Advanced Numerical Methods

Solution to Homework One

Course instructor: Prof. Y.K. Kwok

1.

2.

When the asset pays continuous dividend yield at the rate ¢, the expected rate of return
of the asset is r — ¢ under the risk neutral measure (see Chap 3 of Kwok’s text for justifi-

cation). Under the continuous Geometric Brownian process model, the logarithm of the
2

o
asset price ratio over At interval is normally distributed with mean <r —q— ?) At and

variance 02At. Accordingly, the mean and variance of 2HAL are e DAL and 62(’"*(1)“(6”2
t

1). By equating the mean and variance of the discrete binomial model and the continuous

Geometric Brownian process model, we obtain

pu+ (1 —p)d = 04

pu2 + +(1 _p)dQ _ 62(r—1)At602At'

Also, we use the usual tree-symmetry condition: w = 1/d. Solving the equations, we
obtain

1 a2+ 1+44/(02+1)2—4R? R—d
U=—-= ) p= d7
u_

d 2R

where R = e(r 92t and 52 = R2e7°At. As an analytic approximation to u and d up to
order At accuracy, we take

w=e"V2 and d=e VAL

The only change occurs in the binomial parameter p, where
e('r—q)At —d
u—d
while u© and d remain the same. The binomial pricing formula takes a similar form
(discounted expectation of the terminal payoff):

V = [vat + (1 . p)VAt]efrAt.

remains the same while the risk neutral probability of up move

p:

The discount factor e "2t

p is modified.

(a) With the usual notation

R—d u—R
— and 1—p= T

If R < dor R > u, then one of the two probabilities is negative. This happens when

p:

(0t oV

or
e(rDAL - poVAL

This in turn happens when (¢ — r)VAt > o or (r — q)VAt > 0. Hence negative
probabilities occur when

o < |(r—q)VAL.

This result places a restriction on the time step. More precisely, the time step cannot
be chosen to be larger than o2/(r —q)?. If o happens to be small, then the restriction
can be quite severe.

At



(b) We approximate In % by (%, where
t

= v1  with probability 0.5
" | v» same probability

Matching the mean and variance, we obtain

V1 + U2 O'2
B[] = —(r—q-Z)\A
€] 5 (7“ 9= 5 ) t
vt +v3 2
var((?) = lT = 0°At [after dropping O((At)?) term).

Solving the equation [up to O(At) accuracy], we obtain

9 2
vy = (T—q—%> At +oVAt and vy = (T—(]—%) At — oV At.

Recall that

02
v; = Inwu so that u = e(’"*q*T)AtJro\/E

and

02
vy = Ind so that d = 6<T—q—7)At_a\/E

As a check, we consider
o? 2
vf—l—vg:Z{(r—q—?)At} + 20% At

so that
v3 + v3

= a? At + O((At)?).

Remark: 1In the usual set of binomial parameters, we take v; = —vy = o/ At. The drift
S,
rate in the dynamics of In ZLHAr
t
values for the up jump and down jump. Here, we set p = 0.5, the drift rate is
2

is reflected in taking different probability

reflected in adding the drift movement | r — g — %) At over the time interval
At.

3. In this case, Fy = 198, X =200, = 0.08,0 = 0.3,7 = 0.75, and At = 0.25. Also

03V02 — 11618

u = e
d = 1 = (0.8607
U
R =1
R—d
p = = (0.4626
u—d
1—p = 0.5373.

The output is shown in the Figure below. The calculated price of the option is 20.34
cents.

Growth factor per step, R = 1.0000
Probability of up move, p = 0.4626



Up step size, u = 1.1618
Down step size, d = 0.8607
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The bold numbers represent the payoff from early exercise of the American futures option.

. A binomial tree cannot be applied in a straightforward manner. This is an example of
what is known as a history-dependent option. The payoff depends on the path followed by
the stock price as well as its final value. The option cannot be simply valued by starting
at the end of the tree and working backward since the payoff at the final branches is not
known unambiguously. An efficient approach is the Forward Shooting Grid technique.

