Homework for Math 4991 about Elliptic Functions

Deadline: April 9.
Problem 1. Let $f(z)$ be an periodic meromorphic function on \mathbb{C} with period 1, i.e., $f(z+1)=f(z)$ for all $z \in \mathbb{C}$. Let n be a positive integer, we define a function $T_{n} f$ by

$$
\left(T_{n} f\right)(z)=\sum_{k=0}^{n-1} f\left(\frac{z}{n}+\frac{k}{n}\right)
$$

(1) Prove that $T_{n} f$ is a periodic function with period 1.
(2) Prove that $T_{m} T_{n} f=T_{m n} f$.
(3) Let

$$
f(z)=\sum_{k \in \mathbb{Z}} \frac{1}{(z+k)^{N}}
$$

where $N \geq 2$ is positive integer. Prove that f is an eigenfunction of operator T_{n}, i.e., $T_{n} f=\lambda_{n} f$. Find the eigenvalue λ_{n}.

Problem 2. Let $f(z)$ be an elliptic function with the lattice of periods $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, for a positive integer n, let $T_{n} f$ be

$$
\left(T_{n} f\right)(z)=\sum_{k_{1}, k_{2}=0}^{n-1} f\left(\frac{z}{n}+\frac{k_{1}}{n} \omega_{1}+\frac{k_{2}}{n} \omega_{2}\right)
$$

(1) Prove that $T_{n} f$ is an elliptic function with the lattice of periods L.
(2) Let

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

be the Weierstrass function, prove that $\wp(z)$ is an eigenfunction of T_{n}, what is the eigenvalue?
(3) Prove that $\wp^{\prime}(z)$ is also an eigenfucntion of T_{n}, find the eigenvalue.

Problem 3. Let f be an elliptic function with period lattice $L=\mathbb{Z}+\mathbb{Z} i$. Prove that for every $a=m+n i$, where m, n are integers, $f(a z)$ is an elliptic function with period lattice $L=\mathbb{Z}+\mathbb{Z} i$.

