Math 4991, Lecture on April 3, 2020

Yongchang Zhu

Today's Plan.

(1). Review of Complex Analysis (continued).
(2). Elliptic Functions.

§ 1. Review of Complex Analysis (continued).

Let D be an open domain in the complex plane \mathbb{C}.

Let $f(z)$ be a meromporphic function on D, for any $a \in D, f(z)$ has a Laurent power series expansion at a

$$
f(z)=c_{m}(z-a)^{m}+\cdots+c_{m+1}(z-a)^{m+1}+\text { higher terms }
$$

where $c_{m} \neq 0$.

If $m<0$, then a is a pole of f of order $-m$.

The residue of f at a is defined by

$$
\operatorname{res}_{a}(f)=c_{-1}=\text { coefficent of }(z-a)^{-1}
$$

Residue Theorem . Let $f(z)$ be a meromorhic function on a simply connected domain D, C be a simple counter-clockwise closed contour in D that doesn't contains any poles of f, then

$$
\frac{1}{2 \pi i} \int_{C} f(z) d z=\sum_{\text {a:poles of } f \text { enclosed by } C} \operatorname{res}_{a} f
$$

Example of Application of Residue Theorem .

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x
$$

We compute

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x=\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x+i \int_{-\infty}^{\infty} \frac{\sin x}{x^{2}+1} d x
$$

Consider contour integral

$$
\int_{C(R)} \frac{e^{i z}}{z^{2}+1} d Z=\int_{-R}^{R} \frac{e^{i x}}{x^{2}+1} d x+\int_{S(R)} \frac{e^{i z}}{z^{2}+1} d Z
$$

where $S(R)$ is the upper semi-circle centered at the origin with radius R.

We have

$$
\begin{gathered}
\lim _{R \rightarrow \infty} \int_{S(R)} \frac{e^{i z}}{z^{2}+1} d Z=0 \\
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{i x}}{x^{2}+1} d x=\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x
\end{gathered}
$$

Thus

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x=\lim _{R \rightarrow \infty} \int_{C(R)} \frac{e^{i z}}{z^{z}+1} d z
$$

For $R>1$, the contour $C(R)$ contains only one pole of the integrand $\frac{e^{i z}}{z^{2}+1}$, that is i. So by Residue Theorem,

$$
\int_{C(R)} \frac{e^{i z}}{z^{2}+1} d z=2 \pi i \operatorname{res}_{i} \frac{e^{i z}}{z^{2}+1}=\pi e^{-1}
$$

So we have

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x=\pi e^{-1} \\
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x=\pi e^{-1}, \quad \int_{-\infty}^{\infty} \frac{\sin x}{x^{2}+1} d x=0
\end{gathered}
$$

Theorem . Let $f(z)$ be a meromorhic function on a simply connected domain D, C be a simple counter-clockwise closed contour in D that doesn't contains any poles or zeros of f, then

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=\text { number of zeros and poles enclosed by } C
$$

where the zeros are counted with multiplicity, and the poles are counted with negative multiplicity.

Proof. The poles of $\frac{f^{\prime}(z)}{f(z)}$ are precisely the zeros or poles of $f(z)$

$$
\operatorname{res}_{a} \frac{f^{\prime}(z)}{f(z)}=\text { order of } a \text { as a zero of } f(z)
$$

Elliptic Functions

Definition. Let ω_{1} and ω_{2} be complex numbers that are linearly independent over \mathbb{R}. An elliptic function with periods ω_{1} and ω_{2} is a meromorphic function $f(z)$ on \mathbb{C} such that

$$
f(z)=f\left(z+\omega_{1}\right), \quad f(z)=f\left(z+\omega_{2}\right)
$$

for all $z \in \mathbb{C}$.

Denoting the "lattice of periods" by

$$
\Lambda=\left\{m \omega_{1}+n \omega_{2} \mid m, n \in \mathbb{Z}\right\}
$$

It is clear that the condition

$$
f(z)=f\left(z+\omega_{1}\right), \quad f(z)=f\left(z+\omega_{2}\right)
$$

is equivalent to

$$
f(z)=f(z+\omega)
$$

for all $\omega \in \Lambda$.

We denote $\mathcal{M}(\Lambda)$ the space of all elliptic functions with lattice of periods Λ.

Proposition 2.1. $\mathcal{M}(\Lambda)$ is a field.

