Math 4991, Lecture on March 30, 2020

Yongchang Zhu

Plan.

In the lectures on March 30, April 3 and April 6, we will discuss the topic "Elliptic Functions and Theta Functions."
(1). Review of Complex Analysis.
(2). Elliptic Functions.
(3). Theta Functions.

§ 1. Review of Complex Analysis.

Let D be a connected open set in \mathbb{C}, a continuous complex valued $f(z)$ defined on D is called an analytic function if $f^{\prime}(z)$ exists everywhere in D.

Recall $f^{\prime}(z)$ is the complex derivative defined by

$$
\lim _{\delta \rightarrow 0} \frac{f(z+\delta)-f(z)}{\delta}
$$

where δ goes to 0 at all the directions in \mathbb{C}.

Analytic functions have good properties that general smooth functions don't have.

Theorem 1.1. Let $f(z)$ be an analytic function on D, C be a simple counter-clockwise closed contour in D, if the domain enclosed by C is in D, then

$$
\int_{C} f(z) d z=0
$$

For C as above, a in in the domain enclosed by C, then

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-a} d z=f(a)
$$

Theorem 1.1 imply the the Theorems 1.2, 1.3, 1.4, 1.5 below.
Theorem 1.2. If $f(z)$ is an analytic function on D, if $|f(z)|$ has a local maximal at some point in D, then $f(z)$ is a constant function.

Theorem 1.3. The derivative $f^{(n)}(z)$ of arbitrary order n exists, and

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} d z=\frac{1}{n!} f^{(n)}(a)
$$

In real variable functions, the similar result fail to hold.

$$
f(x)=\sum_{n=1}^{\infty} \frac{\sin (2 \pi n x)}{n^{3}}
$$

has continuous first order derivative, but $f^{(3)}(x)$ doesn't exist.

Theorem 1.4. If $f(z)$ is an analytic function on D, for every $a \in D$, the Taylor expansion at a

$$
f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(z-a)^{n}+\ldots
$$

converges absolutely to $f(z)$ uniformly on any closed disc $|z-a| \leq r$ inside D.

Let $f(x)$ be the real variable function defined by

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Then $f^{(n)}(x)$ exists for all x, and $f^{(n)}(0)=0$.
The Taylor series at 0 is 0 , so it doesn't converge to $f(x)$ for $x>0$.

Theorem 1.5. If the zero points $\{a \mid f(a)=0\}$ has a limit point in D, then $f(z)=0$.

The similar result does not hold for real variable functions.

A meromorphic function on D is a map $f: D \rightarrow \mathbb{C} \cup\{\infty\}$ such that (1). If $f^{-1}(\infty)$ is discrete subset in D (this means, if $a \in f^{-1}(\infty)$, there is an open neighborhood U of a such that $U \cap f^{-1}(\infty)=\{a\}$). For each $a \in f^{-1}(\infty)$, there exists a positive integer n, such that $\lim _{z \rightarrow a}(z-a)^{n} f(z)$ exists and is non-zero. (Such a is called the pole of $f(z), n$ is called the order of the pole).
(2). By (1), $D-f^{-1}(\infty)$ is an open set, $f(z)$ is analytic on $D-f^{-1}(\infty)$.

For a meromporphic function $f(z)$ on D, if $a \in D$ is a pole of order $n \geq 1$, $f(z)$ has a Laurent power series expansion at a

$$
c_{-n}(z-a)^{-n}+\cdots+c_{-1}(z-a)^{-1}+\sum_{k=0}^{\infty} c_{k}(z-a)^{k}
$$

where $c_{-n} \neq 0$. The coefficient c_{-1} is called the residue of f at a and is denoted by

$$
\operatorname{res}_{a} f=c_{-1}
$$

Theorem 1.6. Let $f(z)$ be a meromorhic function on a simply connected domain D, C be a simple counter-clockwise closed contour in D that doesn't contains any poles of f, then

$$
\frac{1}{2 \pi i} \int_{C} f(z) d z=\sum_{\text {a:poles of } \mathrm{f} \text { in the region enclosed by } C} \operatorname{res}_{a} f
$$

Example. Let C be the unit circle oriented counter-clock wisely,

$$
\frac{1}{2 \pi i} \int_{C} \frac{1}{\sin z} d z=1
$$

Examples of Analytic and Meromorphic Functions.