. Suppose a dividend equal to D is paid during a certain time interval. If S is the stock
price at the beginning of the time interval, it will be either Su — D or Sd — D at the end
of the time interval. At the end of the next interval, it will be one of (Su — D)u, (Su —
D)d, (Sd— D)u and (Sd— D)d. Since (Su — D)d does not equal (Sd — D)u, the tree does
not recombine. If S is equal to the stock price less the present value of future dividends,
this problem is avoided.

. In this case Sy = 1.6,7 = 0.05,7; = 0.08,0 = 0.15,7 = 1.5, At = 0.5. This means that

015v05 — 11119

u = e
1

d = —=0.899%4
U

R = 6(0.05—0.08)><0.5 —0.9851
R—d

p = = 0.4033
uw—d

1—p = 0.5967.
The option pays off

ST - Smin'

The tree is shown in the Figure below. At each node, the upper number is the exchange
rate, the middle number(s) are the minimum exchange rate(s) so far, and the lower
number(s) are the value(s) of the option. The value of the option today is found to be
0.1307.
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7. In this case, So = 40, X = 40,r = 0.01,0 = 0.35,7 = 0.25, At = 0.08333. This mean
that

0.35v0.08333 _ 1 1063

u = e
1
d = —=10.9039
u
R = %1X008333 — 1 008368
R—d
= = 0.5161
b u—d
1—p = 0.4839.
The option pays off B
40— S.

where S denotes the geometric average. The tree is shown in the Figure. At each node,
the upper number is the stock price, the middle number(s) are the geometric average(s),
and the lower number(s) are the value(s) of the option. The geometric averages are
calculated using the first, the last and all intermediate stock prices on the path. The tree
shows that the value of the option today is $1.40.
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Remark: In general, the number of possible geometric average values at the nodes that
are n time steps from the tip of the binomial tree can be C7', C%, - - - , C)’ where
C} is the binomial coefficient (number of ways of choosing k objects from n
objects). For example, how many paths that lead to the second upper node
at maturity? Out of the 3 time steps, we choose one step to move down and
the other two to move up. The number of paths is C%. For a n-step binomial

tree, the total number of possible averaging values is 2.



8.

10.

Suppose that there are two horizontal barriers, H; and Hs, with H; > H and that the
underlying stock price follows geometric Brownian motion. In a trinomial tree, there are
three possible movements in the asset’s price at each node: up by a proportional amount
u; stay the same; and down by a proportional amount d where d = 1/u. We can always
choose u so that the nodes lie on both barriers. The condition that must be satisfied by
u is
Hy = Hyu™

or

InHy=InH; +Nlnu
for some integer N.

Tree with nodes lying on each of two barriers is shown in the Figure. It may occur that
the initial asset price may not lie on any one of these horizontal rows. In this case, it may
be necessary to adjust the branching in the first time step (see the Figure).

S
\1><><><

Barrier 1

. Applying the distributive rule, we have

max (min(Peont, ), X — S}
= min(max(Peont, X — }), max(K, X — 7)),
which gives the same dynamic programming procedure derived from the perspective of
the issuer.
Financial interpretation

The issuer’s calling right enforces a non-called American put to have value below K.
When P, is above K, the American put is called. The holder can take the maximum
of K (receiving the cash K') or the exercise payoff X — S’JT-L. When P,,,; is below K, the
holder can still choose the maximum of X — S and P, as in a non-callable American
put option.

Unlike the derivation in the lecture note, we now keep all the terms that are O((At)?).
From the second equation, we obtain

o2
v? = (7“ — —) At? + o2 At

2
Once v is obtained, by substituting into the first equation, we obtain
1 <7" — %) At
=—|1
p=3 +

VoAt + (r—2)° Ar

5



11.

12.

13.