Consider the domain

$$
D \stackrel{\text { def }}{=}\left\{t_{1} \omega_{1}+t_{2} \omega_{2} \mid 0 \leq t_{1}, t_{2} \leq 1\right\} .
$$

Then D satisfies the conditions that
(1). For every z, there exists $\omega \in \Lambda$ such that $z-\omega \in D$.
(2). If $z_{1}, z_{2} \in D$ and $z_{1}-z_{2} \in \Lambda$, then z_{1} and z_{2} are in the boundary of D.

This is an analog of the following: $\mathbb{Z} \subset \mathbb{R}$,
(a) Every $x \in \mathbb{R}$, there exists $r \in[0,1]$ such that $z-r \in \mathbb{Z}$.
(b) If $x_{1}, x_{2} \in[0,1]$ and $x_{1}-x_{2} \in \mathbb{Z}$, then x_{1} and x_{2} are in the boundary of $[0,1]$, i.e., $x_{1}, x_{2} \in\{0,1\}$.

Any domain with properties (1) (2) is called a fundamental domain for Λ.

Any translation of $D, a+D$ is also a fundamental domain for Λ.

Figure: The domain $D=\left\{t_{1}+t_{2}(1+i) \mid 0 \leq t_{1}, t_{2} \leq 1\right\}$.

Theorem

If an elliptic function $f(z)$ with period lattice Λ is analytic, then it is a constant function.

Proof. $|f(z)|$ is a real valued continuous function with periods ω_{1} and ω_{2}. Since D is a compact domain, so $|f(z)|$, considered as a function on D, achieves a maximum at $z_{0} \in D$. For any $z \in \mathbb{C}, z+\omega \in D$ for some $\omega \in \Lambda$, so

$$
|f(z)|=|f(z+\omega)| \leq\left|f\left(z_{0}\right)\right|
$$

So $\left|f\left(z_{0}\right)\right|$ is the maximum of $|f(z)|$ on \mathbb{C}, by the maximum principle, $f(z)$ is a constant.
the Weierstrass elliptic function $\wp(z)$ for a lattice Λ is defined as

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

we notice that on any compact disk defined by $|z| \leq R$, all but possibly finitely many $\omega \in \Lambda$ satisfies $|\omega|>2 R$. For such ω, one has

$$
\left|\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right|=\left|\frac{2 \omega z-z^{2}}{\omega^{2}(\omega-z)^{2}}\right|=\left|\frac{z\left(2-\frac{z}{\omega}\right)}{\omega^{3}\left(1-\frac{z}{\omega}\right)^{2}}\right| \leq \frac{10 R}{|\omega|^{3}}
$$

This implies that the series converges uniformly on $|z| \leq R$, so we have a meromorphic function on \mathbb{C} with poles on the lattice Λ.

Theorem. If a series of analytic functions on a domain D

$$
f_{1}(z)+f_{2}(z)+\ldots
$$

converges uniformly, then the limit $S(z)$ is also an analytic function on D. And

$$
f_{1}^{\prime}(z)+f_{2}^{\prime}(z)+\ldots
$$

also converges on D and the convergence is uniform on every compact subsets in D, the limit is $S^{\prime}(z)$.

By the above theorem, $\wp(z)$ is a meromorphic function on \mathbb{C}.

And we have

$$
\wp^{\prime}(z)=-2 \sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^{3}}
$$

has periods Λ, so we have

$$
\wp(z+\omega)-\wp(z)=C
$$

is a constant, put $z=-\frac{\omega}{2}$, we see that $\wp\left(\frac{\omega}{2}\right)-\wp\left(-\frac{\omega}{2}\right)=C$, it is obvious that $\wp(z)$ is even function, so $C=0$. This proves $\wp(z)$ is an elliptic function with period Λ.

Theorem.

$$
\begin{equation*}
\left(\wp^{\prime}(z)\right)^{2}=4(\wp(z))^{3}-g_{2} \wp(z)-g_{3} \tag{1}
\end{equation*}
$$

where

$$
g_{2}=60 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}}
$$

and

$$
g_{3}=140 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} .
$$

Theorem

The field $\mathcal{M}(\Lambda)$ is generated by $\wp(z)$ and $\wp^{\prime}(z)$ over \mathbb{C} subject to the relation (1)

For $f \in \mathcal{M}(\Lambda)$ and $f \neq 0$, if $a \in \mathbb{C}$ is a zero (or pole) of f of order k, then for any $\omega \in \Lambda, a+\omega$ is also a zero (pole, resp.) of f with the same order k.

Theorem.

