ t′

t
e
∫ s
t θs′ds

′
ds, c =

√(
1

2
+

κ̃

ε2

)2
+

iω + ω2 − 2iη

ε2
.

Note that c is in general complex and the numerical valuation of a

modified Bessel function of complex order may pose some challenge.
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Solution procedure

It is well known that the reciprocal of the 3/2 process is a CIR

process. Indeed, if we define Ut =
1

Vt
, then Ut is governed by

dUt = [(κ+ ϵ2)− θtUt]dt− ϵ
√
Ut dWt.

For any t′ > t, Ut′ follows a non-central chi-square distribution con-

ditional on Ut.

The corresponding (conditional) density function is given by

pU(Ut′|Ut) =
At

Ct
exp

(
−
AtUt′ + Ut

Ct

)(
AtUt′

Ut

)1
2+

κ
ϵ2

I
1+2κ

ϵ2

(
2

Ct

√
AtUt′Ut

)
.
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Fair strike of the gamma swap under the SVSJ model

Let Xk = lnStk. The expectation of a typical term in the floating

leg of the gamma swap is given by

E

[
Stk

St0

(
ln

Stk

Stk−1

)2]
= e−X0E

[
e
Xtk

−Xtk−1(Xtk −Xtk−1)
2e

Xtk−1

]

= e−X0E

[
∂2

∂ϕ2
e
ϕ(Xtk

−Xtk−1
)+Xtk−1

]∣∣∣∣
ϕ=1

= e−X0
∂2

∂ϕ2
E

[
E

[
eϕXtk

∣∣∣∣Xtk−1, Vtk−1

]
e
(1−ϕ)Xtk−1

]∣∣∣∣
ϕ=1

=
∂2

∂ϕ2
eB(Θ;∆̃tk−1,q2)V0+Γ(Θ;∆̃tk−1,q2)+Λ(Θ;∆̃tk−1,q2)

∣∣∣∣
ϕ=1

,

where ∆̃tk−1 = tk−1 − t0, ∆tk = tk − tk−1, q1 = (ϕ 0 0)T , and

q2 =

 1
B(Θ;∆tk,q1)

Γ(Θ;∆tk,q1) + Λ(Θ;∆tk,q1)

 .

Note that q2 has dependence on ϕ through q1. There is no depen-

dence on the initial price level St0.
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Two-step expectation calculations

After taking the inner expectation according to the tower rule of

conditional expectation, we obtain

E[eϕXtk |Xtk−1, Vtk−1]

= e
ϕXtk−1

+B(Θ;∆tk,q1)Vtk−1
+Γ(Θ;∆tk,q1)+Λ(Θ;∆tk,q1),

which remains to be in exponential affine form. Note that e
(1−ϕ)Xtk−1

is later combined with e
ϕXtk−1 to give e

Xtk−1, so the first component

of q2 is one.

The fair strike price of the gamma swap is then given by

KΓ(T,N) =
A

N

N∑
k=1

∂2

∂ϕ2
eB(Θ;∆̃tk−1,q2)V0+Γ(Θ;∆̃tk−1,q2)+Λ(Θ;∆̃tk−1,q2)

∣∣∣∣
ϕ=1

.
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Asymptotic price formula of the continuously sampled gamma swap

We take the asymptotic limit N → ∞ of KΓ(T,N) to deduce the

closed form formula for the fair strike of the continuously monitored

gamma swap.

KΓ(T,∞) =
1

T

[(
V0 −

κθ

κ− ρε
− C2

)e(r−d−κ+ρε)T − 1

r − d− κ+ ρε
+
( κθ

κ− ρε
+ C1 + C2

)e(r−d)T − 1

r − d

]
,

where

C1 =
λeν+δ2/2

1− ρJη

[(
ν + δ2 +

ρJη

1− ρJη

)2
+ δ2 +

(
ρJη

1− ρJη

)2]
,

C2 =
ληeν+δ2/2

(1− ρJη)2(κ− ρε)
.

• The price formula does not exhibit linear rate of convergence

in ∆t nor the sign of the correction (convergence can be from

above or below) to the continuously sampled counterpart. Al-

so, the fair strike is not quite sensitive to monitoring frequency

(percentage difference in values is less than 0.1% even under

weekly monitoring).

