Math 6170 C, Lecture on April 1, 2020

Yongchang Zhu

× /				_	
YO	nar	-h a	no	_ / ł	יור
	115.			_	

- (1) V. $\S1.$ The Number of Rational Points over Finite Fields (Review)
- (2). V. $\S2$. The Weil Conjectures.
- (3). V. $\S3$. The Endomorphism Ring.

э

() * 문 * * 문 *

Let K be a finite field with |K| = q, E/K be an elliptic curve given by the Weierstrass equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

All a_i 's are in K.

4 3 4 3 4 3 4

Let E/K be an elliptic curves over a finite field F of q elements. Then

$$||E(K)|-q-1| \leq 2\sqrt{q}.$$

æ

イロト イヨト イヨト イヨト

Proof.

$$|E(K)| = |\ker(1-\phi)| = \deg(1-\phi).$$

deg : End(E) $\rightarrow \mathbb{R}$ is a positive definite quadratic form (Corollary III 6.3), so by Cauchy-Schwartz inequality, we have

$$|\mathrm{deg}(1-\phi)-\mathrm{deg}(1)-\mathrm{deg}(\phi)|\leq 2\sqrt{\mathrm{deg}(1)\mathrm{deg}(\phi)}$$

that is

$$||E(K)|-1-q| \leq 2\sqrt{q}.$$

- E - - E -

Let K be a finite field with |K| = q. Let V be a projective variety. Let K_n be the degree n extension of K, so $|K_n| = q^n$.

Definition. The zeta function of V/K is the power series

$$Z(V/K,T) = \exp(\sum_{n=1}^{\infty} |V(K_n)| \frac{T^n}{n})$$

Let $\mathbb{Q}[[T]]$ be the formal power series ring over \mathbb{Q} .

The exponential map $\exp: \mathbb{Q}[[T]]T \to \mathbb{Q}[[T]]$ given by

$$\exp(f) = \sum_{k=0}^{\infty} \frac{1}{k!} f^k$$

is well-defined for the following reason:

$$f^{k} = c(k,k)T^{k} + c(k,k+1)T^{k+1} + \dots$$

The coefficient of T^n in $\exp(f)$ has **no** contribution from the terms $\frac{1}{k!}f^k$ with k > n.

The coefficient of T^n in $\exp(f)$ = the coefficient of T^n in $\sum_{k=0}^n \frac{1}{k!} f^k$.

イロト イヨト イヨト ・

The formal logarithmic function

$$\log(1+T) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} T^n \in \mathbb{Q}[[T]]T$$

satisfies that

$$\exp(\log(1+T)) = 1+T$$

æ

イロト イヨト イヨト イヨト

It is obvious that $\mathbb{Q}[\mathcal{T}] \subset \mathbb{Q}[[\mathcal{T}]]$. Certain localization of $\mathbb{Q}[\mathcal{T}]$ can also be embedded into $\mathbb{Q}[[\mathcal{T}]]$,

$$\{rac{P(T)}{Q(T)} \mid P(T), Q(T) \in \mathbb{Q}[T], Q(0)
eq 0\}$$

can be embedded as a subring of $\mathbb{Q}[[\mathcal{T}]]$.

$$Q(T) = a_0 + a_1 T + \dots + a_n T^n, a_0 \neq 0,$$
$$\frac{1}{Q(T)} \mapsto a_0^{-1} (\sum_{k=0}^{\infty} (-a_0^{-1} (a_1 T + \dots + a_n T^n))^k)$$

э

· · · · · · · · ·

We have

$$|\mathbb{P}^{N}(\mathcal{K}_{n})| = rac{q^{n(N+1)}-1}{q^{n}-1} = \sum_{i=0}^{N} q^{ni}$$

This implies

$$Z(\mathbb{P}^N/K,T)=rac{1}{(1-T)(1-qT)\cdots(1-q^NT)}.$$

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

(Weil Conjecture). Let K be a finite field with q elements and V/K a smooth projective variety of dimension n.

(a) Rationality

$$Z(V/K, T) \in \mathbb{Q}(T).$$

(b) Functional Equation. There is an integer ϵ (called the Euler characteristic of V) so that

$$Z(V/K,T) = \pm q^{n\epsilon/2} T^{\epsilon} Z(V/K,T)$$

(to be continued)

.

(c) Riemann hypothesis. There is a factorization

$$Z(V/K, 1/q^{n}T) = \frac{P_{1}(T)\cdots P_{2n-1}(T)}{P_{0}(T)P_{2}(T)\cdots P_{2n}(T)}$$

with each $P_i \in \mathbb{Z}[T]$. Further $P_0(T) = 1 - T$, $P_{2n}(T) = 1 - q^n T$, and for each $1 \le i \le 2n - 1$, $P_i(T)$ factors (over \mathbb{C}) as

$$P_i(T) = \prod_j (1 - \alpha_{ij}T)$$

with

$$|\alpha_{ij}| = q^{i/2}.$$

イロト イヨト イヨト -

Part (a) (b) are motivated by Lefschetz Fixed Point Theorem.