Almost all the high school functions are analytic functions on certain domain in \mathbb{C}.

Polynomial functions $a_{n} z^{n}+\cdots+a_{1} z+a_{0}$ are analytic functions on \mathbb{C}.

The exponential functions e^{z} defined by, for $z=x+i y$,

$$
e^{z}=e^{x}(\cos y+i \sim y)
$$

is an analytic function on \mathbb{Z}.

Trigonometry functions and exponential functions are unified in complex analysis

$$
\begin{aligned}
& \sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right) \\
& \sin z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)
\end{aligned}
$$

If $f(z), g(z)$ are analytic functions on D, and $g(z) \neq 0$, then $\frac{f(z)}{g(z)}$ is a meromorphic function on D.

Conversely every meromorphic function $h(z)$ on D is locally a quotient of analytic functions.

That is, for every $a \in D$, there is an open neighborhood U of a such that

$$
h(z)=\frac{f(z)}{g(z)}
$$

for some analytic functions f, g on $U, g \neq 0$.

Example 1. A rational function is a meromorphic function on \mathbb{C} of the form

$$
f(z)=\frac{p(z)}{q(z)}
$$

where $p(z)$ and $q(z)$ are polynomials, we may assume $p(z)$ and $q(z)$ have no common zeros. a is pole of $f(z)$ iff $q(a)=0$, its order is the multiplicity of a as a zero of $q(z)$.

Example 2. $f(z)=\frac{1}{e^{2}-1}$ is a meromorphic function on \mathbb{C}, whose poles are $2 \pi i \mathbb{Z}$.

Example 3. $\log z$, as a real function, is defined on the half real line $z>0$. It can be extended to an analytic function on

$$
D=\mathbb{C}-\mathbb{R}_{\leq 0}
$$

by

$$
\log z=\log |z|+i \arg z
$$

where $\arg z$ is the angle from the real axis to the ray from the origin to z, and we require

$$
-\pi<\arg z<\pi
$$

Example 4. Let s be a complex number, z^{s} is an analytic function on

$$
D=\mathbb{C}-\mathbb{R}_{\leq 0}
$$

by

$$
z^{s}=e^{s \log z}
$$

where $\log z$ is defined in Example 3 above.

Example 5. If $f(z)$ is an analytic function on D and $g(w)$ is an analytic function on D^{\prime}. Suppose $g\left(D^{\prime}\right) \subset D$, then the composition $(f \circ g)(w)=f(g(w))$ is an analytic function on D^{\prime} and we have the chain rule:

$$
\frac{d}{d w} f(g(w))=f^{\prime}(g(w)) g^{\prime}(w)
$$

The space of analytic functions on $D, \mathcal{O}(D)$, is a commutative algebra over \mathbb{C}, as a ring, it is an integral domain.

Proposition 1.7. The space of all analytic functions on D is an integral domain. The space of all meromorphic functions on D is a field.

Elliptic Functions

Definition. Let ω_{1} and ω_{2} be complex numbers that are linearly independent over \mathbb{R}. An elliptic function with periods ω_{1} and ω_{2} is a meromorphic function $f(z)$ on \mathbb{C} such that

$$
f(z)=f\left(z+\omega_{1}\right), \quad f(z)=f\left(z+\omega_{2}\right)
$$

for all $z \in \mathbb{C}$.

Denoting the "lattice of periods" by

$$
\Lambda=\left\{m \omega_{1}+n \omega_{2} \mid m, n \in \mathbb{Z}\right\}
$$

It is clear that the condition

$$
f(z)=f\left(z+\omega_{1}\right), \quad f(z)=f\left(z+\omega_{2}\right)
$$

is equivalent to

$$
f(z)=f(z+\omega)
$$

for all $\omega \in \Lambda$.

The end