22



Downside-variance swaps under the SVSJ model

The challenge in the evaluation of the nested expectation is how
to deal with the barrier indicator term 1{Stk−1

≤U}. The expectation

calculation of a typical term gives

E
[(

ln
Stk

Stk−1

)2
1{Stk−1

≤U}

]
= E

[
E
[ ∂2

∂ϕ2
eϕ(Xtk

−Xtk−1
)
∣∣∣Xtk−1, Vtk−1

]
1{Xtk−1

≤lnU}

]∣∣∣
ϕ=0

= E
[ ∂2

∂ϕ2
eB(Θ;∆tk,q1)Vtk−1

+Γ(Θ;∆tk,q1)+Λ(Θ;∆tk,q1)1{Xtk−1
≤lnU}

]∣∣∣
ϕ=0

=
∂2

∂ϕ2
E
[
eB(Θ;∆tk,q1)Vtk−1

+Γ(Θ;∆tk,q1)+Λ(Θ;∆tk,q1)1{Xtk−1
≤lnU}

]∣∣∣
ϕ=0

, (A)

where q1 = (ϕ 0 0)T .

• For k = 1, X0 and V0 are known; so we have

E

[(
ln

St1

St0

)2

1{St0≤U}

]
=

∂2

∂ϕ2
eB(Θ;∆t1,q1)V0+Γ(Θ;∆t1,q1)+Λ(Θ;∆t1,q1)1{X0≤lnU}

∣∣∣
ϕ=0

.
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• For k ≥ 2, the evaluation of expectation in formula (A) requires

the representation of the indicator function 1{Xtk−1
≤lnU} to be

expressed in terms of an inverse Fourier transform.

Generalized Fourier transform of the indicator function 1{Xtk−1
≤u}

We take the Fourier transform variable w to be complex and write

w = wr + iwi. We treat 1{Xtk−1
≤u} as a function of u and consider

its Fourier transform:∫ ∞

−∞
1{Xtk−1

≤u}e
−iuw du =

∫ ∞

Xtk−1

e−iuw du =
e
−iXtk−1

w

iw
, u = lnU.

Provided that wi is chosen to be sufficiently negative value, the

above generalized Fourier transform exists. By taking the corre-

sponding generalized inverse Fourier transform, we obtain

1{Xtk−1
≤u} =

1

2π

∫ ∞

−∞
eiuw

e
−iXtk−1

w

iw
dwr.
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Formula (A) can be expressed in terms of a Fourier integral as
follows:

E

[(
ln

Stk

Stk−1

)2

1{Stk−1
≤U}

]

=
1

2π

∫ ∞

−∞

∂2

∂ϕ2
E
[
e−iwXtk−1

+B(Θ;∆tk,q1)Vtk−1
+Γ(Θ;∆tk,q1)+Λ(Θ;∆tk,q1)

]∣∣∣
ϕ=0

eiuw

iw
dwr

=
ewi(X0−u)

π

∫ ∞

0
Re

(
e−iwr(X0−u)Fk(wr + iwi)

iwr − wi

)
dwr, k ≥ 2,

where w = wr + iwi, u = lnU , and

Fk(w) =
∂2

∂ϕ2
eB(Θ;tk−1,q2)V0+Γ(Θ;tk−1,q2)+Λ(Θ;tk−1,q2)

∣∣∣∣
ϕ=0

, k ≥ 2,

with

q2 =

 −iw
B(Θ;∆tk,q1)

Γ(Θ;∆tk,q1) + Λ(Θ;∆tk,q1)

 .
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The fair strike price of the discretely sampled downside-variance

swap is then given by

KD(T,N) =
∂2

∂ϕ2
eB(Θ;∆t1,q1)V0+Γ(Θ;∆t1,q1)+Λ(Θ;∆t1,q1)1{X0≤lnU}

∣∣∣∣
ϕ=0

+
ewi(X0−u)

π

∫ ∞

0
Re

(
e−iwr(X0−u)

∑N
k=2 Fk(wr + iwi)

iwr − wi

)
dwr.

The fair strike formula still involves a Fourier integral whose numer-

ical evaluation can be effected by FFT calculations.

• The fair strike price of the continuously sampled downside-

variance swap can be deduced by taking ∆t → 0.
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Linear rate of convergence of discrete realized variance with

the number of sampling dates

For vanilla variance swaps, Broadie and Jain (2008) show that the

discrete variance strike K∗
var(n) converges to the continuous variance

strike K∗
var linearly with ∆t (∆t = T

n). That is,

K∗
var(n) = K∗

var +O

(
1

n

)
−→ K∗

var as n → ∞.