Let $f \in \mathcal{M}(\Lambda)$ and $f \neq 0$, let a_{1}, \ldots, a_{m} be the zeros of f (modulo Λ) with orders k_{1}, \ldots, k_{m}; and b_{1}, \ldots, b_{n} be the poles of f (modulo Λ) with orders I_{1}, \ldots, I_{n}. Then

$$
k_{1}+\cdots+k_{m}-\left(I_{1}+\cdots+I_{n}\right)=0
$$

and

$$
k_{1} a_{1}+\cdots+k_{m} a_{m}-\left(l_{1} b_{1}+\cdots+I_{n} b_{n}\right) \in \Lambda .
$$

Proof.

Let $a+D$ be a fundamental parallelogram of the period lattice Λ such that the four boundary edges of D contains no zeros nor poles.

Let C the contour that is the boundary of D oriented counter-clock wisely (see figure below). $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$, where C_{1}, C_{3} are parallel (horizontal in the figure) and C_{2}, C_{4} are parallel.

By Residue Theorem

$$
I \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=k_{1}+\cdots+k_{m}-\left(I_{1}+\cdots+I_{n}\right)
$$

On the other hand,

$$
I=\frac{1}{2 \pi i}\left(\int_{C_{1}} \frac{f^{\prime}(z)}{f(z)} d z+\int_{C_{2}} \frac{f^{\prime}(z)}{f(z)} d z+\int_{C_{3}} \frac{f^{\prime}(z)}{f(z)} d z+\int_{C_{4}} \frac{f^{\prime}(z)}{f(z)} d z\right)
$$

Since the values of f^{\prime} / f are equal on C_{1} and C_{3}, but orientations on C_{1} and C_{3} are opposite, so $\int_{C_{1}}+\int_{C_{3}}=0$. Similarly $\int_{C_{2}}+\int_{C_{4}}=0$. So $I=0$.

This proves

$$
k_{1}+\cdots+k_{m}-\left(I_{1}+\cdots+I_{n}\right)=0
$$

For the second identity, we consider the contour integral

$$
I^{\prime} \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \int_{C} \frac{z f^{\prime}(z)}{f(z)} d z
$$

By Residue Theorem,

$$
I^{\prime}=k_{1} a_{1}+\cdots+k_{m} a_{m}-\left(I_{1} b_{1}+\cdots+I_{n} b_{n}\right)
$$

On the other hand side,

$$
\begin{aligned}
I^{\prime} \quad & =\frac{1}{2 \pi i}\left(\int_{C_{1}} \frac{z f^{\prime}(z)}{f(z)} d z+\int_{C_{3}} \frac{z f^{\prime}(z)}{f(z)} d z\right) \\
& +\frac{1}{2 \pi i}\left(\int_{C_{2}} \frac{z f^{\prime}(z)}{f(z)} d z+\int_{C_{4}} \frac{z f^{\prime}(z)}{f(z)} d z\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi i}\left(\int_{C_{1}} \frac{z f^{\prime}(z)}{f(z)} d z+\int_{C_{3}} \frac{z f^{\prime}(z)}{f(z)} d z\right)=-\omega_{2} \frac{1}{2 \pi i} \int_{C_{1}} \frac{f^{\prime}(z)}{f(z)} d z \\
& \frac{1}{2 \pi i}\left(\int_{C_{2}} \frac{z f^{\prime}(z)}{f(z)} d z+\int_{C_{4}} \frac{z f^{\prime}(z)}{f(z)} d z\right)=-\omega_{1} \frac{1}{2 \pi i} \int_{C_{2}} \frac{f^{\prime}(z)}{f(z)} d z
\end{aligned}
$$

The Second identity follows from the following:

Claim:

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{C_{1}} \frac{f^{\prime}(z)}{f(z)} d z \in \mathbb{Z} \\
& \frac{1}{2 \pi i} \int_{C_{2}} \frac{f^{\prime}(z)}{f(z)} d z \in \mathbb{Z}
\end{aligned}
$$

Proof of Claim.

Since $f(z)$ has no zeros nor poles on C_{1}, it has no zeros nor poles in an simply connected open neighborhood U of C_{1}. There exists an analytic function $h(z)$ on U such that $h^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}$ and $h\left(a+\omega_{1}\right)-h(a) \in 2 \pi i \mathbb{Z}$ in fact $h(z)=\log f(z)$ (a branch of $\log f(z)$)

$$
\frac{1}{2 \pi i} \int_{C_{1}} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i}\left(h\left(a+\omega_{1}\right)-h(a)\right) \in \mathbb{Z}
$$

The end

