Homework for Math 4991 about Elliptic Functions

Deadline: April 9.

Problem 1. Let f(z) be an periodic meromorphic function on \mathbb{C} with period 1, i.e., f(z+1) = f(z) for all $z \in \mathbb{C}$. Let n be a positive integer, we define a function $T_n f$ by

$$(T_n f)(z) = \sum_{k=0}^{n-1} f(\frac{z}{n} + \frac{k}{n}).$$

- (1) Prove that $T_n f$ is a periodic function with period 1.
- (2) Prove that $T_m T_n f = T_{mn} f$.

(3) Let

$$f(z) = \sum_{k \in \mathbb{Z}} \frac{1}{(z+k)^N}$$

where $N \ge 2$ is positive integer. Prove that f is an eigenfunction of operator T_n , i.e., $T_n f = \lambda_n f$. Find the eigenvalue λ_n .

Problem 2. Let f(z) be an elliptic function with the lattice of periods $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, for a positive integer n, let $T_n f$ be

$$(T_n f)(z) = \sum_{k_1, k_2 = 0}^{n-1} f(\frac{z}{n} + \frac{k_1}{n}\omega_1 + \frac{k_2}{n}\omega_2).$$

(1) Prove that $T_n f$ is an elliptic function with the lattice of periods L. (2) Let

$$\wp\left(z\right) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \smallsetminus \{0\}} \left(\frac{1}{\left(z-\omega\right)^2} - \frac{1}{\omega^2}\right)$$

be the Weierstrass function, prove that $\wp(z)$ is an eigenfunction of T_n , what is the eigenvalue?

(3) Prove that $\wp'(z)$ is also an eigenfunction of T_n , find the eigenvalue.

Problem 3. Let f be an elliptic function with period lattice $L = \mathbb{Z} + \mathbb{Z}i$. Prove that for every a = m + ni, where m, n are integers, f(az) is an elliptic function with period lattice $L = \mathbb{Z} + \mathbb{Z}i$.