Similar results can be extended to the more general stochastic

volatility models (Bernard and Cui, 2012):

dSt

St
= r dt+m(Vt)

(
ρdW1

t +
√
1− ρ2 dW2

t

)
dVt = µ(Vt)dt+ σ(Vt) dW

1
t .
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Plot of the percentage difference in the fair strike prices of various

discretely sampled generalized variance swaps against sampling time

interval ∆t (in units of year) under the Heston model.

variance swaps (under the Heston model)
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(b) gamma swaps
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(c) downside−variance swaps
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(d) conditional downside−variance swaps
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The vanilla variance swap exhibits a linear rate of convergence with

respect to ∆t.
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gamma swaps (under the Heston model)
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(a) variance swaps
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(b) gamma swaps
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(c) downside−variance swaps
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(d) conditional downside−variance swaps
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The convergence of the fair strike prices to the continuous limit can

be from the above or below with vanishing width of the sampling in-

terval. Since the relative percentage difference in fair strike between

discrete gamma swap and its continuously monitored counterpart is

small, so the pricing formula for the continuously monitored gamma

swap provides a highly accurate approximation.

29



downside variance swaps (under the Heston model)
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(a) variance swaps
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(b) gamma swaps
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(c) downside−variance swaps
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(d) conditional downside−variance swaps
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The convergence trend of the fair strike of the downside variance

swaps can be nonlinear.
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Fair strike against correlation coefficient (under the Heston

model)
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(a) correlation coefficient, ρ
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(b) volatility of variance, ε

 

 
vs
gs
dvs
cvs

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

λ

fa
ir 

st
rik

e

(c) jump intensity, λ

 

 
vs
gs
dvs
cvs

Since the corridor feature is sensitive to asset price, the fair strikes

of conditional variance swaps are highly sensitive to correlation co-

efficient, ρ. The fair strike of the vanilla swap and gamma swap are

almost insensitive to ρ.
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Fair strike against volatility of variance (under the Heston

model)
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(a) correlation coefficient, ρ
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(b) volatility of variance, ε
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The fair strike prices of variance swaps and gamma swaps are almost

insensitive to volatility of variance, ε.
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Fair strike against jump intensity (under the Heston model)
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(b) volatility of variance, ε
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The fair strike prices of the corridor variance swaps show the highest

sensitivity to the jump intensity, λ.
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Downside variance swaps – choice of the time level for moni-

toring the corridor feature

Comparison of the fair strike prices of the weekly sampled downside-

variance swaps with varying values of the corridor’s upper barrier

when breaching of the corridor is monitored on the stock price at

the old time level (“convention 1”) or new time level (“convention

2”).
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Observations

• The difference in the fair strike prices of the two different types

of downside-variance swaps, corresponding to the corridor’s up-

per barrier U being monitored on the stock price at the old time

level or new time level, can be quite substantial when the upper

bound is below the current stock price S0 (here, S0 = 1).

• When U is close to S0, the uncertainty that the upper barrier

is breached at the subsequent sampling dates is relatively high.

Therefore, the choice of the stock price either at the old or new

time level that is used for monitoring becomes more significant

when U is close to but below S0.
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Pricing of timer options under the 3/2-model

We use the quadratic variation It as a proxy of the discrete realized

variance for the monitoring of the first hitting time. We define τB
to be

τB = min

j
∣∣∣∣∣∣Itj ≥ B

∆.

This approximation does not introduce noticeable error for daily

monitored timer options. This is consistent with the observation

that the difference in discrete realized variance and its continuous

counterpart is very small.

C0(X0, I0, V0) = E0[e
−r(T∧τB)max(ST∧τB −K,0)]

= E0[e
−rTmax(ST −K,0)1{τB>T}

+ e−rτBmax(SτB −K,0)1{τB≤T}],

where K is the strike price and r is the constant interest rate.
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Decomposition into timerlets

The event {τB > t} is equivalent to {It < B}. Note that τB = tj+1

if and only if Itj < B and Itj+1 ≥ B. Therefore, we have

{τB ≤ T} =
N−1∪
j=0

{Itj < B, Itj+1 ≥ B}.

The price of a finite-maturity discrete timer call option can be con-

veniently computed by decomposing it into a European call option

conditional on τB > T and a portfolio of timerlets as follows

C0 = E0[ e
−rTmax(ST −K,0)1{IT<B}]

+ E0

N−1∑
j=0

e−rtj+1

(
max(Stj+1 −K,0)1{Itj<B}

− max(Stj+1 −K,0)1{Itj+1
<B}

)]
.
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Evaluation of the timelets

To evaluate the above series of expectations, we derive the ex-

plicit representation for the characteristic functions of (Xtj , Itj) and

(Xtj+1, Itj). Note that

E0[e
iωXtj

+iηItj ] = eiωX0+iηI0h(t0, V0; tj, ω, η),

where

h(t, v; t′, ω, η) =
∫ ∞

0
g(t, Vt; t

′, ω, η, v′) dv′

= ea(t
′−t)Γ(β̃ − α̃)

Γ(β̃)

(
1

Ctv

)α̃
M

(
α̃, β̃,−

1

Ctv

)
,

α̃ = −
1

2
−

κ̃

ε2
+ c, β̃ = 1+ 2c,

Γ is the gamma function, M is the confluent hypergeometric func-

tion of the first kind.
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The expectation calculation

E0

[
e−rtj+1max(Stj+1 −K,0)1{Itj<B}

]
requires the joint characteristic function of state variables across

successive time instants tj and tj+1.