Consider the system of equations for py, ps and ps:

11 1\ /;m 1
u 1 d p|l=1R
u? 1 d*) \ps W

Eliminating ps from the equations, we obtain
(u=Dpr+(d—1)ps=R—1
(u* — D)py + (d* — D)ps = W — 1.
Solving for p; and ps gives
_ W-Ru—(R-1)
P E e - )

When A = 1, the parameter u agrees with that of the Cox-Rubinstein-Ross binomial
scheme. We expect to have

(W — R)u*> — (R—1)u?
(u—1)(u?—1)

and p3 =

p1+ps =14+ O(At),

or equivalently,

The largest and the smallest asset price at the extreme nodes at expiry are Spe™ and
Spe™ ™, respectively. With respect to In S, the width of the interval between the largest
value of In S and the smallest value of In S is given by (In Sy +nlnu) — (InSy —nlnu) =
2nlnu = 2nov/At. Let n denote the total number of time steps in the trinomial tree.
Since nAt = T' = life of the option, which is a finite quantity, the width of the interval

= 2y/noVT ~ \/n.

By equating the corresponding mean, variances and covariances (up to O(Ar) accuracy),

we have
ot
B[] =wvi(p+p2+ps+ps—ps —ps — < ——> (1)
E[¢8] =va(p1+p2—ps—pa+ps+ps— r——-N (i)
El¢5] = wv3(pr —p2+p3 —pa+ps — P+ pr—ps) = r—— At (iii)
wﬂﬁ)1ﬂm+m+m+m+m+m+m+m%qr (iv)
var(¢s) = v5(p1 + pa + p3 + pa +ps + p + pr + 1) = 05 (v
var(¢§) = v3(p1 + pa2 + ps + pa+ ps + ps + pr +ps) = U;?At (vi)
B[ ¢s] = vy(p1 + p2 — P3 — Pa — s — Pe + D7 + Ps) = 0102p12AL (vii)
E[C1¢5] = v3(p1 — p2 — 3 — Pa — D5 — Pe + P7 + Pg) = 0103p13At (viii)
E[¢5¢3] = v3(p1 — p2 — p3 +pa+ D5 — P6 — Pr + Ps) = 0203paz At (ix)
Lastly, the sum of probabilities must be one so that
p1+p2+ps+pa+ps+ps+pr+ps+po =1 (x)

Recall that vy = MoV AL, v = AoV At and v3 = A\3oVAt. In order that Egs (iv), (v)
and (vi) are consistent, we must set \; = Ay = A3. Set the common value to be X\. These
3 equations then reduce to single equation:

1
D1+ P2+ DP3+ps+ps+ps+pr+ps= ICk



There are 8 equations for the 9 unknowns.

obtained as:

The solution to the probabilities values is

2 2 2
1|1 VAt (r—% r—2% r-2
o= g lat 2 4+ —2 4+ 2
8 | \2 A o1 09 03
P12 T P13 + p23
e ]
2
111 VAt [r—Z r—g—z r—a?’
Py = = |—+ 2 2 2
8 | \2 A 2
+P12—P13—P231
11 VAt r—2 % %
Py = = |—+ 2 2 2
8 | \2 A o1 op)
+P13—P12—P231
o ]_ 1 +\/At 7"—?
Pro= g " ") 2 B B

14. If m is set equal to
Parisian feature.

e We define a binary string A = ay,as, - -

m, then the window Parisian feature reduces to the consecutive

,alN,, of size N, to represent the history of

the asset price path falling inside or outside the knock-out region at the previous N,
consecutive monitoring instants prior to the current time. By notation, the value of
a, is et to be 1 if the asset price falls on or below the down barrier B at the p-th
monitoring instant counting backward from the current time, and is set to be 0 if

otherwise.

e There are altogether 2V« different strings to represent all possible breaching history
of asset price paths at the previous N, monitoring instants. The number of states
that have to be recorded is Cp'> +C* +- - -+Cx*, where C* denotes the combina-
tion of N, denotes the combination of N, strings taken ¢ at a time. This is because
the window Parisian option value becomes zero when the number of breaches reaches
N, so those states with N or more “1” in the string are irrelevant.

o Let Vyin[m, j; A] denote the value of a window Parisian option at the (m, j)-th node,
and with the asset price path history represented by the binary string A. The binary
string A has to be modified according to the event of either breaching or no breaching

at a monitoring instant.

e The corresponding numerical scheme can be succinctly represented by

({pu

7

+ paVwin[m, j —
{PuVasin[m, J + 155 Guin(A, § + 1)]
+ PoVawin[m, J; Guin(A, J)]

[+ PaVuwin[m, j —

Wwin[maj + 17 A]
=+ pOVmin[m7 j; A]

1; Alye At if mAt #t;

—rAt

L gwin(A,j — D]}e it mAt =t



15.