Theorem. Let M be a compact complex manifold of dimension n, $f: M \to M$ be a non-constant holomorphic map, and for at each point point $P \in M$, $\operatorname{Jac}(f)|_P$ is non-degenerate. Then

The number of fixed points of f is equal to

$$\sum_{i=0}^{2n} (-1)^i \operatorname{Tr} f^*|_{H^*(M,\mathbb{R})}.$$

where $H^*(M, \mathbb{R})$ is the *i*-th De-Rham cohomology of M.

• • = • • = •

Suppose we have suitable cohomology theory for projective varieties V over K, say, $H^*(V, \mathbb{Q}_I)$, so that the analog of Lefschetz Fixed Point Theorem holds. Apply it to the morphisms ϕ^n , where $\phi : V \to V$ is the Forbenius morphism ($x \mapsto x^q$).

 $V(K_n) =$ fixed point set of ϕ^n

$$|V(\mathcal{K}_n)| = \sum_{i=0}^{2n} (-1)^i \operatorname{Tr} (\phi^*)^n |_{H^*(M,\mathbb{Q})}$$

This would imply

$$Z(V/K, T) = \frac{\det(1-\phi^*T)|_{H^1(V)} \cdot \det(1-\phi^*T)|_{H^3(V)} \cdots \det(1-\phi^*T)|_{H^{2n-1}(V)}}{\det(1-\phi^*T)|_{H^0(V)} \cdot \det(1-\phi^*T)|_{H^2(V)} \cdots \det(1-\phi^*T)|_{H^{2n}(V)}}$$

 $P_i(T) = \det \left(1 - T\phi^*\right)|_{H^i(V)}.$

3

The *l*-adic cohomology theory was developed by Grothendieck (also Artin) and used to prove (a) (b). Deligne proved (c).

4 B K 4 B K

For each $\psi \in \operatorname{End}(E)$, $\psi : E[I^n] \to E[I^n]$, we have commutative diagram

$$\begin{array}{ccc} E[l^{n+1}] & \stackrel{\psi}{\longrightarrow} E[l^{n+1}] \\ \downarrow [l] & \downarrow [l] \\ E[l^n] & \stackrel{\psi}{\longrightarrow} E[l^n] \end{array}$$

This means ψ acts on the Tate module $T_l(E)$, so we have a ring homomorphism

$$\operatorname{End}(E) \to \operatorname{End}(T_I(E)), \quad \psi \mapsto \psi_I$$

• • = • • = •

Since $T_I(E)$ is a free \mathbb{Z}_I -module of rank 2, so each ψ_I can be presented as a 2×2 matrix over \mathbb{Z}_I . We can define its determinant and trace:

 $\det(\psi_I), \operatorname{tr}(\psi_I)$

э

Let
$$\psi \in \operatorname{End}(E)$$
. Then $\det(\psi_l) = \deg(\psi)$
and $\operatorname{tr}(\psi_l) = 1 + \deg(\psi) - \deg(1 - \psi).$

3

イロト イヨト イヨト イヨト

Proof. Let v_1, v_2 be a basis for $T_I(E)$, assume the matrix for ψ_I w.r.t. this basis is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Recall we have a non-degenerate, bilinear, skew-symmetric pairing:

$$e: T_I(E) \times T_I(E) \to T_I(\mu) \simeq \mathbb{Z}_I$$

3 K K 3 K

Proof (continued).

$$e(v_1, v_2)^{\deg \psi} = e([\deg \psi]v_1, v_2) \\ = e(\hat{\psi}_I \psi_I v_1, v_2) \\ = e(\psi_I v_1, \psi_I v_2) \\ = e(av_1 + cv_2, bv_1 + dv_2) \\ = e(v_1, v_2)^{ad-bc}$$

Since $e(\)$ is non-degenerate and skew-symmetric, so $e(v_1, v_1) = e(v_2, v_2) = 1 \ e(v_1, v_2) \in T_l(\mu)$ is a generator of \mathbb{Z}_l -module $T_l(\mu)$. So $\deg \psi = ad - bc = \det(\psi_l)$

$$\deg \psi = ad - bc = \det(\psi_I)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The second identity follows the identity

$$ext{tr}(A) = 1 + ext{det}(A) - ext{det}(1-A)$$
 for any 2 $imes$ 2 matrix $A = egin{pmatrix} a & b \\ c & d \end{pmatrix}$.