The bivariate joint characteristic function can be obtained as

E0[e
iωXtj+1

+iηItj ]

= eiωX0+iηI0
∫ ∞

0
h(t0, V0; tj, ω, η, v

′)g(tj, v
′; tj+1, ω,0) dv′.

This involves a two-step expectation calculation. Working backward

in time from tj+1 to tj, we first compute Etj[e
iωXtj+1]; next from tj

to t0, we then compute E0[e
iωXtj

+iηItj ]. Here, we integrate over v′,
where v′ is the dummy variable for the instantaneous variance Vtj.
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Discounted risk neutral expectation of payoff

We transform the integration of the product of the terminal payoff

and transition density function from the real domain to the Fourier

domain via Parseval’s theorem.

One-dimensional Parseval theorem

< f, g > =
∫ ∞

−∞
f(x)g(x) dx =

1

2π
< Ff(u),Fg(u) >

The Fourier transform formulas of the payoff functions, (Stj+1 −
K,0)1{Itj<B} and (Stj+1 − K,0)1{Itj+1

<B}, admit the same analytic

representation:

F̂ (ω, η) =
∫ ∞

−∞

∫ ∞

−∞
e−iωx−iηy(ex −K)+1{y<B} dxdy =

K1−iωe−iηB

(iω + ω2)iη
,

where x stands for lnStj+1 and y stands for Itj or Itj+1. We consider

the generalized Fourier transform and take the transform variables

ω and η to be complex. We write ω = ωR + iωI and η = ηR + iηI,

where ωI < −1 and ηI > 0.
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The finite-maturity discrete timer option price can be derived as

follows

C0 =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−rT F̂ (ω, η)E0[e

iωXtN
+iηItN ] dωRdηR

+
N−1∑
j=0

1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−rtj+1

{
F̂ (ω, η)E0[e

iωXtj+1
+iηItj ]− F̂ (ω, η)E0[e

iωXtj+1
+iηItj+1]

}
dωRdηR

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F̂ (ω, η)H(ω, η) dωRdηR,

where

H(ω, η) = e−rT eiωX0+iηI0h(t0, V0; tN , ω, η) + eiωX0+iηI0
N−1∑
j=0

e−rtj+1

[∫ ∞

0
h(t0, V0; tj, ω, η, v

′)g(tj, v
′; tj+1, ω,0) dv′ − h(t0, V0; tj+1, ω, η)

]
.

Computational challenge in the evaluation of the closed form pricing

formula: triple integration is required where the integrand involves

the modified Bessel functions of complex order.
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Plot of the finite-maturity discrete timer call option prices against

variance budget B. The discrete timer call option price reduces to

the vanilla European call option when B is sufficiently large.
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Plot of the finite-maturity discrete timer call option prices against

number of monitoring instants N . The dashed line represents the

finite-maturity timer call option price under continuous monitoring.
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Plot of the finite-maturity discrete timer call option price versus

maturity under two different values of variance budget.
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Conclusion

Analytic procedures

• The analytical tractability relies on the availability of the joint

moment generating function of the SVSJ model. The analytic

price formula of the continuously monitored counterpart can be

deduced by taking the asymptotic limit of vanishing time interval

between successive monitoring dates. The analytic procedure

can be applied to other higher moments swaps.

• By decomposing a timer option into a European option condi-

tional on no knock-out and a portfolio of timerlets, we manage

to price a finite-maturity timer option under the 3/2-model of

stochastic volatility based on the explicit representation of the

joint characteristic function of log asset price and its quadratic

variation.
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Pricing behaviors

• The sensitivity of the fair strike price on sampling frequency is

low for gamma swaps but it can be significant for variance swaps

with the corridor feature.

• The general belief of linear rate of convergence of 1/N , where

N is the number of monitoring instants, is shown to be invalid

for exotic swap products under the SVSJ models.

• The fair strike prices of the corridor type variance swaps can be

highly sensitive to the contractual terms in the contracts and the

model parameter values (like volatility of variance, correlation

coefficient, etc).

• The price of a timer option may depend sensibly on the choice

of the variance budget and mandated expiration date.
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