16.

where
1a1a2~--an_1 ifr; <InB
Oarap-ay, , ifaz;>InB

As in the numerical procedure for the consecutive Parisian option, it is necessary
to compute Vy;,[m, 7; A] for those states of A with N — 1 or less “1” in the string
before we move to a time level corresponding to a monitoring instant. Note that
Viwin|m, j; A] = 0 at a monitoring instant when the string A has N or more “1”. Due
to the higher level of path-dependence exhibited by the window feature, the operation
counts of the window Parisian option calculations are about C}™ +C{* +- - -4+ CON®,
times of those of plain vanilla option calculations.

The payoff of a floating strike lookback call is

max S; — S,
T€[0,7T

where m[g%ST denotes the realized mazimum of the asset price over [0,7]. The corre-
T7€|0,
sponding grid function at the (n, j)* node with asset price S} = Su/d"7 is given by

glookback<k7 J) - max(k:, .])7
where k is the numbering index for the lookback state variable. The FSG algorithm is

n—1 __ n n
‘/.vjyk - |:pu j+1vglookback(kvj+1) + po‘/}vglookback(kaj)

+ pd‘/}ril efrAt.

sGlookback (ka.]fl)]

To incorporate the American early exercise feature, we simply add the dynamic procedure
at each node and for each number index:

n—1 n n
‘/j’k = max ([pu‘/}'i'l»glook’back(kvj""l) + po‘/jaglookback(kvj)
n —rA k gn—k j gn—j
+ pd‘/j_lvglookback(kvj_l)]e t’ SU d - Sujd ]) :
The strike reset feature dictates the updated strike price at a prespecified reset date t, to
be given by
Xy =max(X,_1,5(te)), (=1,2,---,m, (A)

where X is the original strike price and S(t,) is the asset price at t,.

e If we apply the backward induction procedure in a trinomial calculation for pricing
the reset option, we encounter the difficulty in evaluating the terminal payoff since
the strike price is not yet known. The difficulty arises because the strike price
adopted in the payoff depends on realization of the asset price on the trinomial tree.

e Let my denote the number of time steps counting from the top node of the trinomial
tree to the /-th reset dates is 2m, + 2,/ = 0,1,--- , M. Here, the 0-th reset date
and the (M + 1)-th reset date are taken to be the inception time and the expiration
date, respectively. We have (2my + 2) possible strike prices, since there are (2m, + 1
possible asset values at the time level that is m, time steps from the top node of the
trinomial tree, and the one additional possible strike price is the original strike price
X set at initiation of the option contract.

e When we follow the backward induction procedure in the reset option calculation,
we first compute the terminal payoff values for all possible strike prices (2mp; + 2 of
them). Now, the augmented state vector at each lattice node in the FSG algorithm
includes all possible strike prices. As we proceed backwards, in particular at a
time level corresponding to a reset date, the vector of strike prices will be adjusted
according to the rule stated in Equation (A).

8



e Let k denote the index relating to the logarithm of the strike price zj, (recall that
x = InS 4+ kAx, where S is the asset value at the top of the trinomial tree), and
write V,es[m, j; k| as the numerical value of the reset option at the (m,j)-th node
with (log) strike price zj. Let the original strike price X be related to the index
value ko by zp, =In X =1n S + kyAz.

e The construction of the FSG algorithm for pricing the reset call option gives

({puVreslm, j + 15 K]
+ poViesim, j; k|
+ paVieslm, j — 13 k] e 2t if mAt # 1,
{puVieslm, j + 1; gres(k, j + 1)]
+ PoVies[M, J; Gres (K, 7)]
L+ PaVies[m, j — 1 gres(k, j — D)]}e ™™ if mAt =1,

‘/res[m_ 17]7k] = <

Y

where the grid function is given by

Gres(k, j) = min(k, j, ko).

At maturity (say, My time steps from the current time on the trinomial tree), the
terminal payoff is given by
Vies|Mr, j; k] = max(e™ — e**,0)
for — My <73 < Mpand —my <k < myy.