 $\operatorname{Right} = 1 + ad - bc - ((1 - a)(1 - d) - bc) = a + d = \operatorname{tr}(A)$

æ

イロト イヨト イヨト ・

Let $\phi: E \to E$ be the *q*-th power Frobenius endomorphism,

$$|E(K)| = \deg(1-\phi)$$

Similarly,

$$|E(K_n)| = \deg(1-\phi^n)$$

From Prop. 2.3, the characteristic polynomial of ϕ_I

$$\det(T - \phi_I) = T^2 - \operatorname{tr}(\phi_I)T + \det(\phi_I)$$

is a polynomial with coefficients in $\mathbb Z.$ Assume we have a factorization over $\mathbb C \colon$

$$\det(T - \phi_I) = (T - \alpha)(T - \beta)$$

A B < A B </p>

We claim α and β are complex conjugate each other. It is enough to prove $\det(T - \phi_l)|_{T=r} \ge 0$ for all real number r.

It is enough to prove $det(T - \phi_I)|_{T=r} \ge 0$ for all rational number $\frac{m}{n}$.

(4回) (4回) (4回)

$$\det(\frac{m}{n}-\phi_I)=\frac{1}{n^2}\det(m-n\phi_I)=\frac{1}{n^2}\deg(m-n\phi_I)\geq 0$$

So we have $|\alpha| = |\beta|$.

$$\alpha\beta = \det(\phi_I) = \deg(\phi) = q.$$

$$\det(T-\phi_I^n)=(T-\alpha^n)(T-\beta^n)$$

æ

イロト イヨト イヨト イヨト

Theorem. $|E(K_n)| = 1 - \alpha^n - \beta^n + q^n$.

Proof.

$$|E(K_n)| = \deg(1-\phi^n) = \det(1-\phi_l^n) = 1-\alpha^n - \beta^n + q^n$$

3

イロト イヨト イヨト イヨト

Let K be a finite field with |K| = q and E/K an elliptic curve. Then there is an $a \in \mathbb{Z}$ so that

$$Z(E/K, T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}$$

Further

$$Z(E/K,\frac{1}{qT})=Z(E/K,T)$$

and

$$1 - aT + qT^2 = (1 - \alpha T)(1 - \beta T)$$

with $|\alpha| = |\beta| = \sqrt{q}$.

æ

Proof.

$$\log Z(E/K, T) = \sum_{n=1}^{\infty} |E(K_n)| \frac{T^n}{n}$$
$$= \sum_{n=1}^{\infty} (1 - \alpha^n - \beta^n + q^n) \frac{T^n}{n}$$
$$= -\log(1 - T) + \log(1 - \alpha T)$$
$$+ \log(1 - \beta T) - \log(1 - qT)$$

Э.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Proof (continued). Hence

$$Z(E/K,T) = \frac{(1-\alpha T)(1-\beta T)}{(1-T)(1-qT)}.$$

The remaining part of theorem is straightforward.

æ

イロト イヨト イヨト イヨト

The real Riemann hypothesis is about the Riemann zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

 $\zeta(s)$ has zeros at $-2, -4, \ldots$. The RH claims that all the other zeros are in the critical line re $s = \frac{1}{2}$.

We replace T in Z(E/K, T) by $T = q^{-s}$, then $Z(E/K, q^{-s})$ has a functional equation that relates the values at s and 1 - s, and the zeros are on the line re $s = \frac{1}{2}$.

• • = • • = •

Theorem V. 3.1. Let K be a perfect field of characteristic p, and E/K be an elliptic curve. Then the following three conditions are equivalent:

(a) E[p] = 0

(b) $E[p^r] = 0$ for all $r \ge 1$.

(c) $\operatorname{End}(E)$ is an order in a quaternion algebra.

Definition. E is called to be **supersingular** if the conditions in Theorem hold.

æ

• • = • • = •

The elliptic curves over \mathbb{C} are in one-to-one correspondence with compact Riemann surfaces of genus 1 with a marked point.

Every Riemann surface of genus 1 is isomorphic to a quotient $\mathbb{C}/\Lambda,$ where Λ is a lattice in $\mathbb{C}.$

We have analytic tools to study elliptic curves over \mathbb{C} .

A **lattice** in \mathbb{C} is a free \mathbb{Z} -submodule $\Lambda \subset \mathbb{C}$ of rank two such that a basis of Λ is \mathbb{R} -linearly independent.

Example. $\mathbb{Z} + \mathbb{Z}i$ is a lattice.

Example. $\mathbb{Z} + \mathbb{Z}\sqrt{2}$ is **not** a lattice.

4 3 4 3 4 3 4

A lattice can be written as

$$\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$$

where ω_1 and ω_2 are \mathbb{R} -linear independent.

æ

4 3 4 3 4 3 4

Definition. An **elliptic function** (relative to the lattice Λ) is a meromorphic function f(z) on \mathbb{C} such that

$$f(z+\omega)=f(z)$$

for all $\omega \in \Lambda$ and all $z \in \mathbb{C}$.

To be continued.

- E > - E >

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -